
Fine-Grained QoS Control via Tightly-Coupled
Bandwidth Monitoring and Regulation for

FPGA-based Heterogeneous SoCs
G. Brilli*, G. Valente†, A. Capotondi*, P. Burgio*, T. Di Mascio†, P. Valente*, A. Marongiu*

* University of Modena and Reggio Emilia, Italy, e-mail: name.surname@unimore.it
† DISIM Department, University of L’Aquila, Italy, e-mail: name.surname@univaq.it

Abstract—Embedded systems are increasingly adopting het-
erogeneous templates integrating hardware accelerators and
application-specific processors, which poses novel challenges.
In particular, it is difficult to have accurate control of task
activities in Commercial Off-the-shelf (COTS) System on Chips
(SoCs), due to complex main memory sharing mechanisms among
different computing engines. To address this problem, bandwidth
regulation approaches based on monitoring and throttling are
widely adopted. Existing solutions, however, are either too coarse-
grained, limiting the control over computing engines activities,
or platform-dependent, addressing the problem only for specific
SoCs. In this paper we propose an innovative, fine-grained and
platform-independent approach that can accurately control main
memory bandwidth usage in an FPGA-based Heterogeneous
System on Chip (HeSoC). Experimental results conducted on the
Xilinx Zynq UltraScale+ platform demonstrate that our approach
enables solutions not feasible with state-of-the-art bandwidth
regulation methods.

Index Terms—Embedded, Memory Interference, Bandwidth
Monitoring, Bandwidth Regulation

I. INTRODUCTION

The current generation of embedded systems widely relies
on Heterogeneous Systems-on-Chip (HeSoCs), where general
purpose multi-cores are coupled to hardware accelerators and
application-specific processors. The adoption of such systems
provides sufficient computing power to satisfy the needs
of modern software applications, but at the same time it
poses novel challenges. In particular, as the number of on-
chip compute engines grows, the interference due to main
interconnect and memory sharing significantly hampers the
tasks’ execution time [1], making the system unpredictable
from the point of view of timing. Several solutions have
been proposed to tackle this problem, ranging from static
memory partitioning techniques [2] [3], to task execution
models that guarantee predictable memory access [4] and
memory bandwidth regulation strategies (e.g., [5]–[7]). The
latter in particular are widely available also in commercial
products, based on the combination of bandwidth monitoring
and throttling mechanisms. When considering heterogeneous
systems based on programmable logic (FPGA), the availability
of such mechanisms is typically limited to loosely coupled,
coarse-grained components from the point of view of the ac-
tuation interval (i.e., the time to monitor and throttle the band-
width). When co-scheduling numerous HW and SW tasks from
real-time operating systems featuring scheduling ticks below
the millisecond boundary, fine-grained and tightly-coupled

schemes to support bandwidth regulation is mandatory to
guarantee Quality of Service (QoS) control. While some fine-
grained techniques exist, they are highly platform-dependent,
addressing the problem only for specific SoCs [8] [9].

In this paper we propose an innovative, fine-grained and
platform-independent Runtime Bandwidth Regulator (RBR) for
disciplined main memory bandwidth usage in Commercial Off-
the-Shelf (COTS), FPGA-based HeSoCs. The RBR performs
tightly-coupled monitoring and throttling of main memory
bandwidth, effectively delivering the desired QoS levels with
high precision. The proposed RBR quickly adapts to dynami-
cally varying QoS levels, and is completely platform indepen-
dent. Moreover, our system does not interfere with existing
running tasks, and introduces a minimal timing overhead.

Our experimental results show that the proposed tightly-
coupled bandwidth regulation scheme is able to precisely track
and very quickly adapt to dynamically changing QoS requests
with a resolution of just 32µs. This approach makes bandwidth
regulation effective for applications with timing resolution one
to two orders of magnitude smaller than what is possible for
state-of-the-art solutions. When evaluated at the whole-system
level for the co-scheduling of SW and HW tasks, RBR enables
effective bandwidth regulation in presence of much tighter
QoS requirements compared to previous work.

II. BACKGROUND AND STATE OF ART

A. Related Work
Memory interference can be very impactful on the per-

formance of modern HeSoCs. This has motivated a lot of
characterization work in the recent past, focusing on the effects
on the main CPU [10], GPGPU accelerators [11] [12] and
FPGA accelerators [13] [14]. All the previous work showed
that unmanaged concurrent accesses to main memory on
HeSoCs can lead to dramatic slowdowns, making the system
unpredictable from the point of view of timing behavior.

