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Abstract—In the age of the Internet of Things (IoT) and
the expanding computing continuum, it’s crucial to manage
and share resources at the edges of networks. This position
paper presents a new concept known as ’semantic slicing’. This
approach harnesses the power of artificial intelligence (AI),
wireless networks, edge computing, and sensing technologies
to enable novel applications, optimize resource allocation, and
streamline data processing and decision-making across complex
systems spanning the computing continuum. Semantic slicing
applies a deep understanding of the data and specific application
requirements to intelligently allocate resources and distribute
processing tasks in the computing continuum. This strategy
allows for the creation of systems that are not only more efficient
and responsive, but also better equipped to adapt to a variety of
applications and services.

I. INTRODUCTION

Imagine a world where data sources and streams, originating
from IoT and cyber-physical devices, are actively revised on-
the-go, adapted, and sliced down to the essentials of sensing
according to the changing needs and requirements of appli-
cations and users in the computing continuum based on their
semantic context. The advent of 6G wireless networks, coupled
with advances in AI, edge computing, and multimodal sensing,
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presents unprecedented opportunities for enhancing the perfor-
mance and responsiveness of complex systems. While these
technologies enable the development of intelligent, adaptive,
and highly efficient systems that can cater to the diverse needs
of various applications and services, the key challenge for
harnessing their full potential lies in the effective allocation
of resources and the ability to make informed decisions based
on semantic understanding of data.

In this position paper, we introduce the concept of semantic
slicing, an innovative approach that integrates AI, wireless
networks, edge computing, and sensing, to optimize resource
allocation, data processing, and decision-making across com-
plex systems. Semantic slicing builds upon the idea of network
slicing in 5G and 6G networks and extends it by incorporating
AI-driven semantic understanding of data and application re-
quirements. By intelligently allocating resources and distribut-
ing processing tasks based on the semantic context, semantic
slicing enables more efficient and responsive systems that can
adapt to diverse applications and services.

Semantic slicing goes beyond traditional slicing approaches
by considering the context and semantics of the data. This
allows for the creation of multiple virtual verticals within a
shared physical infrastructure, each with its own set of char-
acteristics and requirements. Different types of slicing have
been proposed, such as network slicing [1], the scheduling
and allocation of computing resources, and end-to-end slicing
of both computational and communication resources [2]–[4].
However, semantic slicing specifically addresses the unique
challenges of data management in the computing continuum,
where data is streaming within a dynamic and distributed net-
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work of nodes with multiple applications and users, each with
their own complex requirements, restrictions, and domains of
data under their control.

II. BACKGROUND TECHNOLOGIES

Different background technologies pave the way for the cre-
ation of distributed intelligence in 6G wireless networks. These
include artificial intelligence (AI), wireless networks (with a
focus on 6G), edge computing, and sensing. Understanding
these technologies and their roles in semantic slicing is crucial
for grasping the potential of this approach.

Artificial intelligence (AI) provides the foundation for
the semantic understanding of data [5]. AI techniques, such
as machine learning and deep learning, can be used for
data analysis, pattern recognition, and decision-making across
multiple components of an intelligent system, including both
the data and the organization of the system itself. In the context
of semantic slicing, AI algorithms are employed to analyze the
preprocessed data and develop a semantic understanding of
the data. This understanding allows for intelligent allocation
of resources and distribution of processing tasks, ultimately
leading to improved decision-making and more efficient sys-
tem performance [6].

Wireless networks enable the transmission of data between
devices without the need for wired connections. The evolution
of wireless networks has led to significant advancements in
data rates, latency, and capacity, with 6G being the next-
generation communication technology that promises to rev-
olutionize the way we interact with digital systems [7]. One
of the key concepts in 5G and 6G networks is network slicing,
which allows operators to dynamically allocate resources (e.g.,
bandwidth, latency, and processing capabilities) to different
services based on their specific requirements [8]. Semantic
slicing extends this idea by incorporating AI-driven semantic
understanding of the data and the application requirements,
leading to more intelligent and efficient resource allocation.

The computing continuum is a spectrum of computing
environments and architectures that are used for deploying and
managing applications, algorithms and system functions, etc.,
as services [9]. It encompasses different computing paradigms,
including centralized cloud computing, decentralized edge
computing, and distributed fog (or local edge) computing.
Each of these paradigms has its own characteristics and
benefits as well as limitations and challenges, particularly
when it comes to resource management.

