

D5.1 Specification of AI methods for use case

applications

Deliverable Id: D5.1

Deliverable name: Specification of AI methods for use case

applications

Status: Final

Dissemination level: Public

Due date of deliverable: 2021-08-31 (M12)

Actual submission date: 2021-08-31 (M12)

Work package: WP5 “AI and Safe Autonomous Decisions”

Organization name of lead

contractor for this

deliverable:

Rulex Innovation Labs

Authors: Enrico Ferrari, RULEX

Christina Schwarz, AVL

Debora Short, AVL

Harisyam Manda, AVL

Daniela Angela Parletta, MODIS

Marco Cappella, MODIS

Luciano Bozzi, MODIS

Cristina Ganado Arteaga, PROINTEC

David Sanz Muñoz, IFT

Kevin Villalobos, IKER

Fernando Eizaguirre, IKER

Juan Manuel Besga, IKER

Andoni Angulo, ZYLK

Alfonso González, ZYLK

Sergio Martín, ZYLK

Iñigo Angulo, ZYLK

Alexander Flick, PLC2

Stefano Delucchi, AITEK

Nadia Caterina Zullo Lasala, ROT

Damiano Vallocchia, ROT

Jacopo Motta, AITEK

Alberto Carlevaro, AITEK

Martín Rivas, INDRA

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 2 of 77

Reviewers: Stefano Delucchi, AITEK

Alexander Flick, PLC2

Abstract:

D5.1 introduces a first description of the AI methods and tools to be used for use

case applications. It starts from the functional and non-functional requirements of

the use cases to define which are the methods and the tools to be employed. This

deliverable constitutes a first step for defining the AI platform for FRACTAL. The

next WP5 deliverables (in particular, D5.6) will continue this activity collecting use

cases specifications in a more mature phase and benefitting from the work done

by Task 5.1 for the definition of the theoretical bases of the FRACTAL AI.

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 3 of 77

Contents

1 History ... 6

2 Summary ... 7

3 Introduction .. 8

4 AI methods overview ... 9

4.1 Learning vs Inference .. 9

4.2 Centralized/Decentralized Learning ... 11

4.3 Context Awareness ... 13

4.4 Training paradigms ... 15

4.5 Model Compression .. 17

4.6 Weight quantization .. 18

4.7 Model Lifecycle Management (MLOps) ... 19

4.7.1 Machine Learning Deployment Workflow 20

4.7.2 Continuous Delivery for Machine Learning 22

4.7.3 End-to-end ML Process ... 23

5 UC functional and non-functional requirements .. 24

5.1 Use Case 1 .. 24

5.2 Use Case 2 .. 27

5.3 Use Case 3 .. 28

5.4 Use Case 4 .. 29

5.5 Use Case 5 .. 30

5.6 Use Case 6 .. 33

5.7 Use Case 7 .. 34

5.8 Use Case 8 .. 36

6 Proposed AI methods .. 38

6.1 Video analysis using Convolutional Neural Networks 38

6.2 Yolo .. 43

6.2.1 YOLOv1... 43

6.2.2 YOLOv2... 47

6.2.3 YOLOv3... 48

6.2.4 YOLOv4 and Tiny-YOLO ... 49

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 4 of 77

6.3 Audio Stream Analysis .. 50

6.4 Reinforcement Learning .. 52

7 Proposed AI tools, frameworks and standards .. 56

7.1 Tensorflow... 56

7.2 Keras .. 57

7.3 Apache TVM ... 57

7.4 Apache MXNET ... 58

7.5 Pandas .. 59

7.6 Scikit .. 59

7.7 Stable Baselines ... 60

7.8 Gym ... 60

7.9 Pytorch ... 60

7.10 Caffe ... 61

7.11 Darknet ... 62

7.12 OpenCV ... 62

7.13 Comparison among different tools ... 63

7.14 ONNX and ONNX Runtime .. 64

8 Conclusions ... 67

9 Bibliography .. 68

10 List of Figures .. 72

11 List of Tables ... 74

12 List of Abbreviations ... 75

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 5 of 77

Acknowledgement

This project has received funding from the ECSEL

Joint Undertaking (JU) under grant agreement No

877056. The JU receives support from the

European Union’s Horizon 2020 research and

innovation programme and Spain, Italy, Austria,

Germany, Finland and Switzerland.

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 6 of 77

1 History

Version Date Modification reason Modified by

0.1 2021-07-14 First Draft – integrating first contributions Enrico Ferrari et al.

0.2 2021-07-21 Integrating second round of contributions Enrico Ferrari et al.

0.3 2021-07-28 Integrating third round of contributions Enrico Ferrari et al.

0.4 2021-08-02 Document ready for review Enrico Ferrari et al.

0.5 2021-08-25 Addressing reviewers’ comments Enrico Ferrari et al.

0.6 2021-08-27 Some formatting changes Enrico Ferrari et al.

1.0 2021-08-31 Document ready for submission Enrico Ferrari et al.

Table 1 – Document History

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 7 of 77

2 Summary

According to the DoA, D5.1 “Specification of AI methods for use case applications” is

aimed at collecting the “specification of AI methods to provide use case applications

with context awareness, prediction, and autonomous decision making, to run on the

FRACTAL AI platform”. This deliverable contains the first outcomes of T5.3 “Applied

FRACTAL AI” since it contains the first description of the methods that emerged as

needed for AI applications in the FRACTAL use cases.

The deliverable contains a first overview about AI and the dimensions that should be

considered in defining AI specifications. Then the use cases are considered one by

one to gather the requirements related to AI. At last, the methods, tools and standard

emerged from the use case analysis, are described.

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 8 of 77

3 Introduction

This deliverable accounts for the first activities related to FRACTAL Task 5.3,

regarding “Applied FRACTAL AI”. In particular, the goal of this task is ensuring that

methods and workflows developed in WP5 are coherent with the objectives of the

demonstrators and including in the FRACTAL AI framework all the methods and tools

that are needed for a smooth implementation of AI applications in the real-world

studied situations.

In particular, Deliverable D5.1, entitled “Specification of AI methods for use case

applications” is aimed at providing a first description of the AI methods and tools that

will be needed by the use case for implementing AI modules.

Since some AI applications in use cases are in an early stage of definition, this

deliverable should be regarded as a first version of the AI methods. A more detailed

and definitive version will be provided in other deliverables of WP5 and in particular

in D5.6, named “Final AI methods for use case applications and mechanism for AI

transparency interactions”. This deliverable will take D5.1 as the starting point and

will benefit from the ongoing discussion about use cases and AI specifications.

Moreover, D5.6 will also take into account the outcomes deriving from the other WP5

tasks, in particular Task 5.1 (“FRACTAL AI Theory”), which will provide guidelines

about the theoretical framework behind the FRACTAL AI framework and whose

deliverables will be finalized at M24.

The logical structure of this deliverable starts from a general analysis of the

parameters that should be considered when deciding which solutions are to be

adopted. This includes for example the distribution paradigm (centralized/non

centralized), the training mode (online/offline) and the feasibility of an operation-

level implementation of AI solutions. Then, use cases specifications are gathered with

a specific focus on the AI methods and tools needed for use case implementation.

Starting from the specifications emerged from this analysis, the needed methods and

tools are described in detail. Some conclusions close the deliverable summing up the

main achievements.

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 9 of 77

4 AI methods overview

The activities in WP5 aim at reaching the goals of Objective 3 of Fractal which consists

in “evaluating and validating the analytics approach by means of AI to help the

identification of the largest set of working conditions still preserving safe and secure

operational behaviours”. To this aim, the knowledge of the environment should be

combined with AI algorithms to obtain a Predictive, Prescriptive and Trusted edge. In

this section a general overview of AI is provided, including the characteristics that

should be considered and evaluated when designing an AI platform, with particular

focus on the use case applications. In particular these topics will be considered:

Learning vs Inference, Centralized/Decentralized Learning, Context Awareness,

Cloud/Edge Training, Model Compression, Weight Quantization and Model Lifecycle

Management (MLOps).

More concretely, and taking into account the FRACTAL scenario, it is important to go

over topics such as Learning vs Inference (Paragraph 4.1), and the ability to separate

AI functionalities (or micro-elements) to divide the learning problem into simpler

tasks. Another key point is Centralized/Decentralized Learning (Paragraph 4.2), to

analyse the different approaches that enable distributed learning over a variable

number of agents. The strategies to orchestrate learning tasks can be taken by a

single Master node, or by all nodes in a collaborative way. For this, Context

Awareness (Paragraph 4.3) is crucial to sense the environment and make decisions

based on its inputs. Also, AI model adaptation to particular devices is an important

research line, especially when taking into account smaller nodes with low

computational resources. Thus, deployment strategies will comprise Model

Compression (Paragraph 4.5) and Weight Quantization (Paragraph 4.6) tasks, to be

able to run models in lighter nodes. Lastly, MLOps (Paragraph 4.7) will define and

control the Machine Learning system pipeline, which will be defined by the previously

mentioned concepts and steps. The goal here is to obtain a reliable and resilient

system that allows to control data and models, reproduce data science experiments,

and permits continuous integrations and monitor the whole system performance.

4.1 Learning vs Inference

The FRACTAL AI framework is aimed at providing the FRACTAL node with tools that

allow to take decisions on the edge quickly and without much computational effort.

As the name says, AI methods are built with the objective of emulating the human

intelligence, whose strongpoint is the ability of performing inductive reasoning, i.e.

of analysing data about a phenomenon and in deriving models from them. For this

reason, AI methods need a phase where the model is built starting from available

data. In FRACTAL, data could be already available, or retrieved in some accessible

database or collected during the project. In any case, data should be processed to

extract a general model that could be applied on new situations that could happen in

a real context. It is worth noting that, to ensure that the AI methods work well in

(almost) all the situations, it is crucial that the available data includes a wide range

of different configurations. Moreover, the behaviour of the studied system could

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 10 of 77

change over time, so data that have been collected in a given period, could be

inappropriate for applications after some time.

In general, when talking about data-driven, a distinction is needed between the

learning phase and the inferencing phase. In the first one, historical data are used to

train the AI models while in the second one the already built models are used to

inference and take decisions about the new data. Every time new data is provided to

the learning engine, a new model is obtained which, of course, is different from the

one obtained with the old data. In this case, we are saying that the model is updated.

If the system’s behaviour is not changing very frequently or suddenly, the training

phase could be done sporadically and moreover it is not needed to have the updated

model immediately since the old one is still available to take decisions.

In this case, the training phase is done once or is repeated on a regular basis if the

system is supposed to undergo some changes in the behaviour. In the second case,

it is important to detect the drifts in the behaviour on time. So, either the model is

refreshed with a fixed frequency (high enough to catch changes) or some validation

is done to check if the decision taken by the model are still valid. For example, it is

possible to define some indicators that account for the accuracy of the model (e.g.

the number of false negatives or false positives) and then, when one (or more) of

these indicators falls below a given threshold, the training is repeated. Only if changes

are so sudden that latency of the connection could be an issue or if data could not be

sent due to privacy reasons, training should be performed on the edge device.

So, in general, two different scenarios could be considered:

• The training is done offline. Data are transferred manually on some repository

used to build a model. Then the model is manually transferred in the FRACTAL

node where it is used to make predictions on new data. The first tests with

the FRACTAL node will probably follow this approach since it allows a quick

implementation of the models in the device.