A simple, widespread approach to mitigating these effects
is that of enforcing mutually exclusive memory access to
the main memory (DRAM) [1]. Several works use this prin-
ciple [4], [15]–[18] varying the granularity, the scheduling
principles or the target architecture. Although functional, these
approaches are typically too conservative and pessimistic, as
their one-at-a-time execution model induces a severe under-
utilization of the available DRAM bandwidth in modern
HeSoCs, limiting the overall throughput. Yao et al. [19] try

20
23

 6
0t

h
A

C
M

/IE
EE

 D
es

ig
n

A
ut

om
at

io
n

C
on

fe
re

nc
e

(D
A

C
) |

 9
79

-8
-3

50
3-

23
48

-1
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
D

A
C

56
92

9.
20

23
.1

02
47

84
0

Authorized licensed use limited to: University of L'Aquila. Downloaded on October 25,2023 at 07:43:54 UTC from IEEE Xplore. Restrictions apply.

to overcome such under-utilization by allowing multiple tasks
to access DRAM at the same time. Task-based scheduling for
memory accesses, however, does not allow for fine-grained
control. Other approaches improve DRAM bandwidth usage
by relying on offline profiling to devise efficient task schedul-
ing and bandwidth allocation [20]. The main limitation of such
approaches resides in their static nature, which is not always
practical or altogether feasible. Controlled Memory Request
Injection (CMRI) [10] also allows more than one task at a
time to access DRAM, interspersing memory requests from the
tasks with a controlled amount of idle cycles. This is achieved
by wrapping task execution within fine-grained, controllable
duty cycles. Compiler-level code instrumentation and dynamic
task throttling [7] can be used to implement the duty cycling.

Modern HeSoCs indeed typically include HW knobs for
controlling QoS and fairness at different levels of the in-
terconnect hierarchy [6], [21]. As it was shown in a recent
work by Serrano et al. [9], using these knobs is typically
not straightforward, due to the varying degrees of support
on different products and to the many different (and in
some cases obscure) configurations available. Furthermore,
these mechanisms lack generality, as they are typically closed
solutions specific to a given vendor or hardware platform (e.g.,
ARM MPAM [8], QoS400 [22]). Farshchi et al. [5] have
studied an approach to mitigate memory contention between
CPU cores by implementing a HW throttler as custom FPGA
logic. Note that the FPGA is used only as a medium to
emulate and prototype a dedicated HW block ideally sitting
between the host and the shared buses. As such, the focus
is not on the interference generated between CPU cores and
FPGA accelerators. Moreover, given the slow speed of the
FPGA logic compared to the CPU, the granularity at which
the throttling can be done is very coarse.

Our proposed solution also focuses on FPGA-based HeS-
oCs, and overcomes the described problems by tightly cou-
pling a lightweight HW monitoring system [23] with a novel
Runtime Bandwidth Regulator (RBR). It operates as a simple,
low-overhead block to be integrated in an FPGA accelerator
and is capable of dynamically controlling the bandwidth
generated by said accelerator in a fine-grained manner.

B. Background

We consider the architectural template of an FPGA-based
HeSoC shown in Figure 1, which is composed of a host multi-
core CPU complex coupled to an FPGA subsystem. The two
subsystems communicate via the main DRAM. This template
captures the main traits of several existing commercial prod-
ucts. Within the FPGA, one or more accelerators are deployed.
A generic template for an accelerator includes a datapath,
namely the core logic that performs the computation, and an
efficient DMA engine, used to facilitate the staging of data
from the DRAM into a fast, local memory. To simplify the
development of FPGA applications it is common to also enrich
the accelerator template with a soft core for local control of
the datapath and DMA operation, without the need for the
costly intervention of the main CPU [24]–[27].