Multimodal distributed sensing refers to the process
of collecting data from the environment through different
fixed and mobile sensors in a coordinated manner. In many
applications, understanding the context and meaning of the
sensor data is vital for effective decision-making and resource
management [10]. Semantic slicing addresses this need by
employing AI algorithms to analyze the extracted features
from the raw set of sensor data and develop a semantic under-
standing through a shared representation. This understanding
enables the system to focus on specific aspects of the data or
prioritize certain types of applications that are more critical

or sensitive, leading to more intelligent and efficient system
operation.

III. SEMANTIC SLICING CONCEPTS

In the context of 6G wireless networks, the integration of AI,
wireless networks, edge computing, and sensing technologies
plays a crucial role in realizing the potential of semantic
slicing. By combining the capabilities of these technologies,
semantic slicing can intelligently manage and process data in
a distributed manner, ensuring efficient resource allocation and
responsive decision-making across various applications and
services. Several key semantic slicing concepts, as listed in
Table I, build upon these foundational technologies, exploring
how they work together to enable distributed, intelligent,
adaptive systems.

Semantic data acquisition involves collecting data from
various sensors, such as video feed from cameras, radio signals
from radars and communication devices, temperature, humid-
ity, pressure, or other physical quantities from environmental
sensors, or movement, biosignals, or other individual charac-
teristics from personal sensors. On typical data acquisition,
preprocessing is performed to extract relevant features or
patterns from the raw sensor data, allowing for more compact
representation and highlighting the meaningful aspects of
the data. Edge computing, including on-device local edge
or Multi-Access Edge Computing (MEC) hosted by access
networks, can be utilized in this step to process the data closer
to the source, which reduces latency and requirements for
bandwidth.

Semantic understanding is achieved by applying a variety
of AI algorithms, such as machine learning or deep learning,
to analyze preprocessed data and develop a semantic inter-
pretation of data. This involves recognizing specific events,
patterns, or relationships in the data that are important for
a particular application. By understanding the semantics of
the data, the system can make more informed decisions about
resource allocation and processing tasks.

Semantic network slicing can be applied to wireless net-
works to intelligently allocate resources such as bandwidth,
latency or processing capabilities, based on semantic under-
standing of the data and requirements of different applications
or services. This might involve prioritizing certain types of
data or applications that are more critical or sensitive, leading
to more efficient and effective resource utilization.

Semantic distributed processing distributes computing
tasks across the continuum, based on semantic understanding,
location of data and data sources, and the specific requirements
of the tasks. This can improve the efficiency and performance
of the system, enabling it to better support diverse applications
in the network.

Semantic decision-making and action allows the system
to prioritize decisions or actions based on the semantic under-
standing of the application. This may include prioritizing the
triggering of alarms, adjusting system parameters, or providing
only timely insights to users. Semantic understanding of the
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TABLE I
SEMANTIC SLICING CONCEPTS AND KEY ENABLERS

Concepts Key enablers Challenges

Semantic data acquisition Sensor slicing [11] [12], data slic-
ing [13] [14] [15] [16]

Scalability, real-time processing, data heterogeneity

Semantic understanding AI: feature slicing [16] [15] and parameter slicing
[17]

Model complexity, interpretability, domain adapta-
tion

Semantic network slicing Network slicing [18] [19] [20] Dynamic resource allocation, isolation, quality of
service (QoS) guarantees

Semantic distributed processing Multimodal sensing [10], Resource slic-
ing [21] [22] [23]

Load balancing, fault tolerance, latency

Semantic decision-making and action AI [5], Computing continuum [9], Multimodal dis-
tributed sensing [10]

Responsiveness, context awareness, security and pri-
vacy

data makes decision-making more effective and timely, leading
to improved system performance.

IV. SEMANTIC SLICING FRAMEWORK

The implementation of semantic slicing should integrate the
concept through data and is pipelines, AI, edge computing,
wireless networks, and sensing itself. Our proposed framework
consists of several key components that work together to
enable the efficient allocation of resources, distributed pro-
cessing, and informed decision-making based on the semantic
understanding of data. Figure 1 shows an example on how se-
mantic slicing propagates through all layers of the computing
continuum, from sensing to data.

Data slicing is a technique used in data analysis, partic-
ularly in the context of big data and machine learning. It
involves partitioning the data into smaller subsets or ”slices”
based on certain criteria or dimensions, such as time, location,
or specific features. This enables more focused analysis and
can lead to more efficient processing and better understand-
ing of the data. Data slicing include horizontal and vertical
partitioning [13], sharding, and replication [14]. Li et al.
defined a slicing of a table as an attribute partition and a tuple
partition, while Chung et al. considered a slice as a subset of
examples in a dataset with common features [15] [16]. While
data slicing is an important aspect of data preprocessing and
analysis, it does not address the broader challenges of resource
allocation, distributed processing, and decision-making across
complex systems. Semantic slicing builds upon the idea of
data slicing by integrating it with AI, wireless networks,
edge computing, and sensing technologies to enable a more
comprehensive approach to managing and processing data in
complex systems.