• The training is done periodically. In this case (see Figure 1) data are

automatically transferred to a cloud service (via 5G or Wi-Fi connection) where

they are stored in a database and used for building a model. Due to huge

amount of data or privacy concerns it could be unfeasible or inappropriate

that all the generated data are sent to a cloud system. In this case, the

FRACTAL should be able to do some aggregation operations in order to do

some basic processing on the data and reduce the amount of data to be sent

over the network. The model is then sent back to the device where it is used

for subsequent elaborations. Notice that in this case the network is not a

bottleneck since FRACTAL node can continue its processing even without the

new model, since the old one is still able to take decisions. So, if for some

reason the connection is not guaranteed the system can go on working.

It is possible to imagine also that the training could be performed on the FRACTAL

node, but usually the computational resources needed for training a model fit better

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 11 of 77

with a cloud environment. As some preliminary analysis showed, no use cases require

update frequencies forcing to perform the training on the edge.

As regards the inferencing phase, this is performed on the FRACTAL node since the

decisions should be taken very quickly, which is not compatible with sending data

over the internet. Moreover, the system should work also without connection, so the

node must be autonomous in taking decisions.

As studied in the AI specifications, the FRACTAL node will be equipped with a layer

able to perform some basic pre-processing operations on the data and an AI module

able to use already built models to make decisions about new incoming data. The

elaboration must be very quick because in some use cases, decisions are expected

to take place with a frequency of some Hertz (the exact frequency for all use cases

is still to be defined but for most of them it could be estimated in the range 10-20

Hz).

Figure 1 – Functioning of the online training for the FRACTAL node

4.2 Centralized/Decentralized Learning

The proliferation of IoT devices has opened the possibility for many different

application fields to capture and share vast amounts of data over the Internet, from

which valuable information and knowledge can be extracted. However, the captured

data by these devices leads to so large and complex datasets that it becomes difficult

to process and extract knowledge from such “Big Data” with traditional techniques.

Consequently, the application of machine learning techniques to the data captured

by these IoT devices, has aroused an increasing interest during the last years. On

these techniques a machine learning model is trained to find patterns and underlying

data structures over a known dataset to learn to find those patterns over new

(unseen) datasets and make inference or predictions.

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 12 of 77

Standard machine learning approaches require sending the captured data by these

IoT devices to a single processing node, usually in the cloud, where data is centralized

into a common dataset, on the top of which different machine learning models are

built and trained. Predictions are also usually made in the cloud by using streaming

data that the nodes send, although the nodes can download the global model from

the cloud and made the inference locally. This approach, known as centralized

learning, can be seen on the left part of Figure 2. In this approach, the machine

learning models are trained with data from all the available nodes, and thus, usually

they can generalize properly not only for all the known nodes, but also for other new

(unknown) nodes that are similar to the known ones.

However, it is worth mentioning that this generalization becomes harder to ensure

when there is a large variety of nodes (as in IoT scenarios). Moreover, collecting data

from such distributed nodes in a centralized dataset has become more and more

problematic in the last years, for two main reasons: on the one hand, the data

captured by these nodes could be sensitive or confidential and therefore, should

remain on-site. This along with the novel data protection policies, and in general the

increasing public awareness to issues related to data handling, makes privacy one of

the main drawbacks of centralized learning. On the other hand, the limitations and

costs for the communication of large amounts of data (e.g., latency, bandwidth) are

out of alignment with the increasingly demands of low latency and real-time or

stream data processing requisites from the application domains. Regarding this last

aspect, it is worth mentioning that new technologies, such as 5G, are emerging to

cope with bandwidth and latency limitations. Moreover, latency and bandwidth may

represent a limitation only for the inference phase and not for training.

Figure 2 – Learning Approaches in FRACTAL: (left) Centralized Learning; (centre) Decentralized
Learning; (right) Federated Learning.

Consequently, recently different efforts are advocating for the decentralization of this

approach by locally training machine learning models on various decentralized nodes

holding their own local data. This approach, known as decentralized learning, can be

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 13 of 77

seen on the central part of Figure 2. In this approach, each node builds its own

machine learning model which is trained with the data captured by the node (locally).

On the one hand, training models with local data, mitigates some of the risks related

to data privacy (critical data remains on-site). On the other hand, using locally trained

models for inference, reduces the data transfer rates between the nodes and the

cloud, optimizing communications and decreasing the latency for real-time

applications and stream data processing.

In addition, training models with local data, usually leads to smarter models with

better performance, since, as they do not need to learn underlaying data structures

and patters from a large dataset from different nodes, each of them with their

peculiarities, they could focus more on the specificities of their own local data.

However, this specialization, reduces the models’ capability for generalization, which

usually achieve a poor performance even when applied on similar nodes (new nodes).

Another option is to use a pre-built model which has been trained with a common

dataset from the different nodes and then, deploy it on-site to train it with local data

(incremental learning).

Finally, in the last years, federated learning (Li, Sahu, Talwalkar, & Smith, 2020),

(Abdulrahman, et al., 2021) and (Zhang, et al., 2021) has emerged as an interesting

approach on which nodes learn collaboratively from a shared model while keeping

their own training data locally. The shared model is first trained in a centralized

fashion on a server using a large-scale centralized dataset and then, the distributed

nodes download the model and improve it by using their own local data (federated

data). Eventually, nodes send models related data (such as performance indicators,

weights, parameters, etc.) to the centralized node where are combined with the

shared model, to improve the overall performance of the models. Then, this shared

model is sent back to the distributed nodes where it could be fine-tuned again with

local data. This way, federated learning ensures to keep the generalization

capabilities of models built over a large-scale dataset, while keeping the privacy of

sensitive (and critical) data and a low latency for real-time predictions or stream data

processing.

In FRACTAL, the three approaches should be considered to meet the requirements of

a variety of machine learning models for the different use cases. On the one hand,

the decentralization of machine learning models leads to smarter models (which

better fits to the specific requirements of a particular node), lower latency, and less

power consumption. On the other hand, for more complex models requiring large-

scale data from different sources and high computing capabilities, it may be

necessary to train the models on the cloud and then deploy them on the edge devices

(nodes). Moreover, federated learning will be also considered for some use cases

(e.g., intelligent totems in UC6) on which models need to learn collaboratively to

solve complex tasks or there are stringent privacy constraints.

4.3 Context Awareness

Context Awareness: Definition

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 14 of 77

The FRACTAL AI Node will be implemented with high-efficiency AI algorithms and

change adaptation methods. These “changes” refer to any possible modification or

deviation in the node’s environment, i.e., number of active nodes, computing

processes, resources availability… and they need to be addressed in an optimal and

efficient way. Context awareness is therefore a required feature in the FRACTAL

Node, as it enables other key aspects which ultimately affect energy consumption

and resource availability. The node must be able to know its surroundings and

environment and also to act accordingly for optimal performance.

For humans, context awareness is assumed to be something happening “in the

background” of brain activity, take for example two people having a conversation:

They both are able to answer questions not related to the conversation topic but the

environment and surroundings, e.g., temperature, time, space location, object

presence…

When dealing with computer devices, programming an application to act accordingly

to external changes is a non-trivial task. The main field of application of context

awareness in computer systems is in improving user experience through

recommendations or adaptations to the application user’s context. Context

awareness in computing systems has been traditionally defined as “Using context to

provide relevant information and/or services to the user, where relevance depends

on the user’s task” (Dey, 2000). While this definition is correct for general context-

aware applications, the concept must be expanded for the FRACTAL platform, as the

context information is not going to be used directly by the user, but the platform

itself. Then, the FRACTAL Node being context aware implies that it will have a

detailed notion of the environment surrounding it so that it is able to perform

appropriate actions and adapt to environmental changes. This information about the

environment and adaptative responses will be handled by AI algorithms to maximize

the efficiency of processes and minimize the impact coming from external sources.

Context Awareness in AI Applications

Once our applications are able to run on a context-aware device, the application’s

behaviour (outputs, actions...) must be different for any given context, while

discriminating between relevant context knowledge and taking into account this

knowledge to adapt the service to be fully aware of the context and give a context-

dependent answer.

Some of the actions the FRACTAL AI Node is able to perform include using ML

methods for edge inference and running AI algorithms, so interpretation, learning

and predictions will be performed continuously throughout the nodes. Being context

aware allows the node to perform the tasks in a contextualized manner, such that

energy consumption, resource usage and latency are minimized, while also being

able to adapt to external changes to keep these parameters optimal during the whole

application lifecycle.

FRACTAL Context Awareness

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 15 of 77

The proposed FRACTAL Context Awareness expands some of the concepts of classical

context awareness in applications to fulfil the platform requirements and ensure

optimal performance. Firstly, the FRACTAL Context Awareness leaves aside the “user

context” and focuses on “environment context”. The reason for this is that the target

of the information extracted from the context is not the end user, but the node itself.

In addition, several constraints have already been applied to the FRACTAL Node, like

minimal energy consumption and resource-limited capabilities, which are intrinsic

limitations to Edge architectures. Note that these context awareness features will not

interfere with other applications and processes running in the node. For this purpose,

the applied methods for resource-constrained architectures will ensure that context

awareness processes and further adaptation will be run in a fault-tolerant and robust

architecture, while consuming low resources.

Implementation

The main feature a context-aware computing system must provide is supporting the

rest of functionalities. Efforts must be made in this way to ensure that a significant

overall performance boost results from the addition of context awareness capabilities.

The node must be able to discover, process and take advantage of any available

context information. Context information can potentially be: (1) any parameter that

can be obtained through a sensor, or any information that can be derived from the

sensor's data processing, (2) information coming from other Edge nodes, like

position, resource capabilities, status reports, etc. However, specific context

information to be collected may not be available yet for all Use Cases, given the

heavy reliance this information has on the specific Use Case scenario.

The implementation of Context Awareness capabilities into the FRACTAL Node will be

done through two agents, the context agent and the actuator agent, the first will be

responsible for collecting and processing the context data from sensors or other

nodes and processing them to obtain context-defining information. The latter will

receive this information as input and perform an analysis on the actions to decide

which state of the system will best fit the performance requirements. This information

will later be taken as an input by T6.2 for Node adaptation actions.

4.4 Training paradigms

In the machine learning world, model training refers to the process of allowing a

machine learning algorithm to automatically learn patterns based on data.

There are four main categories of Machine Learning, as shown in Table 2.

Supervised

Learning

Supervised Learning build a model from labelled training data,

with which is possible to make predictions on unavailable or future

data. Supervision therefore means that in a set of samples (or

datasets), the desired output signals are already known since they

have been previously labelled. In this type of learning, based on

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 16 of 77

discrete class labels, it is possible have a task based on

classification techniques.

Classification is a technique used in supervised learning where

the goal, based on the analysis of previously labelled data, is to

be able to predict the labelling of future data classes. Labels are

unordered discrete values that can be considered to belong to a

group of a class.

Another type of technique used in supervised learning is

regression, where the output signals are continuous values. In

Regression, you have a number of predictive (descriptive)

variables and one continuous target variable (the result). In this

type of problem, we try to find a relationship between these

variables in order to predict a result. Given a predictive variable x

and a response variable y, a line is drawn in order to decrease the

distance between the points and the line itself. Taking the slope

and the intersection point as a reference, a target variable can be

predicted from this data to be used as a reference for new data.

Unsupervised

Learning

In unsupervised learning, unlike supervised learning, there are

unlabelled data or unstructured data. Using these techniques, it

is possible to observe the structure of the data and to extrapolate

information loaded with meaning but, however, you cannot rely

on a known variable relating to the result or on a reward function.

Clustering is an exploratory technique that allows you to

aggregate data within groups (called clusters) for which we have

no prior knowledge of belonging to groups. It will be produced

large datasets where the data within them have similar elements

to each other. Within each individual group (or cluster) we will

therefore find data that have many similar characteristics.

The Reduction of Dimensionality without supervision is a

widely used approach in the pre-processing of features

(characteristics), with the aim of eliminating the "noise" from the

data. This reduction can also cause lower predictive performance,

but it can also make the dimensional space more compact in order

to keep the information more relevant.