In modern HeSoCs, the DMAs inside FPGA accelerators
generate much higher DRAM bandwidth request than what

Fig. 1: Architectural template of the target HeSoC.

happens on the CPU cores, and more than a single master
port is typically available to individually attach accelerators
to the main interconnect fabric (for example, the Xilinx
Ultrascale+ device that we use for our experimental setup
features three independent ports). If CPU cores and FPGA
accelerators run in parallel without DRAM access control,
the execution time of the CPU tasks can slow down by over
10× [13]. On the other hand, enforcing mutually exclusive
CPU/FPGA DRAM accesses causes severe under-utilization
of the available memory bandwidth. Since the main interface
of an accelerator to the DRAM is the DMA, bandwidth
monitoring and throttling should happen at this level. Previous
work has explored throttling FPGA accelerators by leveraging
the soft cores for programming the DMA in a duty-cycled
loop [14]. Each DMA transfer request is split into several
smaller transfers, each of which can be interleaved with a
programmable amount of idlecycles, computed as shown in (1):

idlecycles =
100− THR%

THR%
∗ copycycles (1)

where THR% ∈ [1, 100] represents the throttling factor* to
be applied to the transfer, while copycycles is the time (clock
cycles) it took to complete the small transfer. As we will
show later on, the main drawback of throttling accelerators
via software (albeit running on the local soft core) is the high
programming overhead, which doesn’t allow for very fine-
grained operation. Furthermore, to retrieve the copycycles from
Equation 1 we need to interact with a monitoring component.
The looser the coupling with such component, the higher the
time to complete the monitoring + throttling control loop.

In real-time operating systems and applications new tasks
can be admitted into the system with µs -scale frequency [28];
with the same frequency co-scheduling decisions related to the
maximum allowed bandwidth to each task can be re-evaluated.
Consequently, the mechanism for bandwidth monitoring and
throttling needs to be as responsive and tight as possible.

*THR=100 means 100% bandwidth granted; THR=1 means 1% band-
width granted.

Authorized licensed use limited to: University of L'Aquila. Downloaded on October 25,2023 at 07:43:54 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: The FPGA accelerator with the RBR. Fig. 3: RBR internal design.

III. TIGHTLY-COUPLED BANDWIDTH MONITORING AND
REGULATION

In the following we present a Tightly Coupled Monitoring
and Throttling (TCMT) solution enabling accurate bandwidth
regulation of FPGA accelerators with minimal overheads and
minimal impact on the timing. We assume that all the involved
blocks communicate through standard AXI protocols, although
the methodology is not specific to any protocol.

The RBR is introduced as a non-intrusive component of the
accelerator template, as shown in Figure 2. It contains two
main blocks: (i) a monitor that probes the outgoing channel to
the DRAM to unobtrusively measure the time (copycycles from
Equation 1) to transfer a given amount of bytes (the threshold);
(ii) a throttler that computes the idlecycles from Equation 1
and stops DMA operation for that amount of time. The value
of the threshold and the throttling factor THR% are provided
during RBR configuration by the soft core. This is expected to
happen every time the underlying middleware (e.g., the RTOS
or the hypervisor) modifies the QoS requirements for the tasks
scheduled, for example, a new task has been just admitted.

A close-up of the internals of the RBR is shown in Figure 3.
Upon RBR configuration the threshold and THR% values are
stored into a Controller block in the monitor. The monitor
relies on a Timer block to measure the copycycles. The number
of bytes read (or written) through the outgoing channel to the
DRAM is accumulated in a Counter Up block, that stays active
until the Equality Comparator detects that the threshold has
been reached. When that happens, the Equality Comparator
asserts an idle valid signal, to trigger the operation of the
throttler, and to reset the Timer and the Counter Up blocks.

The throttler receives the copycycles and THR% values
from the monitor and relies on a Weigher block to compute
the idlecycles. This information is then written inside a down
counter (Counter DWN) block, which also triggers the opera-
tion of a second Equality Comparator block. This block acts
as a state machine that transitions between a PASS-THROUGH
and a WAIT state. As long as the Counter DWN contains a
number higher than zero the Equality Comparator remains in

the WAIT state. In this state, the valid and ready signals of
the pending DMA transaction are de-asserted, which blocks
DRAM access from this accelerator.

The tight coupling between the monitor and the throttler in
the RBR guarantees a total delay of just 2 clock cycles to apply
the desired QoS regulation. The granularity of the bandwidth
regulation is thus only dependent on the threshold value, which
is fully in control of the software stack. The proposed RBR
fully offloads accelerator control from the main CPU, and is
fully platform independent as it was designed with a generic
and representative reference architecture for a FPGA-based
HeSoC. Porting the solution to a specific architecture only
requires to adapt the outbound monitoring and throttling sig-
nals to match the bus protocol. The flexible programmability
of thresholds and THR values allows changing the regulation
factor and its granularity at run-time.