AI Model slicing is a technique used in the context of
artificial intelligence and machine learning, where a trained
model is partitioned into smaller, more focused models that
cater to specific subsets of the data or tasks. This is often
achieved by identifying the most relevant neurons, layers,
or weights in the model and removing or pruning the less
relevant components. Model slicing can lead to significant
improvements in model efficiency, scalability, and adaptability,
as it allows for more focused and resource-efficient processing

of specific data subsets or tasks. This has been approached
using both feature space slicing [16] [15] and model/parameter
slicing [17]. While these approaches offer several advantages
in the context of AI, its primary focus is on improving
the efficiency and performance of individual models, rather
than addressing the broader challenges of resource allocation,
data processing, and decision-making across complex systems.
Semantic slicing, on the other hand, aims to address these
challenges by integrating AI-driven semantic understanding of
data with resource allocation and distributed processing tech-
niques. In this context, model slicing can be considered as a
complementary technique that can be used in conjunction with
semantic slicing to optimize the performance of AI models
and further enhance the overall efficiency and responsiveness
of the system.

Network slicing is a concept primarily associated with 5G
and 6G networks, where a single physical network infrastruc-
ture is virtually partitioned into multiple independent logical
networks, each catering to specific service requirements. This
enables more efficient resource allocation and better support
for diverse applications with varying needs in terms of la-
tency, bandwidth, and reliability. Different ideas have been
suggested, such as an edge computing architecture that tailors
needed network resources at the edge cloud [18], a three-
layer architecture based on services [19], or the leverage of
edge-and cloud for slicing [20]. While network slicing offers
significant improvements in resource allocation and network
management, it does not inherently consider the semantic
understanding of data or the specific requirements of individual
applications. Semantic slicing extends the idea of network
slicing by incorporating AI-driven semantic understanding
of the data and application requirements, leading to more
intelligent and efficient resource allocation that can better
adapt to the diverse needs of various applications and services.

Resource access slicing refers to the technique of dynam-
ically allocating and managing access to multiple resources
within a network based on specific criteria, such as appli-
cation requirements, priority levels, or resource constraints.
This approach enables more efficient use of resources, as it
allows for the selective activation, deactivation, or sharing
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Fig. 1. Semantic slicing example. An individual is labeled to be followed
with high priority. Accordingly, the high-level data frame is sliced based on
observations (rows) as well as observed and predicted features (columns).
The slicing propagates through data streams and predictions, raising priority
of certain streams and models over others, and across the communication
and computation infrastructure in the computing continuum, to originating
components and sensors, finally prioritizing the use of fundamental resources
in sensing.

meet the varying demands of different applications or services.
Resource access slicing can be particularly beneficial in sit-
uations where there are limited resources, or where multiple
applications compete for access to the same resources [21]–
[23]. By integrating this technique with AI-driven semantic
understanding it becomes possible to create more intelligent
and adaptive systems that can efficiently handle the diverse
requirements and challenges of various applications and do-
mains while optimizing sensor resource utilization.

Sensor slicing is a technique that involves partitioning data
collected from sensors into smaller, more focused subsets or
”slices” based on specific criteria, such as time, location, or
particular features [11], [12]. This approach enables more

efficient and targeted analysis of sensor data, leading to better
understanding and utilization of the information. Furthermore
it promotes resource-efficiency and sustainability through us-
ing common sensors for various applications and services.
Sensor slicing can be particularly useful in applications where
large volumes of data are generated by multiple sensors, as it
allows for the isolation and analysis of relevant data segments
based on the specific needs of the application. By combining
sensor slicing with techniques such as AI-driven semantic
understanding, resource allocation, and distributed processing,
it is possible to develop more intelligent and adaptive systems
that can better handle the diverse requirements and challenges
of various applications and domains.

While there are several slicing techniques available in the
literature, semantic slicing stands out due to its focus on the
meaning of the data and the application, enabling more intel-
ligent and efficient resource allocation. In order to implement
the semantic slicing framework, we need a unified language to
represent the heterogeneous resources in the computing contin-
uum, such as devices and AI models, as well as defining slicing
operations on network, computational resources, models, and
data. Semantic schemas such as W3C Thing Description and
Semantic Smart Sensor Network Ontology have been modified
to specify IoT devices and neural network models [24]. We can
enhance OWL-POLAR [25] to describe slicing techniques and
policies that configure, operate, and prioritize the applications.
These semantic descriptions can be stored in, for example, a
graph database (such as GraphDB1) and accessed via SPARQL
queries. The proposed framework is summarized in Figure 2.