Semi-

supervised

learning

Semi-supervised learning is an approach to machine learning that

combines a small amount of labelled data with a large amount of

unlabelled data during training. Semi-supervised learning falls

between unsupervised learning (with no labelled training data)

and supervised learning (with only labelled training data). It is a

special instance of weak supervision.

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 17 of 77

Reinforcement

Learning

The goal of this type of learning is to build a system (agent) that

improves its performance through interactions with the

environment. In order to improve the functionality of the system,

reinforcements are introduced, i.e. reward signals. This

reinforcement is not given by labels or correct truth values but is

a measurement of the quality of the actions taken by the system.

For this reason, it cannot be assimilated to supervised learning.

Table 2 – Different categories of algorithms in Machine Learning

4.5 Model Compression

The goal of model compression is to obtain a compressed model from a given input

model without significantly diminished accuracy. A compressed model is one that has

a smaller size and/or latency than the original. Specifically, size reduction means that

the compressed model has fewer and/or smaller parameters and, thus, requires less

memory to be stored and used. Similarly, a reduction in the latency implies smaller

prediction complexity (i.e. the time taken to make a prediction for a given input).

Both reductions are desirable in the context of typical IoT devices as such devices

have limited memory and low compute power. Such constraints heavily undermine

the applicable of powerful learning models such as deep networks (DN) or Nearest

Neighbour (NN) classifiers. Those models, while attaining state-of-the-art

performances features thousands of parameters, eithers in terms of the network

weights or in terms of number of data points to memorize (respectively for DNs and

NN methods). These parameters result ultimately in high-memory demands. In

addition, NN neighbours – that in principle can obtain the optimal performances of

the Bayes predictors – also have the disadvantage of high prediction complexities.

This results either in high CPU-demand or in a high energy consumption. Making

smaller and faster models is then a key challenge in order to make them applicable

in the IoT context.

There are several techniques that can be used to compress a machine learning

model:

• Pruning reduces the number of parameters, for example by removing

redundant and unimportant connections in a neural network, cutting branches

in a decision tree, or reduce the training set size in a NN classifier. This not

only helps reduce the overall model size but also saves on computation time

and energy.

• Quantization (for more details, see section 4.6)

• In knowledge distillation, a large, complex model is trained on a large

dataset. When this large model can generalize and perform well on unseen

data, it is transferred to a smaller network. The larger model is also known as

the teacher model and the smaller model is also known as the student model.

• Selective attention is the idea of focusing on objects or elements of interest,

while discarding the others (often background or other task-irrelevant

objects). It is inspired by the biology of the human eye. When we look at

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 18 of 77

something, we only focus on one or a few objects at a time, and other regions

are blurred out. This requires adding a selective attention model upstream of

your existing AI system or using it by itself if it serves your purpose. It

depends on the problem you are trying to solve.

• Matrix/tensor decomposition is used to estimate the informative

parameters. A parameter matrix A with m x n dimension and having a rank r

is replaced by smaller dimension matrices. This technique helps by factorizing

a large matrix into smaller matrices.

• Methods to reduce the prediction complexity, instead tend to be more specific.

As an example, for NN methods smaller prediction complexity can be reduced

by performing approximate NN searches in place of exact searches.

It is worth noting that all the above techniques are complementary to each other, so

they can be applied as is or combined with one or multiple techniques. Most of the

techniques discussed above can be applied to pre-trained models, as a post-

processing step to reduce your model size and increase inference speed. But they

can be applied during training time as well.

4.6 Weight quantization

Quantization is the process of mapping values from a large set to values in a smaller

set, meaning that the output consists of a smaller range of possible values than the

input, ideally without losing too much information in the process.

In modern Deep Neural Network (DNN), weights are usually stored as 32-bit floating-

point numbers. In this context, weights quantization consists in designing methods

that represent these weights on 16-bits, 8-bits, 4-bits or even with 1-bit. The overall

effect of weights quantization is that the size of the deep neural network can be

significantly reduced. Of course, the quantization needs to be performed in a way

that the accuracy of the resulting network is not much worse than the accuracy of

the original one. Quantization is in principle enabled by the fact that most real-world

datasets are noisy and modern DNs usually achieve 0 error. This mean that the

networks are also learning the noise. At high level, the noise information is contained

into the less significant digits of the weights. The effect of weights quantization then

it to mostly remove the noise effect from the parameter.

Similarly, quantization may also be applied to the output of the network operators,

such as the activation functions and the autoencoders to mention a couple.

Regardless of the object being a weight or an operator, there are several approaches

to quantization. The principal features to classify a quantization algorithm can be

summarized as:

• Symmetric vs Asymmetric. A quantizer whose co-domain is symmetric

about the origin is called symmetric, otherwise is said to be asymmetric.

Symmetric quantizer are appropriate when the variable being quantized has

an empirical distribution close to the uniform over the quantization range [-a,

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 19 of 77

a], with a>0. On the other hand, if the empirical distribution is supported on

a general interval [a, b], then an asymmetric quantizer is more appropriate.

• Static vs Dynamic. If the quantization range [a, b] is determined before-

hand by the user, then the quantizer is said to be static; otherwise, the

quantizer is said to be dynamic. Specifically, a dynamic quantizer will

determine the appropriate quantization range based on the data to quantize.

There is an obvious trade-off in these cases: dynamic quantizers are usually

more accurate than static quantizer, while requiring more computations to be

calculated.

• Granularity. A single quantization scheme may be employed for the entire

architecture, or a different quantization scheme can be employed for each

layer or even kernel in a network. This design choice determines the

granularity of the quantization. In this context the quantization algorithm itself

is assumed to be fixed, but its parameters can be chosen on the basis of the

fixed granularity.

• Uniform vs non-Uniform. A quantizer whose co-domain is made of

uniformly spaced values is called uniform, otherwise is said to be non-uniform.

Uniform quantizer are appropriate when the variable being quantized has an

empirical distribution close to the uniform over the quantization range [a, b].

On the other hand, if the empirical distribution is skewed, then a non-uniform

quantizer is more appropriate.

• Quantization-Aware Training. Quantization can be performed either as a

post-training procedure or as part of the training; in the latter case the

training is said to be quantization-aware. At high level, such methods require,

at each step of the training, a projection of the floating-point weights into the

quantization lattice. In order to avoid numerical instability, due to the

vanishing gradient phenomenon, some care in the projection needs to be

reserved. Quantization-Aware training, when performed correctly, leads to

superior performance, but typically also requires more computations.

Finally, there are more advanced techniques that are emerging and whose

performances are not be completely established yet. Those include Zero-Shot

quantization which perform quantization without looking at the data; and,

Stochastic Quantization per the quantization algorithm itself adopts some internal

randomness.

4.7 Model Lifecycle Management (MLOps)

The term MLOps (also known as AIOps) is the application of DevOps concepts and

techniques to Machine Learning (ML) systems. DevOps includes the techniques and

tools required to successfully maintain and support existing production systems, and

it is commonly used by IT professionals in the present.

Machine Learning systems have increased complexity compared to other traditional

data architectures within the field. This is due to several factors, such as

multidisciplinary team collaboration, extra steps on lifecycle management including

data collection and quality assurance, etc. Moreover, the evolution from a purely

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 20 of 77

academic research area to an applied field is recent. Because of all this, ML system

integration on production environments is still a strong research area, especially in

the definition of unified methodologies.

4.7.1 Machine Learning Deployment Workflow

At the present, there exist different approaches for MLOps systems. This is due to a

lack of unified methodology for MLOps solution. However, most of them share a

common view of “a multiple step workflow that manages data, models and code”. To

describe these steps, four main stages are proposed which involve particular tasks:

data management, model learning, model verification and model deployment

(Paleyes, Urma, & Lawrence, 2020).

The Data management phase focuses on the importance of data and quality

assurance, which is then used to train the models, and it is generally the first stage

in the ML pipeline. Tasks such as data collection, pre-processing and augmentation

are included here, to avoid biases and behaviour inconsistencies in the final result.

Then, Model learning involves the stage in which the model actually learns about

the problem to solve. Some key steps to take into account are model selection (trade-

off between model complexity and productive necessities), training and Hyper-

parameter selection (decision-making for minimizing these expensive and resource-

heavy practices).

Model verification includes multiple aspects to bear in mind in order to verify a

model, such as requirement encoding (technical viability and business gaining),

formal verification (use-case) and test-based verification (with new data). Finally,

the Model deployment stage involves the tasks to set a Machine Learning system

into a productive environment. These will include integration (supported by existing

infrastructure), monitoring and updating (regular retraining, continuous learning).

Table 3 offers a more detailed view of the previously defined stages, as well as the

tasks included in each of them, and main issues and considerations regarding these

ones. The table shows what issues are most commonly found at each stage of the

workflow.

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 21 of 77

Table 3 – Considerations, issues and concerns explored in (Paleyes, Urma, & Lawrence, 2020).

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 22 of 77

4.7.2 Continuous Delivery for Machine Learning

Over the previously defined MLOps stages, model deployment and integration on

productive environments have gained great attention lately. One of the most

researched topics is Continuous Delivery for ML, as it is a complex task that involves

three different domains: the data, the code and the model (Paleyes, Urma, &

Lawrence, 2020). This concept can be defined as “a software engineering approach

in which a cross-functional team produces machine learning applications based on

code, data, and models in small and safe increments that can be reproduced and

reliably released at any time, in short adaptation cycles” (Sato, Wider, & Windheuser,

2019).

Figure 3 – Common functional silos in large organizations can create barriers, stifling the ability to
automate the end-to-end process of deploying ML applications to production. Picture taken from (Sato,

Wider, & Windheuser, 2019).

Common challenges when building a ML system include multidisciplinary team

collaboration, process reproducibility and auditability. The heterogeneity of teams

and abilities required during the workflow lead to problems that are illustrated in

Figure 4. To overcome these challenges, different strategies and tools can be found

nowadays as valid alternatives. As previously mentioned, there is not a unified

methodology for building a MLOps system at the present. Current solutions are

intended to tackle particular aspects of the ML workflow. To describe some of them:

• Data Discoverability and Accessibility are often based nowadays on Big

Data architectures such as Data Lakes (or Data Mesh) are proposed, which

allow to provide data over its whole lifecycle.

• Another key aspect is the Reproducibility of Model Training, and its

necessity to be reproducible and version-controlled, similarly to traditional

code. There exist different tools to achieve this, such as Data Science Version

Control (DVC), Pachyderm, MLFlow.

• Model Serving, for which several tools and frameworks can be found, such

as PMML and ONNX (for embedded models); and Apache Submarine and

MLFlow (for model as a service approaches).

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 23 of 77

4.7.3 End-to-end ML Process

The FRACTAL MLOps system should accomplish all the previously described phases.

At the moment, different strategies are being studied for achieving this. Also,

different tools and frameworks are being tested in order to offer the best alternatives

to deal with the system necessities.

The End-to-end Machine Learning Processes aim to reach a unified and standard

methodology to cover all the phases of the ML models lifecycle, from the design of

models to the final delivery and deploy. In the perfect scenario, each of the phases

would be covered by a well-defined and robust software stack that is able to build,

train, deploy, and maintain the models into a production environment without the

need of very specific frameworks for each phase. Figure 4 is a good example of an

overview of MLOps target system, in which the main phases and artifacts can be

seen.

Figure 4 – Continuous Delivery for Machine Learning end-to-end process (Sato, Wider, & Windheuser,
2019).

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 24 of 77

5 UC functional and non-functional requirements

5.1 Use Case 1

Use Case 1 includes two demonstrators exploiting two rather different scenarios and

AI applications. Table 4 and Table 5 report the requirements for the two

demonstrators.