IV. EXPERIMENTAL RESULTS

We implement our proposal on a Xilinx Zynq Ultrascale+,
XCZU9EG HeSoC. The base accelerator template was mod-
eled after the setup described in [14], using Xilinx IPs for the
DMA, soft-core and interconnects. As we are only interested in
measuring the worst-case interference effects, our accelerators
are configured to work as traffic generators† [13], and are
extended with our RBR. The resulting design was synthesized
with a target frequency of 100 MHz. With this setup, on the
XCZU9EG less than 1% of the FPGA resources (LUTs, FFs
and DSPs), are used for the RBR.

Our experimental section is organized in three distinct parts.
The first compares the cost for monitoring and throttling oper-
ations using the RBR and other standard HW/SW mechanisms
available in the target platform. The second focuses on tightly-
VS loosely-coupled monitoring and throttling, comparing RBR
to other solutions built on top of the available HW mechanisms
on the target platform. The third highlights the benefits of
fine-grained bandwidth regulation on co-scheduled tasks at the
system level.

†Note that this is without loss of generality, as well-designed accelerators
overlap memory transactions with computation.

Authorized licensed use limited to: University of L'Aquila. Downloaded on October 25,2023 at 07:43:54 UTC from IEEE Xplore. Restrictions apply.

Listing 1: Monitoring via APM
1 int APM_monitor (int threshold) {
2 while (ReadAPM(BYTES_TRANSFERRED_COUNTER)<

threshold)
3 ;
4 return ReadAPM (CYCLE_COUNTER);
5 }

Listing 2: Throttling via SW-controlled DMA
1 void throttle_SW_DMA (int idleCycles) {
2 for (int i=0; i < NTRANS; i++) {
3 // DMA transfer
4 DMA_prog (src, dest, TRSIZE);
5 // idle cycles
6 Wait (idleCycles);
7 }
8 }

Listing 3: Throttling via QoS400
1 void throttle_QoS400 (int idleCycles) {
2 qos = idleCycles_to_QoS400_params (idleCycles);
3 QoS400_WriteReg (qos);
4 }

Listing 4: LCMT-RBR
1 // Monitoring via APM
2 copyCycles = APM_monitor (threshold);
3

4 // Throttling via RBR
5 RBR_WriteReg (WEIGHER.time, copyCycles);
6 RBR_WriteReg (WEIGHER.thr, Thr);
7 RBR_Assert (IDLE_VALID, 1);
8 RBR_Assert (IDLE_VALID, 0);

Listing 5: LCMT-QoS400
1 // Monitoring via APM
2 copyCycles = APM_monitor (threshold);
3

4 // Throttling via QoS400
5 idleCycles =(1/Thr)*(100 - Thr)*copyCycles;
6 throttle_QoS400 (idleCycles);

Listing 6: LCMT-SW-DMA
1 // Monitoring via APM
2 copyCycles = APM_monitor (threshold);
3

4 // Throttling via SW-controlled DMA
5 idleCycles =(1/Thr)*(100 - Thr)*copyCycles;
6 throttle_SW_DMA (idleCycles);

A. Monitoring and Throttling Cost

Bandwidth monitoring is typically supported in hardware
to some extent on HeSoCs. On the Zynq UltraScale+ this can
be done by relying on the Xilinx AXI Perfomance Monitor
(APM), a commercial solution to measure AXI performance
metrics. On the XCZU9EG HeSoC there is an APM connected
to each one of the six ports entering the DRAM controller
(three attached to the host CPU complex, three to the FPGA).
The APMs can be programmed and read by the processing
units available on the host side of the Zynq UltraScale+,
namely the Real-Time Processing Unit (RPU) (ARM Cortex-
R family cores) and the Application Processing Unit (APU)
(ARM Cortex-A family cores). We execute the software that
controls the APMs on the RPU cores, to avoid the involvement
of APU cores, where applications typically execute. Listing
1 shows the pseudo code for APM-based monitoring. The
APMs can be used to count the number of read/written
bytes (BYTES_TRANSFERRED_COUNT in our pseudo-code)
through the target port and to measure the elapsed clock
cycles since activation (CYCLE_COUNTER). Our pseudo-code
implements the fastest control mode (active polling), which
allows to read/write from an APM register (the ReadAPM
API) in 0.32µs on the RPUs. During this time, the DMA can
transfer 512B, which dictates a convenient granularity we can
use for the throttling (the threshold).