V. APPLICATIONS AND USE CASES

Semantic slicing has the potential to benefit various ap-
plications and domains by enabling efficient isolation, pri-
oritization, and consent management of application semantic
concepts. This, in turn, improves resource allocation and
distributed processing, and helps make informed decisions
based on semantic understanding of the data. Some potential
use cases of semantic slicing include:

Smart cities: Semantic slicing can be employed to manage
the diverse and complex needs of smart city applications,
such as traffic management, public safety, and environmental
monitoring [26]–[28]. In this use case, semantic slicing could
prioritize semantic data related to first responders or security
personnel, focusing sensoring and slicing network connections
and predictive models to ensure timely data capture, transmis-
sion, and processing. In an example scenario, semantic slicing
can be used in a ”seeing-around-the-corner” system, which
uses mmWave technology and advanced algorithms to render
a virtual representation of a unseen the area of interest, helping
with traffic management and security operations.

Industrial automation: In industrial settings, semantic
slicing can help optimize the allocation of resources and
processing tasks to ensure efficient and reliable operation of
manufacturing processes, robotic systems, and other automated

1GraphDB: https://graphdb.ontotext.com/
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Fig. 2. Semantic slicing framework.

systems [29]. For example, semantic slicing may increase the
priority of individual product batches throughout the manu-
facturing process, ensuring timely sensoring, transmission and
analysis of product data for quality assurance purposes.

Environmental monitoring: Semantic slicing can be used
for monitoring environmental parameters, such as air quality,
water quality, or weather conditions [30], [31]. In this context,
it can provide a more focused and efficient approach to
analyzing sensor data and taking appropriate actions based on
the semantic understanding of the data [26]. For example, one
scenario could involve the installation of air quality and CO2
sensors as well as cameras in a building, and using this data
to personalize information for a person walking around the
building with a mobile device. This would be done through a
decentralized approach with local edge servers and device-to-
device communication. Another scenario could involve a set
of mobile air quality sensors integrated in people that move
around the building. The building would use the data from
these mobile sensors to create a map of the air quality and CO2
levels throughout the building, with the data being aggregated
to provide a more complete picture.

Healthcare: Semantic slicing can be applied to healthcare
applications, such as telemedicine, remote patient monitoring,
and medical imaging [32]. By understanding the context and
meaning of the data, the system can prioritize critical services,
allocate resources effectively, and support timely decision-
making for improved patient care. Moreover, semantic slic-
ing can provide enhanced isolation of patient data streams
on a fine-grained level, improving the privacy and security
of personal data sensing, processing and transmission, and
furthermore, to help meeting the strict requirements by regula-
tion/legislation [33]. In an example scenario, semantic slicing
can be used in a system for unobtrusive, distributed, and mul-
timodal measurement of vital signs, which uses a combination
of sensors to enable real-time syncing and processing of vital
sign data in various environments and conditions.

Connected and autonomous vehicles: In the context of
connected and autonomous vehicles, semantic slicing can
enable more efficient allocation of resources for communi-
cation, data processing, and decision-making. This can lead
to improved safety, better traffic management, and more ef-
ficient operation of transportation systems [34]. In an ex-
ample scenario, semantic slicing can be used in a vision-
aided communication system that utilizes mm-wave radio
technology to transmit data without the need for line-of-sight,
improving communication between autonomous vehicles and
other connected devices.

Internet of Things (IoT): IoT devices generate vast
amounts of data that need to be processed and analyzed for
effective decision-making. Semantic slicing can help manage
the diverse requirements of IoT applications by intelligently
allocating resources and distributing processing tasks based on
the semantic understanding of the data [35], thus reducing e.g.
energy consumption [36].

VI. CONCLUSION

In this paper, we introduced the concept of semantic slicing,
an innovative approach that integrates AI, wireless networks,
edge computing, and sensing to optimize resource allocation,
data processing, and decision-making across complex systems.
By leveraging the semantic understanding of data and applica-
tion requirements, semantic slicing enables more efficient and
responsive systems that can better adapt to the diverse needs
of various applications and services.

We presented a high-level framework for integrating seman-
tic slicing across these technologies and discussed potential
applications and use cases in domains such as smart cities,
industrial automation, environmental monitoring, healthcare,
connected vehicles, and IoT. As 6G networks continue to
evolve, semantic slicing has the potential to play a crucial role
in shaping the future of wireless communication and related
technologies, enabling more intelligent, efficient, and adaptive
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systems that can cater to the ever-growing demands of our
digital world.
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