UC1 (Demonstrator 1): UAV supervision of critical structures

Short Description of the

Use Case

This demonstrator will be focused in the supervision of critical

structures as bridges or viaducts, where images of the

structural status will be collected through the use of UAVs,

systematizing the visual inspection in near-real-time to detect

failures and cracks in the concrete surface of the structure

AI Application(s) The algorithm used to extract information from the images is

based on a deep learning model with convolutional neural

networks (CNN). In order to solve the segmentation problem,

the architecture of the deep neural network is U-Net (and

ResNet), with a custom loss-function (combination of

Categorical Cross entropy and IOU).

Expected outcome It is expected to obtain the pixel-wise segmentation of the

cracks with high accuracy. The segmented images will be

inspected by an operator, so the real hazard that the cracks

may pose can be correctly inferred.

Input Variables Video frames.

Algorithms to be used • Deep Neural Network with U-Net architecture.

• Image augmentation: translations, rotations, …

• Image augmentation: superposition of texture images

with the raw images of cracks (alpha compositing).

• Opening, closing and double threshold to close the

gaps in-between the cracks.

Training vs Inference The training phase will be done offline. The training dataset is

composed by collected images of cracks on concrete surfaces

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 25 of 77

and augmented images (translations, rotations, superposition

of different textures, ...).

The inference is done online and in real-time on the UAV.

Tools / frameworks to

be used

The programming language is Python, and the libraries that

we will use are TensorFlow 2.0, OpenCV and NumPy.

Required hardware for

AI applications

Device or platform with GPU and enough computing power

capabilities (i.e. Jetson Nano, Raspberry pi+Coral board or

Versal platform).

Expected performances Still to be defined.

Table 4 – Requirements for Use Case 1 – Demonstrator 1

UC1 (Demonstrator 2): Wireless Sensor Network (WSN) for safety at construction sites

Short Description of

the Use Case

Demonstrator 2 will be focused in monitoring of both workforce

and machinery within a construction area through the

deployment of a WSN that will provide information about the

status and location of the workers, the workforce in real time.

This information will be managed through an IoT platform,

registering possible dangers and alarms, apart from

establishing a protocol in case of emergency.

AI Application(s) Application for monitoring of machinery and workers at

construction site through a WSN and an IoT platform

Expected outcome
The expected outcome is a system capable of obtaining a

variety of data (position of machinery and workers, daily alerts,

heat maps...) and process them with real-time analytics AI

software to provide security alarms and correlations.

Predictions must be made about risk situation modelling and

prevention, potential collisions, pattern extraction from previous

alerts, etc with an XAI approach (using explainable models)

Input Variables
• Time-series

• Alphanumeric data

• Real-time produced metrics with object identification

(workforce/machinery)

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 26 of 77

• Positioning (spatial coordinates)

Algorithms to be used
It is expected to use 1-3 AI models.

The type of algorithms will be defined on the future, but we will

probably try to explore different possibilities

As a first approximation, simple ML algorithms are expected to

be used for testing and validation purposes. Then they can be

upgraded to DL algorithms (e.g. CNN)

Training vs Inference
Training will be done in the cloud and inference in the edge:

• Training:

Pretrained models are probably going to be used. Depending of

included pre-trained model libraries, further research on this

will be done in WP5.

The training process is going to be carried out with historical

data on first approach, but retraining process on the edge will

be studied.

The expected input and output will be defined in WP5 and UC,

closely related to data availability.

Distributed training process or federated learning will be

studied.

• Inference will be carried out on the edge

Tools / frameworks to

be used

Different framework and libraries will be studied, making sure

that Machine Learning and Deep Learning algorithms and models

are covered: Tensorflow, ONNX, Keras, Apache TVM and Apache

MXNet.

Required hardware for

AI applications

Versal (or preferably some platform compatible with Versal sw

stack: Vitis…) Other options will be considered depending on

resource necessities (Zynq Ultrascale, Zynq-7000, or others)

Other possibilities apart from Versal and Xilinx SW/HW stacks

can also be considered (Noel-V, Ariane)

Expected

performances

Not defined yet.

Table 5 – Requirements for Use Case 1 - Demonstrator 2

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 27 of 77

5.2 Use Case 2

Requirements for Use Case 2, regarding AI-based air path control are reported in

Table 6.

UC2: AI-based air path control

Short Description of the

Use Case

In this Use Case parts of the standard controllers for the air

path control of an internal combustion engine will be replaced

by a reinforcement algorithm to improve the quality of the

controls and reduce calibration effort. Furthermore, different

driving behaviours, environmental changes and engine

production variation will be considered by an adaptation

algorithm and retraining in the cloud.

AI Application(s) The application is an AI-controller for the combustion engine

air path actuators (throttle and exhaust gas recirculation

valve).

Expected outcome The expected outcome of this use case is an AI-based

controller for the air path which has the same or even better

accuracy then the conventional controllers.

Input Variables In this use case mainly sensor and virtual of the combustion

engine will used such as exhaust mass flow, emissions,

pressures, temperatures, …

Algorithms to be used In this use case the multi agent reinforcement learning

approach will be adopted.

Training vs Inference The training will be done in a simulation environment using an

engine model and already existing input data. The inference

will be done on the node.

Tools / frameworks to

be used

Tensorforce (Tensorflow), KerasRL (Keras), Scikit-learn,

Scipy, Stable Baselines, Gym, Pytorch.

Required hardware for

AI applications

GPU (at least 4GB of RAM) or multi-core CPU (16GB of RAM)

for training, NN accelerators (Versal AI engine) for inference.

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 28 of 77

Expected performances The AI methods are evaluated by means of a simulation of the

real driving cycles where the control algorithm is verified. For

the assessment of the results similar evaluation metrics, as

the ones used for standard control strategies will be used

(e.g., model fit, NRMSE, standard deviation of relative error

distribution, ...).

Table 6 – Requirements for Use Case 2

5.3 Use Case 3

Requirements for Use Case 3, regarding AI-based system for reading conventional

meters, are reported in Table 7.

UC3: Smart meters for everyone

Short Description of the

Use Case

The goal of UC3 is developing a low-cost machine-vision

based applications to read conventional meters.

AI Application(s) The goal of the AI applications is to read and recognize

numbers from conventional meters.

Expected outcome The expected outcome of the inference is the extracted meter

in form of a digital number.

Input Variables The input of the models will be images.

Algorithms to be used Convolutional Neural Networks will be used to recognize

numbers in the images.

Training vs Inference Training will be performed offline using real images. Data

could be both labelled (i.e. containing the information about

the output) or unlabelled. Data are currently not available in

their entirety but will be collected/integrated during the

project.

Inference will be done on the edge. It is expected that data

flows from a camera few times per day and some latency is

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 29 of 77

acceptable since there is no safety critical operation to be

done.

Tools / frameworks to

be used

Not known yet

Required hardware for

AI applications

One of the challenges of this use case is to reduce the

complexity of the system, since energy consumption of the

node is a key factor. For this reason, the final system will be

kept as simple as possible. Ideally, it will consist of 1

accelerator (CNN) + memory + non-volatile storage +

processor. Moreover, the system will be designed to be kept

on only for a short time to save battery’s life.

Expected performances To be defined.

Table 7 – Requirements for Use Case 3

5.4 Use Case 4

Requirements for Use Case 4, regarding a low-latency object detector, are reported

in Table 8.

UC4: Low-latency Object Detection as a generic building block for perception in the edge

for Industry 4.0 applications

Short Description of the

Use Case

The use case will develop a detection system able to perform

real-time object recognition for industrial applications where

automation replaces manual work. AI features enhances the

automation process with intelligent capability to detect and

recognize objects visually.

AI Application(s) The goal of AI methods is to design a machine vision-based

object detection and recognition algorithm in form of a Low-

Latency Object Detection (LLOD) building block.

Expected outcome The expected outcome is the detection and labelling of the

objects from the video stream in real time.

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 30 of 77

Input Variables Input variables will derive from images and video streams.

Algorithms to be used Tiny Yolo for image analysis.

Training vs Inference Training is not the focus of the use case. It will be performed

offline out of the Fractal node and used for inference as it is.

Tools / frameworks to

be used

Darknet.

Required hardware for

AI applications

RISC-V and Arm64 will be tested in the use case.

Expected performances Performances will be evaluated in terms of correctness of

detection and classification. Expected performance will be

further analysed, but at the present time we a 85% accuracy

in recognizing objects could be considered a target value.

Table 8 – Requirements for Use Case 4

5.5 Use Case 5

Requirements for Use Case 5, regarding AI-based techniques for improving the safety

of autonomous trains, are reported in Table 9.

UC5: Increasing the safety of an autonomous train through AI techniques

Short Description of the

Use Case

The Use Case is focused on automatic accurate stopping and

safe passenger transfer for autonomous train operation

(traction and brake commands and doors opening and closing

software modules are outside of the scope of the use-case

that will provide only the detection capacity), using Computer

Vision AI-enhanced techniques.

AI Application(s) This Use Case is composed of two applications:

1. Automatic accurate stop. This application includes:

• Detection of the platform area, based on train

localization information and different visual patterns

detection/identification. Platform detection functionality

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 31 of 77

will enable automatic train approximation to accurately

stop the train.

• Detection of stop signals at platform for accurate

automatic stop at door equipped platforms, aligning the

vehicle and platform for correct passenger transfer.

2. Safe passenger transfer, for which it is necessary to

perform a correct detection of the passengers who are

getting in/out the train, avoiding any door closing

operation before all train’s doors are free of crossing-

passengers or obstacles.

Expected outcome
The expected outcomes for each application will be:

1. Neural network for Platform detection and Stop signals

detection and distance estimation to those stop signals in

the platform.

2. Neural network for Passenger or obstacle detection around

train doors, making sure the train is completely stopped in

the platform area (using visual sensors) avoiding a) door

opening operation if the train and platform doors are not

precisely aligned and b) door closing operation if any

passenger is getting in/out the train or any obstacle is

blocking the doors.

Input Variables The input data in both applications of the Use Case will be:

• Videos recorded from train cabin (front view)

• Videos recorded from rear mirror camera.

For training the models, historical recorded and labelled

images will be used. For inference, recorded data during train

operation will be used.

Algorithms to be used In this Use Case, for both applications the neural network

YoloV3 (You Only Look Once) will be used. Yolo is a well-

known real-time object recognition neural network, based in

Convolutional Neural Network (CNN).

For passenger detection, a standard YoloV3 neural network

will be used with pretrained weights. For platform and stop

signals detection, a standard YoloV3 neural network will be

retrained (transfer learning) to detect platform and specific

signals. Distance estimation will be computed from a stereo

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 32 of 77

camera setup in the front of the train. Both cameras will

detect the signals with YoloV3 and a triangulation computer

vision algorithm will be used to match both images and detect

distance to the signal.

Training vs Inference The models will be trained offline, in the office labs, using

Darknet framework. The training is going to be done in the

Office GPUs. The retraining of the models also will be done in

the office GPUs

The inference will be performed in the edge (Fractal Nodes)

using EDDL framework. The predictions must be done in real

time, with 10fps as target inference speed.

Tools / frameworks to

be used

The tools or libraries to use must be able to read the ONNX

(Open Neural Network Exchange) format to be able to load

YoloV3 networks. For vision-based measurement models

(distance estimation) the OpenCV library will be used.

The training of the models (offline) will be done using

Darknet/YoloV3 open-source neural network framework on

Linux workstations with powerful GPUs.

To perform the inference on the edge, EDDL will be used.

Required hardware for

AI applications

The inference will be made in Fractal node, which will require

that it will provide:

• 4 cores (at least).