Bandwidth throttling can be achieved on the target platform
by explicitly duty cycling the DMA operation in SW [14].
Listing 2 shows the pseudo-code to be executed on the RPU.
The original transfer is split in NTRANS smaller transfers,
each of size TRSIZE. Between one small transfer and the
other the Wait function is invoked, which stalls the DMA for
idleCycles cycles. Figure 4 shows the performance penalty
to implement such scheme as a single DMA transfer of 512KB
is split in increasingly smaller and more numerous ones, when
the bandwidth is not throttled (idleCycles=0). Transferring

512KB in NTRANS=1024 chunks of TRSIZE=512B each
costs ten times a single transfer of 512KB, requiring around
3ms. On top of the delay implied by the overhead for
programming several DMA transfers, we must consider the
idle time to estimate the granularity of the complete duty cycle.
As THR% decreases and approaches 0, the idleness increases.
Assuming the worst-case THR% = 1 (1% bandwidth) the
system would become ready to process a new request af-
ter (3ms/1024) ∗ 100 = 300µs. For comparison, the HW
throttler we propose does not imply overheads for partitioned
DMA transfers, and effectively uses the time to transfer
512B (0.32µs) as a baseline for the idle time calculation.
Considering the worst-case THR% = 1 request the HW
throttling approach would become ready to process a new
request after 0.32 ∗ 100 = 32µs.

Another way of throttling bandwidth on the XCZU9EG
is that of relying on the ARM QoS-400 regulators [9], an
extension to AMBA AXI4 interconnect that provides addi-
tional dynamic QoS regulation mechanisms. Although this
type of support is not always available, and thus relying
on it makes the solution very platform dependent, we still
deem it relevant to compare against this type of state-of-
the-art HW knobs. Listing 3 shows the pseudo-code to be

3000

2500

2000

1500

1000

500

0

Ti
m

e
 [
u

s]

-SW scheme -HW scheme

Fig. 4: SW and HW Throttling Costs (in µs) to partition a
DMA transfer in multiple smaller transfers.

Authorized licensed use limited to: University of L'Aquila. Downloaded on October 25,2023 at 07:43:54 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Comparison of our TCMT with loosely-coupled SW
mechanism, to follow a temporized bandwidth profile.

executed on the RPU. Programming the QoS-400 regulators
can be achieved with a single write into a memory-mapped
register (in our pseudo-code, via the QoS400_WriteReg
API). However, since QoS-400 also splits DMA transfers into
small ones of unknown size, the value written inside the
register (the qos parameter) is not a direct representation
of the desired idleCycles value, but rather a custom
bitmask that can be retrieved via a look-up table indexed
with idleCycles. For this reason, we first need to exe-
cute a idleCycles_to_QoS400_params function that
performs the look-up. Other than the usual 0.32µs to write
into the QoS-400 register, 1.89µs are needed for the look-up.

B. Tightly-coupled monitoring and throttling

This experiment is aimed at comparing the speed at
which various bandwidth regulation (monitoring+throttling)
approaches adapt to a trace of dynamically evolving QoS
settings (i.e., THR% settings). We expect QoS requirements
to change as new (co-)scheduling decisions are taken by
the OS; this happens when new tasks are admitted into the
system, or when periodic tasks start/end their execution. For
the bandwidth regulation mechanism to be capable to adapt to
the µs -scale task frequency of certain real-time applications
[28], tight coupling of the monitoring and throttling operations
is fundamental. To show this, we compare four approaches:
1) TCMT: Our tightly-coupled regulation solution, entirely
based on the RBR;
2) LCMT-RBR: Loosely-coupled regulation implemented by
coupling APM-based monitoring and RBR-based throttling;
3) LCMT-QoS400: Loosely-coupled regulation by coupling
APM-based monitoring and QoS400-based throttling;
4) LCMT-SW-DMA: Loosely-coupled regulation imple-
mented by coupling APM-based monitoring and explicit SW-
based DMA throttling.

All the LCMT approaches leverage APM for the monitoring
phase (the APM_monitor API). LCMT-RBR, shown in List-
ing 4, requires four writes into the RBR throttler registers to
configure its operation. Specifically, we first, need to initialize
the Weigher with the copyCycles and the THR% value,
then we need to assert and deassert the idle_valid sig-
nal. LCMT-QoS400 and LCMT-SW-DMA, respectively high-

TABLE I: BW regulation granularity (minimum period T [µs])

System

TCMT LCMT-RBR LCMT-QoS400 LCMT-SW-DMA
T[us] 32 192 320 3645

lighted in Listings 5 and 6, require to determine via SW the
idleCycles value using Equation 1, then they rely on the
throttling APIs introduced in the previous section.