• multi-threading support.

• 60 GFLOPS (at least).

• 16GB DDR RAM (at least).

• HW accelerators based on GPU

• Linux OS

• C++ compiler

• Different interfaces (and their Linux drivers):

o 2xGbit peripherals

o 2xUSB3.0 peripherals

o 1xHDMI peripherals

In addition to this, the node shall support OpenCV library,

provide ONNX interpreter, and the HW accelerators shall be

compatible with TensorFlow’s framework outputs.

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 33 of 77

Expected performances Both data arrival for inference and predictions shall be made

in real time, considering 10fps (frames per second), or 100ms

cycle, as real-time.

Table 9 – Requirements for Use Case 5

5.6 Use Case 6

Requirements for Use Case 6, regarding a smart totem equipped with sensors and

actuators, are reported in Table 10.

UC6: Intelligent Totem

Short Description of the

Use Case

The UC6 is centred on the development of a smart totem,

equipped with smart sensors and actuators, that collect data

and implement AI based content analysis. The totem should

have an impact on retail and shopping mall business,

providing to the customers personalized advertisements,

product recommendations and guiding them towards products

in the store.

AI Application(s) This use case includes three specific AI based blocks:

• to process images collected by cameras to detect

heterogeneous data like user age/gender, detect and

count people at totem proximity, etc.

• to process audio signal collected by microphones to

detect speaker age, gender, and language

• to process data generated from the aforementioned AI

blocks and from other data sources to select content

and information to be provided, output channels

among those available and other eventual actions.

Expected outcome The goal of the AI blocks is to make the totem more accessible

and faster to use for the customer in the reference scenario.

Will be developed advanced AI approaches, which will be

deployed on the edge to process collected data in order to

extract proximity information and to understanding its

surrounding.

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 34 of 77

Input Variables Input variables will include:

• images from video recordings,

• audio streams,

• variables from interactions with the totem and with

apps.

Algorithms to be used • Convolutional Neural Networks, Resnet for video

processing.

• Audio feature extraction + Support Vector Machines for

audio processing.

• Rule-based methods for standard classification.

Training vs Inference Training will be done offline. In a first implementation, the

model deployed on the edge will be static, but it is also

possible to set up a regular update of the model. Also a

federated approach will be explored. The inference is done on

the edge. Each node should be able to take decision

autonomously both having information from other nodes and

without such information.

Tools / frameworks to

be used

TensorFlow, Keras, OpenCV.

Required hardware for

AI applications

Training could be done in a cloud environment. Inference

requires the possibility of storing data locally. In general, the

implementation will be light so, no large resources are

needed. On x86_64 architecture, a 4-core/8-thread CPU, and

8 GB of RAM should suffice to process one camera. On ARM

architecture, hardware acceleration is more likely required

(i.e. integrated GPUs on NVidia Jetson boards).

Expected performances Still to be defined

Table 10 – Requirements for Use Case 6

5.7 Use Case 7

Requirements for Use Case 7, regarding an autonomous robot, are reported in Table

11.

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 35 of 77

UC7: Autonomous Robots (SPIDER)

Short Description of the

Use Case

SPIDER is an autonomous robot prototype. Functions of the

robot shall be ported to FRACTAL edge nodes. Relevant

functions are the collision avoidance and the path tracking

function

AI Application(s) Evading obstacles along a predefined path based on a cost

map (occupancy grid) using AI.

Expected outcome The AI function delivers control values for the robot which

allow the robot to follow a path while evading obstacles.

Input Variables Costmaps (generated out of lidar point clouds), precise

positioning and vehicle odometry (speed, orientation, etc…)

Algorithms to be used Reinforcement learning using a reward strategy by rewarding

the proximity to the path and penalizing crashes with

obstacles.

Training vs Inference Training is not performed on the edge since it requires CUDA.

Some data for training the model are already available, but

the training set will be continuously extended to improve the

performances. The training phase will be done once, there is

no need of retraining the model.

Running the model shall be possible on a simple Linux

platform. Recommended dual core with about 2GB memory.

Learning will be centralized (no need for federated learning).

Tools / frameworks to

be used

C++ or Python API, OpenCV Library, TensorFlow, Keras (for

training only, not needed on the edge node).

Required hardware for

AI applications

The target device is PULP RISC-V. Arm64 is desirable. At least

2 GB RAM and 2 CPU cores are required.

Expected performances The performances of the AI methods will be evaluated in

terms of:

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 36 of 77

1. Proximity of the calculated output trajectory

2. Awareness of obstacles

3. Frequency and reliability of predictions

A 3D simulation will be used for verification of the vehicle

functions.

Table 11 – Requirements for Use Case 7

5.8 Use Case 8

Requirements for Use Case 8, regarding an autonomous warehouse system, are

reported in Table 12.

UC8: Autonomous warehouses

Short Description of

the Use Case

Handling, storage, and retrieval of warehouse goods by

automated shuttles are optimized using Artificial intelligence

techniques. AI will also optimally organize and analyse the

masses of generated data, in order to improve the warehouse

throughput.

AI Application(s) Two AI applications will be taken into consideration:

Application 1: pathfinding. An AI module will be developed to

allow optimization of paths in order to find in real time the best

option for the shuttles to maintain the throughput high.

Application 2: predictive maintenance. To allow predictive

maintenance features to be developed, machine learning is

required in order to predict failures of certain parts and

devices.

Expected outcome Application 1: The AI of the FRACTAL node should support

pathfinding to find the best available shuttle for an order to

keep the throughput high.

Application 2: the occurrence of failures of certain parts and

devices. Patterns related to anomalies and correct behaviours

of the system.

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 37 of 77

Input Variables Data deriving from images will be used for both Application 1

and Application 2.

Algorithms to be used Application 1: Deep Learning (Convolutional Neural Networks).

Application 2: Traditional machine learning (classification,

anomaly detection – still under discussion)

Training vs Inference Model will be trained using the Fraunhofer Warehouse und

Industry Datasets.

https://www.iis.fraunhofer.de/de/ff/lv/lok/opt1/warehouse.html

Models could be retrained on the edge when needed. Learning

will be centralized (no need for federated learning).

Tools / frameworks to

be used

Python, C++, Pytorch.

Required hardware for

AI applications

The target could be either the VERSAL or the PULP platform.

At least 2 CPU cores, 4 GB RAM and 32 GB e MMC are needed.

GPUs will be used for training and inference.

Expected

performances

Still to be defined.

Table 12 – Requirements for Use Case 8

https://www.iis.fraunhofer.de/de/ff/lv/lok/opt1/warehouse.html

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 38 of 77

6 Proposed AI methods

6.1 Video analysis using Convolutional Neural Networks

Convolutional Neural Network is a specialized kind of neural network for processing

data with a known grid-like topology, like images or time series. For our purpose we

focus particularly on images.

CNNs differ from Deep Neural Networks (DNNs) in three main respects:

• Sparse interaction

In traditional DNNs every output unit interacts with every input unit. In CNNs,

instead, an object called "kernel" or "filter" moves all over the input producing

an output (which is still a weighted sum) typically smaller than the input,

providing sparse interaction (also referred to as sparse connectivity or sparse

weights) among the neurons. The pros is that we have to learn fewer

parameters, with improvements in memory requirements, statistical efficiency

(statistical strength for more samples per weight, reduced variance when

estimating the parameters) and computations (from O(m × n) to O(k × n)

with k much smaller than m).

• Parameter sharing

The same parameter is used by more than one function in the model: in

traditional DNNs each weight is used exactly ones when computing the output,

while in CNNs each member of a kernel (a weight) is used at every position

of the input per layer.

• Equivariant representations

The specific type of parameter sharing causes the layers to show equivariance

to translation. A function is equivariant to a function if

𝑓(𝑔(𝑥)) = 𝑔(𝑓(𝑥))

In the case of CNN, 𝑔 is a function translating (shifting) the input, while 𝑓 is

the

convolution operator:

𝑓(𝑖, 𝑗) = (𝐾 ∗ 𝐼)(𝑖, 𝑗) = ∑ ∑ 𝐼(𝑖 + 𝑚, 𝑗 + 𝑛)𝐾(𝑚, 𝑛)

𝑛𝑚

,

for a 2D input array.

As shown by Figure 5, the process inside a CNN can be divided in two steps: in the

first one, the "convolutional step", the image (represented by a tensor (rows × cols

× d,) where d takes into account the colours, for example d = 3 if the image is RGB)

is first flattened in a vector; then a filter is applied and after the convolution phase

an output is obtained and the parameters have to be estimated; after that, a pooling

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 39 of 77

process can be performed. A pooling layer provide an approach to down sampling

feature maps by summarizing the presence of features in patches of the feature map.

Two common pooling methods are average pooling and max pooling that summarize

the average presence of a feature and the most activated presence of a feature

respectively. Then the and a reduced image is then passed to the next layer where

another convolutional process is performed. In the second phase, after that a suitable

number of convolutional+pooling operations has been done, a classification is

performed by a fully connected NN which, through a softmax1 function, associates to

each part of a grid overlapping the image a certain probability that the object belongs

to.

Figure 5 – Classic structure of a CNN for image recognition

A typical convolutional layer can be divided in three parts:

• Convolution

The convolutional layer computes the convolutional operation of the input

images using kernel filters to extract fundamental features. The kernel filters

(see Figure 6 and Figure 7) are of the same dimension but with smaller

constant parameters as compared to the input images. As an example, for

computing a 35 × 35 × 2 2D image, the acceptable filter size is f × f × 2,

where f = 3, 5, 7, and so on. The filter mask slides over the entire input image

step by step and estimates the dot product between the weights of the kernel

filters with the value of the input image, which results in producing a 2D

activation map.

1 It is a generalization of the logistic function and it is used in multinomial logistic regression and is often

used as the last activation function of a neural network to normalize the output of a network to a probability

distribution over predicted output classes: σ(z)𝑖 =
𝑒𝒛𝑖

∑ 𝑒
𝒛𝑗𝑘

𝑗=1

 for 𝑖 = 1, … , 𝐾 and 𝒛 = (𝑧1, . . . , 𝑧𝐾) ∈ ℝ𝐾

https://en.wikipedia.org/wiki/Multinomial_logistic_regression
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Probability_distribution

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 40 of 77

Figure 6 – Action of a convolutional kernel over a 4x4 input: this is how a convolutional layer works
inside a CNN.

Figure 7 – Convolution between an input matrix 8x8 with a kernel filter 3x3. The output is a matrix 6x6.

Three parameters control the size of the output of a layer:

• Depth, the number of filters (kernels) of the layer.

• Stride, the step used to slide the filter on the input.

▪ When stride > 1 we are down-sampling the input data.

▪ Tiling refers to the special case where stride = kernel span.

• Padding to enlarge the input and allow for kernels application in each

one of the (original) point.

In particular, this formula holds:

• Non-linear activation

Training a DNN means (as usual) learning the values for the model parameters

(weights, bias terms) from the training set. Training is usual performed via

gradient descent and backpropagation algorithm (more details can be found

in (Jordan, 2017)

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 41 of 77

An essential element of training is (as usual) the loss function. The goal of the

loss function is to evaluate how well the network, with its current weights, is

performing. More formally, this function expresses the quality of the

predictions as a function of the network parameters (weight - w, biases). The

smaller the loss, the better the parameters are for the chosen task. Since the

loss functions represents the goal of the networks, there are as many different

functions as there are tasks, with some function more commonly used than

others.

The objective is to minimize the function of the error:

𝑤∗ = argmin
𝑤

1

𝑛
∑ 𝐿(𝑓(𝑥𝑖 , 𝑤), 𝑦𝑖)

𝑛

𝑖=1

 where

𝑓(𝑥) = 𝜎 (∑ 𝑤𝑖𝑥𝑖

𝑖

+ 𝑤0)

and 𝜎 manages the non-linearities. A typical choice is ReLU: it is applied after

each convolutional layer and only preserves non-negative values. It’s easy to

implement, preserves saturation and prevent the vanishing gradient problem

(Brownlee, 2019). Non-linearity is needed in activation functions because its

aim in a neural network is to produce a nonlinear decision boundary via non-

linear combinations of the weight and inputs.

• Pooling

Pooling is a way to summarise the information inside an input. It is simply a

way to further reduce the dimensionality of the description. It provides

invariance to small shifts of the inputs. An example is shown in Figure 8.

Pooling functions:

▪ Average pooling: average activation of the convolutional layer

▪ Max pooling: max activation of the convolutional layer

Figure 8 – Example of pooling

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 42 of 77

Finally, training in CNN is performed in the same way as a DNN via a forward pass

and a backward pass (backpropagation), as shown in Figure 9.

The "forward pass" refers to calculation process, values of the output layers from

the inputs data. It's traversing through all neurons from first to last layer. A loss

function is calculated from the output values. And then "backward pass" refers to

process of counting changes in weights (de facto learning), using gradient descent

algorithm (or similar). Computation is made from last layer, backward to the first

layer.

Backward and forward pass makes together one "iteration".

Figure 9 – Forward and backward pass in backpropagationKeep in mind that the forward propagation
computes the result of an operation and save any intermediates needed for gradient computation in

memory. Backward: apply the chain rule to compute the gradient of the loss function with respect to the
inputs.

The intuition behind the backpropagation, chain rule, of a CNN could be resumed in

the diagram in in Figure 10.

Figure 10 – The forward pass on the left calculates z as a function f(x,y) using the input variables x and
y. The right side of the figures shows the backward pass. Receiving dL/dz, the gradient of the loss

function with respect to z from above, the gradients of x

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 43 of 77

6.2 Yolo

You Only Look Once (YOLO) is an algorithm for the object detection developed in

2016 (Redmon, You only look once: Unified, real-time object detection, 2016) [6].

YOLO algorithm is an algorithm based on regression: instead of selecting the

interesting part of an image, it predicts classes and bounding boxes for the whole

image in one run of the algorithm (for this, Once).

Up to now there exists three different version of YOLO algorithm: YOLO(v1), YOLOv2

(Redmon & Farhadi, YOLO9000: Better, Faster, Stronger, 2017), YOLOv3 (Redmon

& Farhadi, YOLOv3: An Incremental Improvement, 2018) and YOLOv4 (Bochovskiy,

Wang, & Mark, 2020). In this deliverable we focus especially on the first one,

reporting then the major differences and novelties with respect to the other methods.

6.2.1 YOLOv1

To understand how YOLO works, first of all it is necessary to understand what is

actually being predicted: a class of an object and the bounding box specifying object

location. Each bounding box can be described using four descriptors:

• Center of the box (x, y)

• Width (w)

• Height (h)

• Value c corresponding to the class of an object

Along with that we predict a real number 𝒑𝒄, which is the probability that there is an

object in the bounding box.

YOLO system divides the input image into an S×S grid (typically 19×19). If the centre

of an object falls into a grid cell, that grid cell is responsible for detecting that

object. Due to this property the centre co-ordinates are always calculated relative to

the cell whereas the height and width are calculated relative to the whole image size.

For each grid cell:

it predicts B bounding boxes and each box has one box confidence score

it predicts C conditional class probabilities

The box confidence score reflects how likely a box contains an object and how

accurate is the bounding box while the conditional class probability is the

probability that the detected object belongs to a particular class (one probability per

category for each cell). These confidence scores reflect how confident the model is

that the predicted box contains an object and also how accurate it thinks the box is.

The combination of these scores is called class confidence score.

For each prediction box is computed as:

class confidence score = box confidence score × conditional class probability

It measures the confidence on both the classification and the localization (where an

object is located).

Here are the mathematical definitions for your future reference.

• Box Confidence Score = 𝑃𝑟(object) ∙ IoU

• Conditional Class Probability = 𝑃𝑟(class𝑖|object)
• Class Confidence Score = BCS∙CCP = 𝑃𝑟(class_i) ∙ IoU

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 44 of 77

We then have CCS = BCS∙CCP. These scores encode both the probability of that class

appearing in the box and how well the predicted box fits the object.

Figure 11 – Bounding boxes and class probability map. Source: (Redmon, You only look once: Unified,
real-time object detection, 2016)

Intersection over Union, or Jaccard index, is an evaluation metric used to measure

the accuracy of an object detector.

It computes size of intersection and divide it by the union. More generally, IoU is a

measure of the overlap between two bounding boxes.

The higher the IOU the better is the accuracy.

An IoU score IoU≥0.5 is normally considered as a true positive.

Figure 12 – IoU operation

After predicting the class probabilities, the next step is Non-max suppression, it

helps the algorithm to get rid of the unnecessary boxes that are in fact different

detections of the same object: there could be numerous bounding boxes calculated

based on the class probabilities and then it’s necessary to choose the best one. It

calculates the value of IoU for all the bounding boxes respective to the one having the

highest-class probability, it then rejects the bounding boxes whose value of IoU is

greater than a threshold. It signifies that those two bounding boxes are covering the

same object but the other one has a low probability for the same, thus it is eliminated.

Summarizing the procedure, for each object class:

• discard all those bounding boxes where probability of object being present is

below some threshold (0.6),

• take the bounding box with the highest score among candidates,

• discard any remaining bounding boxes with IoU value above some threshold

(0.5)

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 45 of 77

Figure 13 – The effect of non-max suppression in bounding box identification. Source: (Gupta, 2020)

The model is implemented as a convolutional neural network. The initial convolutional

layers of the network extract features from the image while the fully connected layers

predict the output probabilities and coordinates. The overall architecture of the

algorithm can be viewed below:

Figure 14 – YOLO Architecture (source: You Only Look Once: Unified, Real-Time Object detection)

Training in YOLO is made according to classical CNN, minimizing the empirical risk

with the total loss function that is the sum of the three losses previously mentioned.

By combining the three terms, the loss penalizes the error for bounding box

coordinates refinement, objectless scores, and class prediction. By backpropagating

the error, we are able to train the YOLO network to predict correct bounding boxes.

Precision-Recall curve

The precision-recall curve is used for evaluating the performance of binary

classification algorithms. Any prediction relative to labelled data can be a true

positive, false positive, true negative, or false negative.

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 46 of 77

Figure 15 – Confusion matrix structure for binary classification problems

The precision-recall curve is constructed by calculating and plotting the precision

against the recall for a single classifier at a variety of thresholds. For example, if we

use logistic regression, the threshold would be the predicted probability of an

observation belonging to the positive class. Normally in logistic regression, if an

observation is predicted to belong to the positive class at probability > 0.5, it is

labelled as positive. However, we could really choose any probability threshold

between 0 and 1. A precision-recall curve helps to visualize how the choice of

threshold affects classifier performance and can even help us select the best

threshold for a specific problem.

Precision (also known as positive predictive value) can be represented as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

where TP is the number of true positives and FP is the number of false positives.

Precision can be thought of as the fraction of positive predictions that actually belong

to the positive class.

Recall (also known as sensitivity) can be represented as:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

where TP is the number of true positives and FN is the number of false negatives.

Recall can be thought of as the fraction of positive predictions out of all positive

instances in the data set.

The figure below demonstrates how some theoretical classifiers would plot on a

precision-recall curve. The grey dotted line represents a “baseline” classifier — this

classifier would simply predict that all instances belong to the positive class. The

purple line represents an ideal classifier — one with perfect precision and recall at all

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 47 of 77

thresholds. Nearly all real-world examples will fall somewhere between these two

lines — not perfect but providing better predictions than the “baseline”. A good

classifier will maintain both a high precision and high recall across the graph and will

“hug” the upper right corner in the figure below.

Figure 16 – Some theoretical precision-recall curves

6.2.2 YOLOv2

YOLO makes a significant number of localization errors. Furthermore, YOLO has

relatively low recall. Thus, in the second version of YOLO they focused mainly on

improving recall and localization while maintaining classification accuracy. According

to (Redmon & Farhadi, YOLO9000: Better, Faster, Stronger, 2017), YOLOv2 has better

performances due to these ideas:

• Batch Normalization

• High Resolution Classifier

• Convolutional With Anchor Boxes

• Dimension Clusters

• Direct location prediction

• Fine-Grained Features

• Multi-Scale Training

Figure 17 shows the improvements in mean Average Precision (mAP) (Arlen, 2018)

of YOLOv2 with respect to YOLO. It is clear that due to the previous mentioned

improvements, this new version of YOLO has been improved.

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 48 of 77

Figure 17 – Differences between YOLO and YOLO v2 (source (Redmon & Farhadi, YOLO9000: Better,
Faster, Stronger, 2017)

As far as the architecture is concerned, YOLO-v2 uses Darknet-19 classification

network for feature extraction from the input image. The model has many 1x1

convolutional layers; this reduces the number of parameters compared to the "built-

in" classifier of the first version of YOLO. Combinations of different datasets were

used to train YOLO-v2, using the hierarchical class representation technique called

WordTree (see Section “Classification” in (Hui, 2018)). This method allows YOLOv2

to recognize a large number of objects and, indeed, it is also known in literature as

YOLO9000, since it can detect up to 9000 different objects in real-time.

Figure 18 – YOLO with Darknet-19

6.2.3 YOLOv3

YOLO v3 is a better and stronger but not faster upgrade of YOLO v2. The main

changes are in the architecture of the NN: here the authors propose to use a more

refined version of the Darknet used for YOLO v2, increasing the number of the layers

from 19 to 53 (Darknet-53 precisely). For the task of detection, 53 more layers are

stacked onto it, giving us a 106 layer fully convolutional underlying architecture for

YOLO v3. This is the reason behind the slowness of YOLO v3 compared to YOLO v2.

The newer architecture boasts of residual skip connections, and up-sampling. The

most salient feature of v3 is that it makes detections at three different scales. YOLO

is a fully convolutional network and its eventual output is generated by applying a 1

x 1 kernel on a feature map. In YOLO v3, the detection is done by applying 1 x 1

detection kernels on feature maps of three different sizes at three different places in

the network.

Other novelties and improvements are:

• Better at detecting smaller objects

• Increase the number of anchor boxes (9, 3 per each direction)

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 49 of 77

• Changes in the loss function: object confidence and class predictions in

YOLO v3 are predicted through logistic regression.

• Multilabel classification for objects detected in images

Strictly speaking, YOLO-v3 is simply an improved version of YOLO-v2. With this latest

update the authors have mostly integrated other people's ideas with their system

and made minor changes to the model architecture.

6.2.4 YOLOv4 and Tiny-YOLO

YOLOv4 is an object detection algorithm that is an evolution of the YOLOv3 model. It

is the real state of the art in this field, according to the scientific community.

Compared to YOLOv3, the v4 achieves better results in AP (Average Precision) and

FPS (Frames Per Second), by 10% and 12% respectively.

The new features used by YOLOv4 are essentially:

• Weighted-Residual-Connections (WRC)

• Cross-Stage-Partial-connections (CSP)

• Cross mini-Batch Normalization (CmBN)

• Self-adversarial-training (SAT)

• Mish activation

• Mosaic data augmentation

• DropBlock regularization

• Complete Intersection over Union loss (CIoU loss)

Figure 19 – The performances of the different YOLO versions on the MS COCO benchmark. Source

(Bochovskiy, Wang, & Mark, 2020)

YOLOv4-tiny is the compressed version of YOLOv4. It is proposed based on YOLOv4

to make the network structure simpler and reduce parameters so that it becomes

feasible for developing on mobile and embedded devices. The FPS (Frames Per

Second) in YOLOv4-tiny is approximately eight times that of YOLOv4. However,

the accuracy for YOLOv4-tiny is 2/3rds that of YOLOv4 when tested on the MS COCO

dataset. For real-time object detection, YOLOv4-tiny is the better option when

compared with YOLOv4 as faster inference time is more important than precision or

accuracy when working with a real-time object detection environment.