Figure 5 compares how the various approaches adapt to
a QoS requirement trace that evolves with period T =
32µs. This is the nominal speed at which TCMT handles a
worst-case 1% bandwidth throttling request, whose magnitude
matches the task admission frequency for control-oriented real-
time applications [28]. The X axis shows timestamps along
a temporal line, while the Y axis shows the percentage of
the maximum bandwidth that the accelerator under scrutiny
is requesting. The black curve represents a trace of THR%

setting requests (e.g., coming from the OS scheduler). The
other curves show how the various bandwidth regulation
approaches adapt to the black curve over time.

TCMT precisely follows the THR% profile in every op-
erating condition, as per its nominal latency. All the LCMT
approaches are in general not capable of adjusting to a QoS
trace evolving this fast, even those that rely on very fast
HW throttling mechanisms (LCMT-RBR and LCMT-QoS400).
Table I shows the minimum period T for which the various
approaches adapt to the QoS request profile. LCMT-RBR,
LCMT-QoS400, LCMT-SW-DMA are respectively 6×, 10×,
114× slower than TCMT. In conclusion, the tightly-coupled
approach makes bandwidth regulation effective for applica-
tions with timing resolution one to two orders of magnitude
smaller than what is possible for loosely-coupled approaches.

C. System-wide interference mitigation

Previous work has explored the use of QoS control in mod-
ern HeSoCs to understand how this impacts the performance of
co-scheduled SW and HW tasks, targeting the XCZU9EG SoC
[9]. Here, three FPGA accelerators (Xilinx traffic generators)
are considered, each attached to a different DRAM controller
port (with a dedicated QoS-400 regulator). Two host cores
from the APU, attached to another two DRAM controller
ports, execute a matrix multiplication (MM) and a matrix
transpose (MT) benchmark, respectively. Two host cores from
the RPU, sharing a multiplexed channel to the last DRAM
controller port, execute a vector add (VMA) and an image to
column (I2C) benchmark. Given this co-scheduled workload,
five high-level QoS settings are considered. In each setting, a
different X% maximum performance degradation (slowdown)
is tolerated: (i) Very-Tight (VT), where X=20%; (ii) Tight
(T), where X=40%; (iii) Moderate (M), where X=60%; (iv)
Loose (L), where X=80%; (v) Very-Loose (VL), where X=99%.
Various QoS knobs are then used to try and satisfy the QoS
requirements (the most relevant to our discussion of which is
the QoS-400). The key finding is that no available QoS knob
could satisfy the M, T and VT QoS settings.

To conduct a direct comparison, we instantiate the exact
same setup, with three RBR-enabled accelerators (traffic gen-
erators) executing in parallel with APU and RPU cores (exe-

Authorized licensed use limited to: University of L'Aquila. Downloaded on October 25,2023 at 07:43:54 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Real-world benchmarks

Scenario FPGA APU RPU

ACT1 ACT2 MM MT VMA I2C

VT (Max 20%) 1.20× 1.20× 1.22× 1.07× 1.70× 1.11×

T (Max 40%) 1.38× 1.38× 1.22× 1.07× 1.35× 1.04×

M (Max 60%) 1.59× 1.59× 1.22× 1.07× 1.31× 1.04×

cuting the same benchmarks described above). Table II shows
the slowdown (compared to the execution time in absence
of interference) experienced by the involved processing units
for the VT, T and M QoS scenarios, i.e., the ones for which
the QoS-400 and other HW QoS knobs could not satisfy the
requirement [9]. The results show that RBR can satisfy the re-
quirements for all the actors in QoS scenarios M and T, and for
most actors also in QoS scenario VT (except the cells shaded
in red). This further confirms that tightly-coupled bandwidth
regulation enables system-wide scheduling opportunities that
are not feasible with state-of-the-art mechanisms.

V. CONCLUSION

We introduced a tightly-coupled bandwidth monitoring and
throttling solution for FPGA-based HeSoCs. This innovative
solution is based on an original IP, the Runtime Bandwidth
Regulator, that can unobtrusively be integrated in generic
FPGA accelerator designs. This approach makes bandwidth
regulation effective for applications with timing resolution one
to two orders of magnitude smaller than what is possible for
state-of-the-art solutions. When evaluated at the whole-system
level for the co-scheduling of SW and HW tasks, RBR enables
effective bandwidth regulation in presence of much tighter
QoS requirements compared to previous work.

VI. ACKNOWLEDGEMENTS

The authors have received funding from ECSEL JU projects
AI4CSM (GA N.101007326) and FRACTAL (GA N.877056).

REFERENCES

[1] CAST, Position Paper CAST-32A Multi-core Processors, 2016, Ac-
cessed: November 21st, 2021. [Online]. Available: https://www.faa.gov/
aircraft/air cert/design approvals/air software/cast/media/cast-32A.pdf

[2] G. Gracioli, A. Alhammad, R. Mancuso, A. A. Fröhlich, and
R. Pellizzoni, “ Survey on Cache Management Mechanisms for
Real-Time Embedded Systems,” ACM Comput. Surv., vol. 48, no. 2,
nov 2015. [Online]. Available: https://doi.org/10.1145/2830555

[3] H. Yun, R. Mancuso, Z.-P. Wu, and R. Pellizzoni, “PALLOC: DRAM
bank-aware memory allocator for performance isolation on multicore
platforms,” in 2014 IEEE 19th Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2014, pp. 155–166.

[4] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and
R. Kegley, “A Predictable Execution Model for COTS-Based Embedded
Systems,” in 2011 17th IEEE Real-Time and Embedded Tech. and
Applications Symposium, 2011, pp. 269–279.

[5] F. Farshchi, Q. Huang, and H. Yun, “BRU: Bandwidth Regulation Unit
for Real-Time Multicore Processors,” in 2020 IEEE Real-Time and Emb.
Tech. and Applications Symposium (RTAS), 2020, pp. 364–375.

[6] F. Restuccia, A. Biondi, M. Marinoni, G. Cicero, and G. Buttazzo,
“AXI HyperConnect: A Predictable, Hypervisor-level Interconnect for
Hardware Accelerators in FPGA SoC,” in 2020 57th ACM/IEEE Design
Automation Conference (DAC), 2020, pp. 1–6.

[7] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “MemGuard:
Memory bandwidth reservation system for efficient performance isola-
tion in multi-core platforms,” in 2013 IEEE 19th Real-Time and Emb.
Tech. and Applications Symposium (RTAS), 2013, pp. 55–64.

[8] A. Pellegrini, “Arm Neoverse N2: Arm’s 2 nd generation high perfor-
mance infrastructure CPUs and system IPs,” in 2021 IEEE Hot Chips
33 Symposium (HCS). IEEE, 2021, pp. 1–27.

[9] A. Serrano-Cases, J. M. Reina, J. Abella, E. Mezzetti, and F. J.
Cazorla, “Leveraging hardware QoS to control contention in the Xilinx
Zynq UltraScale+ MPSoC,” in 33rd Euromicro Conference on Real-
Time Systems (ECRTS 2021). Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2021.

[10] R. Cavicchioli, N. Capodieci, M. Solieri, M. Bertogna, P. Valente,
and A. Marongiu, “Evaluating Controlled Memory Request Injection
to Counter PREM Memory Underutilization,” in Workshop on Job
Scheduling Strategies for Parallel Processing. Springer, 2020, p. 85.

[11] H. Wen and W. Zhang, “Interference Evaluation In CPU-GPU Het-
erogeneous Computing,” IEEE High Performance Extreme Computing
Conference (HPEC), 2017.

[12] N. Capodieci, R. Cavicchioli, I. S. Olmedo, M. Solieri, and M. Bertogna,
“Contending memory in heterogeneous SoCs: Evolution in NVIDIA
Tegra embedded platforms,” in 2020 IEEE 26th International Confer-
ence on Embedded and Real-Time Computing Systems and Applications
(RTCSA), 2020, pp. 1–10.

[13] M. Mattheeuws, B. Forsberg, A. Kurth, and L. Benini, “Analyzing
Memory Interference of FPGA Accelerators on Multicore Hosts in
Heterogeneous Reconfigurable SoCs,” in 2021 Design, Automation &
Test in Europe Conference & Exhibition (DATE). IEEE, 2021, pp.
1152–1155.