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 50 of 77

6.3 Audio Stream Analysis

Some use cases would have benefit by employing techniques able to process and

extract information from audio stream. Audio analysis has received a grown interest

as witnessed by the wide variety of commercial applications including speaker

verification and authentication procedures, gender recognition and language

recognition. Other common applications of speech processing techniques lie in the

range of accessibility solutions: the most remarkable examples are the speech-to-

text and text-to-speech tools.

In general, we can identify two categories of applications: those focusing on the

recognizing the speaker or some characteristics (such as the gender or the age) of

the speaker (Speaker Recognition) and those concerning the speech itself (Speech

Recognition).

It is worth noting that in several real-world situations the speaker is surrounded by

many smart devices, such as mobile phones and therefore understanding audio

context represent an important tool allowing relevant applications. Consider, for

example, the case of a speaker talking during a seminar, a conference call or a lecture

in a classroom.

Since the environmental conditions deeply affects the quality of audio signals and,

then, the possibility of extracting information from them, it is crucial to evaluate the

performance of speech processing techniques in different noise conditions and with

different configurations (including e.g. different distances between source and

receiver).

In order to enhance the speech recognition performances in challenging

environmental conditions, a noise and distance-robust speech/speaker identification

method will be proposed for inclusion in the FRACTAL node. This method embeds a

smart pre-processing method employing Voice Activity Detection (VAD) able to

increase the system accuracy, which is usually evaluated in terms of the rate of

correct classifications.

The task of Speaker Recognition consists in identifying persons from an audio sample

of their voice. It can be tackled in two different scenarios: Closed-Set scenario, when

the recognized speaker belongs to a given, a-priori known set of individuals, and

Open-set scenario (also called out-of-set speaker identification, if the speaker to be

identified could also be out of the pre-defined set of speakers. Both these scenarios

will be described in this deliverable. It is worth noting that similar approaches can

also be adopted in the scenario where the gender or the language is to be recognized

instead of the speaker.

The first step to build a speaker recognizer consists in dividing the audio signal into

short segments called frames, during which speech can be considered as stationary.

Each frame has a length of T= 25 ms and it is selected so that the time distance

between the centres of two adjacent frames is equal to 10 ms (i.e., two consecutive

frames are overlapped for one third of their duration). Then, the feature extraction

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 51 of 77

step allows to convert the signal into a set of variables that can be used in the

recognition task. Several different set of features could be computed: a possible

choice that will be explored in the FRACTAL project consist in the first 13 Mel-

Frequency Cepstral Coefficients (MFCC).

The MFCCs represents the short-term power spectrum of a sound, based on a a linear

cosine transform of a log power spectrum on a nonlinear mel scale of frequency

(Sabra, 2021). They are usually computed by means of the Fourier Transform of an

excerpt of a signal. The Fourier spectrum is then mapped onto the mel scale and the

powers at each of the mel frequencies is considered. They compose an array m of

values. Then, the discrete cosine transform of m is computed. The amplitudes of the

resulting spectrum are the MFCCs. Moreover, the corresponding 13 Delta-Delta will

be considered: they represent the second order derivative of MFCCs. In this way each

signal is converted into a set of 26 features.

This set of features is used to train a supervised classifier. The first step in order to

obtain a good classification system is to pre-process the signal by removing frames

that do not contain useful information. When dealing with audio speech signals, this

step translates into eliminating the audio frames that do not contain speech

utterances. This step is called Voice Activity Detection (VAD). To achieve this goal,

many techniques have been proposed in the literature (Graf, Herbig, Buck, &

Schmidt, 2015). One of the simplest methods (Uhle & Bäckström, 2017) consists in

applying a Band-Pass Filter (BPF) centred over the speech bandwidth (e.g., from

about 50[Hz] to 3500[Hz]). This action will remove unwanted frequency components

that do not fall within the voice bandwidth, but it does not ensure that the remaining

signal components are actually related to speech utterances.

In FRACTAL an alternative approach to voice activity detection will be proposed. It

consists in taking into account only actual speech frames according to a proper

algorithm. This pre-processing method is called SmartVAD and it consists in a short-

time spectral analysis pre-processing filtering system. It is based upon two important

indicators: i) Spectrum Flatness Index (SFI) and ii) Energy Ratio Index (ERI). The

rationale behind these two parameters is that a speech frame exhibits a spectrum

having most of its energy within the 1st [kHz] and which should not be flat. Finally,

a threshold criterion is applied such that an audio frame is not discarded only if the

value of the considered indicators satisfies the threshold condition. These are

important indicators of a voiced frame, and they motivate the choice of the proposed

VAD indicators, which effectively represent the nature of the considered signal.

Concerning artificial intelligent functions implementing the recognition phase, a

Support Vector Machines (SVM) model is planned to be adopted. SVM is a supervised

learning scheme that uses a binary approach to assign samples to a class, by dividing

the feature space into different regions, one corresponding to each category. The

SVM algorithm works in two separate phases: learning phase and the inference

phase.

Training Phase: the feature vector is defined for a given frame out of F frames for

each recording. Moreover, the vector containing all the classes (i.e., the names of all

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 52 of 77

the ns speakers in the following but in general can be the gender of the speaker

and/or the language) should be defined as well. The main idea of the SVM algorithm

is to separate the feature space by means of one single hyperplane: in this project

we employ both the One-Against-All (OAA) method that constructs a SVM for each

class considered recognition function, and the One-Against-One (OAO) approach,

which builds more models.

In the OAA approach a model is built for each of the considered known speakers. In

each model a speaker is compared with all the other ones, which compose the

“negative” class. On the other hand, the OAO approach trains a single model that

includes all the speakers, each characterized by a different label.

Starting from the audio signals of the training set, the single SVM, built for a class,

can be obtained by computing the hyperplane that can be expressed as a function of

its orthogonal vector. Analytical descriptions of the SVMs have been omitted for the

sake of brevity, more details can be found here (Cortes & Vapnik, 1995).

Inference Phase: when a new audio sample has to be catalogued, the SVM model

is applied. The output of SVM is a Probability Matrix (PM) for each of the separation

hyperplane built by SVM. In the case of OAA, the number of PMs is the number ns of

the considered speakers, while the OAO approach produces a number of PMs equal

to the number (
𝑛𝑠

2
) of combinations of ns elements taken two at a time.

Each element of this matrix is the a-posteriori probability of a given feature vector

belonging to the class identified by the binary label. From all the PMs a decision

matrix is computed. It is a binary matrix where each element belonging to {−1, +1}

is obtained by associating the given frame with the binary label which has the highest

probability. From the decision matrix we determine the scoring vector S, which

represents the scoring of the a given. It is a measure of the likelihood of the input

speech utterance to belong to such a speaker. Finally, from the scoring vector the

Maximum Likelihood Index (MLI) is inferred. It is simply the index of the speaker,

among the predefined set, who has the highest score value (i.e., it has the highest

a-posteriori probability to have produced the input speech signal). The recognized

speaker is then determined by employing a decision rule that change in case of Open-

Set or Close-Set scenario. In other words, for what concerns the open-set scenario

(which is the one targeted within the FRACTAL project), the maximum score obtained

by the speakers belonging to the known speaker set is compared to a predefined

threshold. If the highest score is above the considered threshold the recognized

speaker is the one who produced the maximum score, otherwise the classifier

chooses for an unknown speaker.

6.4 Reinforcement Learning

Over the past years, reinforcement learning techniques have evolved substantially

and played an important role in the development of data-driven control strategies.

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 53 of 77

Reinforcement Learning is characterized by a continuous interaction of an agent with

its environment. The goal of an agent is to find an optimal mapping between the

observations that it receives and the actions that it produces, such that a numerical

reward signal is maximized. This way, the agent learns the best actions to take for

the given state.

The conventional (single agent) reinforcement learning setting is mathematically

described as a Markov Decision Process (MDP), where the policy is maximized

considering a stochastic stationary environment.

Figure 20 – The agent–environment interaction in a Markov decision process. (Barto, 2018)

Some important concepts related to RL algorithms are described here.

• States and Observations: The state of an environment is a full description of

the current situation of the system in each moment, while an observation is a

partial description of this state. If an agent is able to observe the complete

state of the environment, this environment is called fully observable. If the

agent only can see a partial observation, the environment is called partially

observable.

• Action spaces: Set of all valid actions for a given environment.

• Policies: Set of rules used by an agent to determine what actions to take.

• Reward: Immediate feedback an agent receives from the environment after

performing an action.

• Return: Reward accumulated by the agent in the long run (in the simplest

case it is the sum of the rewards, but a discount factor can be applied to

reduce the weight of rewards that will be received in the future).

• Value Function: The value function represents the expected return that comes

from starting in a particular state and following a particular policy forever

after. Bellman equations are commonly used for computing Value Functions,

as they relate the value of the current state with the value of future states.

This recursive relationship is a fundamental property of value functions and

the basis of many RL algorithms.

• Optimal Policy: Policy producing the maximum return.

When the state and action spaces of the problem are small enough, the approximate

value functions can be stored in arrays or tables and these set of RL algorithms are

called tabular solution methods. However, for handling problems with larger state

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 54 of 77

and action spaces, neural networks are used as function approximators, which

developed a new field called Deep Reinforcement Learning (Deep RL).

Multi-Agent Reinforcement Learning (MARL) represent the state-of-the-art

reinforcement learning techniques for dealing with multi-agent systems, where

multiple autonomous agents interact in a shared environment. In this case, the

Markov decision process, that represents mathematically the single agent RL, is

generalized to a Markov (stochastic) game.

In MARL, agents can interact in a cooperative, competitive or in a mixed setting. In

the cooperative setting, all agents collaborate with each other to achieve a shared

goal, while in the competitive setting the return of the agents should sum up to zero

(agents competing against one another) and, in the mixed setting, the agents focus

on improving their policies according to their own interests.

Figure 21 – The multi-agent interaction with a shared environment in a Markov game setup. (Kaiqing
Zhang, 2021)

Since the objectives of the agents may not be aligned (as in competitive and mixed

settings), new challenges not faced by single-agent learning are posed to MARL.

Therefore, dealing with equilibrium solution concepts from game theory, such as Nash

equilibrium, is required for addressing these difficulties.

MARL algorithms must fulfil requirements that guarantee its stability (convergence

to a stationary policy) and capability to adapt to the changing behaviour of other

agents. Convergence to equilibria is a basic stability requirement, and the above-

mentioned Nash equilibria is often applied. Moreover, the trade-off between stability

and adaptability needs taken into consideration. While stability is required in the

learning process, the algorithm must be aware of the other learning agents. On the

other hand, if adaptation is overweighted in comparison to stability, algorithms will

only track the behaviour of the other agents.

MARL is a promising technique for improving strategies for multivariable control

systems and it has already been successfully applied in the field of control. (Qingrui

Zhang, 2020) proposed a multi-agent soft-actor critic (MASAC) algorithm using the

“centralized-training-with-decentralized-execution” scheme and they guarantee the

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 55 of 77

closed-loop system stability by introducing a stability constraint to the policy. (Marco

Wiering, 1999) combines evolutionary methods to RL techniques to compute

strategies for a multi-agent soccer team and (D. Vidhate, 2017) uses Cooperative

Multi-Agent Reinforcement Learning Models (CMRLM) to enhance traffic light control.