[14] G. Brilli, A. Capotondi, P. Burgio, and A. Marongiu, “Understanding
and Mitigating Memory Interference in FPGA-based HeSoCs,” in 2022
Design, Automation Test in Europe Conference Exhibition (DATE), 2022,
pp. 1335–1340.

[15] J. Nowotsch, M. Paulitsch, D. Bühler, H. Theiling, S. Wegener, and
M. Schmidt, “Multi-core interference-sensitive WCET analysis leverag-
ing runtime resource capacity enforcement,” in 2014 26th Euromicro
Conference on Real-Time Systems. IEEE, 2014, pp. 109–118.

[16] A. Alhammad and R. Pellizzoni, “Time-predictable execution of multi-
threaded applications on multicore systems,” in 2014 Design, Automa-
tion & Test in Europe Conf. & Exhib. (DATE). IEEE, 2014, pp. 1–6.

[17] J. Martinez, I. Sañudo, and M. Bertogna, “Analytical Characterization
of End-to-End Communication Delays With Logical Execution Time,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 37, no. 11, pp. 2244–2254, 2018.

[18] B. Forsberg, L. Benini, and A. Marongiu, “HePREM: A Predictable Ex-
ecution Model for GPU-based Heterogeneous SoCs,” IEEE Transactions
on Computers, vol. 70, no. 1, pp. 17–29, 2021.

[19] G. Yao, R. Pellizzoni, S. Bak, H. Yun, and M. Caccamo, “Global
Real-Time Memory-Centric Scheduling for Multicore Systems,” IEEE
Transactions on Computers, vol. 65, no. 9, pp. 2739–2751, 2016.

[20] P. Sohal, R. Tabish, U. Drepper, and R. Mancuso, “E-WarP: A System-
wide Framework for Memory Bandwidth Profiling and Management,” in
2020 IEEE Real-Time Systems Symposium (RTSS), 2020, pp. 345–357.

[21] F. Restuccia, M. Pagani, A. Biondi, M. Marinoni, and G. Buttazzo, “Is
Your Bus Arbiter Really Fair? Restoring Fairness in AXI Interconnects
for FPGA SoCs,” ACM Transactions on Embedded Computing Systems
(TECS), vol. 18, no. 5s, pp. 1–22, 2019.

[22] M. Zini, G. Cicero, D. Casini, and A. Biondi, “Profiling and controlling
I/O-related memory contention in COTS heterogeneous platforms,”
Software: Practice and Experience, 11 2021.

[23] G. Valente, T. Fanni, C. Sau, T. D. Mascio, L. Pomante, and
F. Palumbo, “A Composable Monitoring System for Heterogeneous
Embedded Platforms,” ACM Trans. Embed. Comput. Syst., vol. 20,
no. 5, jul 2021. [Online]. Available: https://doi.org/10.1145/3461647

[24] H. Omidian, N. Ivanov, and G. G. Lemieux, “An Accelerated OpenVX
Overlay for Pure Software Programmers,” in 2018 International Con-
ference on Field-Programmable Technology (FPT), 2018, pp. 290–293.

[25] P. Mantovani, D. Giri, G. Di Guglielmo, L. Piccolboni, J. Zuckerman,
E. G. Cota, M. Petracca, C. Pilato, and L. P. Carloni, “Agile SoC
Development with Open ESP: Invited Paper,” in 2020 IEEE/ACM Inter.
Conf. On Computer Aided Design (ICCAD), 2020, pp. 1–9.

[26] X. Ling, T. Notsu, and J. Anderson, “An Open-Source Framework for
the Generation of RISC-V Processor + CGRA Accelerator Systems,”
in 2021 24th Euromicro Conference on Digital System Design (DSD),
2021, pp. 35–42.

[27] G. Bellocchi, A. Capotondi, F. Conti, and A. Marongiu, “A RISC-V-
based FPGA Overlay to Simplify Embedded Accelerator Deployment,”
in 24th Euromicro Conf. on Digital System Design, 2021, pp. 9–17.

[28] Giulio Corradi, “Tools, Architectures and Trends on Industrial all
Programmable Heterogeneous MPSoC,” URL: http://archives.ecrts.org/
fileadmin/files ecrts17/Giulio Corradi Presentation.pdf, 6 2017.

Authorized licensed use limited to: University of L'Aquila. Downloaded on October 25,2023 at 07:43:54 UTC from IEEE Xplore. Restrictions apply.