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 56 of 77

7 Proposed AI tools, frameworks and standards

This section aims at introducing the tools, the frameworks and the standards that

use case contributors are planning to use in their development. Of course, the tools

have been considered to cover the AI methods that should be used: namely, standard

machine learning, deep learning and reinforcement learning. However, it is worth

noting that the list of available algorithms is not the only parameter that should be

considered when selecting a tool for AI modules implementation. First, the AI

modules should interact with other components, so the ability of interfacing with

different systems/languages is crucial. So, in the choice of the tools to be used, the

availability of proper APIs is of course a key factor. Moreover, since the AI models

will be implemented in an edge device, the possibility of porting the AI models on

different architectures is important the same. Since real time inferencing is expected

in several cases, also acceleration capabilities are important. At last, since AI modules

should be implemented in industrial applications, the license under which the tools

are released must be considered. The following paragraphs introduce the proposed

tools while a final paragraph presents a caparison among them.

7.1 Tensorflow

TensorFlow (TensorFlow, 2021) is a free and open-source library for machine

learning. Even if it provides a wide range of algorithms for data analysis, TensorFlow

is particularly focused on deep learning methods for the analysis of non-structured

data, such as those deriving from natural language and images. It was first developed

by Google Brain for Google internal use and since 2015 it is released under the

Apache License 2.0. A TensorFlow Lite library is also available for mobile

development.

TensorFlow is compatible with the most common 64-bit operating systems (Windows,

Linux and Mac OS) as well as with Android. Moreover, it can run across a wide variety

of platform (CPUs and GPUs) and also from desktops to clusters of servers to mobile

and edge devices. Moreover, Google developed an Application Specific Integrated

Circuit (ASIC) processor specifically designed for TensorFlow applications. This

processor, named Tensor Processing Unit (TPU) is able to run TensorFlow operations

much faster than standard CPUs. The third generation of TPU, released in 2018,

provides up to 420 teraFLOPS of performance and 128 GB High Bandwith Memory

(HBM). When organized in clusters, TPUs can reach more than 100 petaFLOPS of

performance and 32 TB HBM. Since 2018 TPU are also available in Google Cloud

Platform. In 2018 an Edge TPU was released to allow implementation of TensorFlow

Lite machine learning models on edge devices such as smartphones.

TensorFlow provides stable Python (for version 3.7) and C APIs and without API

backwards compatibility also C++, Go, Java, JavaScript and Swift are supported.

Third-party packages are available for C#, Haskell, Julia, MATLAB, R, Scala, Rust,

OCaml and Crystal.

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 57 of 77

Among the algorithms provided by TensorFlow it is worth mentioning Automatic

Differentiation, Convolutional Nets (a class of deep networks), Recurrent Nets,

Boltzmann machines and Deep Belief Networks. Moreover, TensorFlow provides a set

of pre-trained models than can directly be used for making inferences without the

need of gathering data and training the model on them.

7.2 Keras

Keras (Keras, 2021) is an open-source Python library for machine learning and neural

networks. It can be considered as a high-level abstraction interface to other lower-

level libraries such as TensorFlow, Microsoft Cognitive Toolkit (CNTK) and Theano. It

has been created as part of the R&D project ONEIROS (Open-ended Neuro-Electronic

Intelligent Robot Operating System), mainly by François Chollet, a Google engineer

and the code is currently hosted by GitHub. Its main strongpoint consists in the

possibility of a quick and easy prototyping of solutions based on deep neural

networks. Since 2017 Keras is officially supported by TensorFlow and can therefore

be considered as a high-level abstraction layer for TensorFlow library. Thanks to this,

Keras allow implementation of several AI models: besides standard machine learning,

Keras includes modules for convolutional and recurrent neural networks and,

moreover, it supports other common utility layers like dropout, batch normalization,

and pooling. Keras allows the implementation of deep neural network models on

mobile devices (iOS, Android), on the web or on Java Virtual Machines. In addition,

also distributed training of deep neural networks is allowed on GPU or TPU clusters.

7.3 Apache TVM

Apache TVM (Apache TVM, 2021) is an open-source machine learning compiler

framework for CPUs, GPUs, and machine learning accelerators. It aims to enable

machine learning engineers to optimize and run computations efficiently on any

hardware backend.

It provides two main features:

• Compilation of DL models into minimum deployable modules.

• Infrastructure to automatically generate and optimize models on more

backends with better performance.

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 58 of 77

Figure 22 – Apache TVM Blog - Bringing AMD GPUs to TVM Stack and NNVM Compiler with ROCm.

As shown in Figure 22, Apache TVM supports a wide range of hardware backends,

such as X86, AMD GPUs and ARM. In addition, it supports adding new hardware

backends. It is easier to add a new hardware backend if it has LLVM support. If it is

a GPU it is recommended to use CUDA, OpenCL or Vulkan backend, although it is not

mandatory (https://tvm.apache.org/2017/10/30/Bringing-AMDGPUs-to-TVM-Stack-

and-NNVM-Compiler-with-ROCm).

Additionally, TVM features AutoTVM, a module that performs automatic optimizations

for any hardware backend. It uses a statistical cost model to learn which

optimizations lead to less computational time, regardless of the model and hardware

architecture.

Apache TVM leverages being part of Apache Software Foundation, one of the largest

open-source developer communities, which offers continuous development and

support. Some of the organizations that use or contribute to Apache TVM are AMD,

AWS, Huawei, Intel, Microsoft, Nvidia and Samsung.

7.4 Apache MXNET

Apache MXNet (Apache MXNet, 2021) is an open-source framework for Deep Learning

under the license of the Apache Foundation.

One of the key aspects of MXNet is that it allows for high-speed performance (MXNet

is built on C++) and enables working with parallel computation. MXNet is extremely

portable, supporting several languages such as Python, Scala, Java, Clojure, R, Julia,

Perl or C++ and is available in the most common OS as Linux, MacOs or Windows.

Its flexibility and availability have made MXNet one of the most widely used Deep

Learning frameworks nowadays.

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 59 of 77

For Deep Learning models, MXNet implements Gluon, one of the most versatile DL

libraries available. Gluon applies hybrid programming, as opposed to TensorFlow or

PyTorch, which use symbolic and imperative programming respectively, and it allows

MXNet to work as imperative for developing but symbolic for deploying.

For Python development, Gluon implements several APIs like GluonCV, GluonNLP or

GluonTS for computer vision, natural language processing or time series

development, as well as predefined and pretrained models with Model Zoo, which can

be used as a model library for quick access to user-defined model inference.

MXNet can target CPUs and GPUs both for training and inference. It is tightly

integrated with Horovod, a toolkit which supports distributed CPU and GPU training.

MXNet has been developed for easy deployment. It supports natively ONNX format

which is a transversal model ecosystem for the most common Deep Learning

frameworks. ONNX allows conversion of any model made by one DL framework to

another to perform inferences and model predictions directly.

7.5 Pandas

Pandas (Pandas, 2021) is a Python software library for data analysis and

manipulation. In particular, it offers data structures and operations to manage

numeric tables and temporal series. The name is derived from the term "panel data",

an econometrics term for data sets that include observations over multiple time

periods for the same individuals.

The main features of Pandas are:

• Data uploading and saving using standard data format like CSV, TSV, Excel

files and database formats.

• Simplicity in performing indexing and data aggregation operations.

• Simplicity in the execution of numerical and statistical operations.

• Simplicity in viewing the results of operations.

Three different modes are usually adopted when utilizing Pandas for data analysis:

• Convert a Python’s list, dictionary or Numpy array to a Pandas data frame.

• Open a local file using Pandas, usually a CSV file, but could also be a delimited

text file (like TSV), Excel, etc.

• Open a remote file or database like a CSV or a JSON on a website through a

URL or read from a SQL table/database.

7.6 Scikit

Scikit-learn (Scikit Learn, 2021) is a Python library for machine learning built on top

of libraries like NumPy, SciPy and matplotlib. The library provides various efficient

tools for performing data pre-processing, data modelling, building reusable data

pipelines and for predictive data analysis.

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 60 of 77

The library has many in-built algorithms implemented for supervised, unsupervised

and semi-supervised learning problems. This library does not support solving

reinforcement learning problems but has useful tools to do model/algorithm

selection.

7.7 Stable Baselines

Stable Baselines (Stable Baselines, 2021) is a Python library which consists of a set

of improved implementations of reinforcement learning algorithms based on the

OpenAI Baselines. This library is a refactored version of OpenAI baselines. The

reinforcement learning algorithmic implementations in this library will serve as a

baseline benchmark for the research community and will make it easier to replicate,

refine and build up new implementations on top of the baselines.

The Stable Baselines library include popular reinforcement algorithms like Actor-Critic

(A2C) methods, Proximal Policy Optimization (PPO), Trust Region Policy Optimization

(TRPO), Deep Q-Networks (DQN), Actor-Critic using Kronecker-Factored Trust Region

(ACKTR), Deep Deterministic Policy Gradients (DDPG), etc. The library follows a

unified interface similar to scikit-learn library and has support for training on any

type of features, loading and saving algorithms.

Stable Baselines also provides a collection of pre-trained agents, the RL Baselines

zoo, which can be used to speed-up the training process in common applications,

with a simple interface to train, evaluate agents and do hyperparameter tuning.

7.8 Gym

The Gym toolkit from OpenAI (Gym OpenAI, 2021) is a Python library for developing

reinforcement learning algorithms. It supports training and teaching virtual agents

various real-world physical actions in a specified virtual environment. The library is

compatible with any numerical computation library such as TensorFlow or Theano.

The library contains a cumulative collection of test environments, that can be used

to benchmark and compare when building reinforcement learning algorithms. The

library provides standardization in environments which can also be used in scientific

publications. It also provides an easy interface to register user-defined environments

for researching on custom reinforcement learning problems.

7.9 Pytorch

Pytorch (PyTorch, 2021) is a Python external module implementing functions

dedicated to machine learning, deep learning and Natural Language Processing. It is

particularly useful for processing tensors using GPU acceleration of graphics cards.

The fundamental element of PyTorch are the tensors, multi-dimensional arrays of

numbers, on which NumPy and much of the scientific calculation in Python are also

based.

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 61 of 77

Key features and capabilities:

• Transition seamlessly between eager and graph modes with TorchScript, and

accelerate the path to production with TorchServe

• Scalable distributed training and performance optimization in research and

production is enabled by the torch.distributed backend

• A rich ecosystem of tools and libraries extends PyTorch and supports

development in computer vision, NLP and more.

• Well supported on major cloud platforms, providing frictionless development

and easy scaling

7.10 Caffe

Caffe (Berkeley Artificial Intelligence Research, 2021) is an Open-Source Deep

Learning framework written in C++, and thus easily integrable into existing C++

systems. It has a Python and MATLAB interface, and can be run on both a CPU and

a GPU; the switch between them is seamless and model independent. Caffe is mainly

specialized in image classification and image segmentation, although it has been

extended and adopted for other purposes, such as speech recognition. Caffe provides

solutions for both academic research projects and industrial applications in artificial

intelligence; it is employed by many universities and companies in projects which

involve vision, robotics and language applications.

Caffe can work with many different types of deep learning architectures, such as

Convolutional Neural Networks (CNN), Long-Term Recurrent Convolutional Network

(LRCN), Long Short-Term Memory (LSTM) and Fully Connected Neural Networks

(FCNNs). The framework allows for a quick introduction to machine learning and

neural networks thanks to its large number of preconfigured models available.

Caffe is a fast, scalable and modular framework; its main features are:

• Speed: With a single Nvidia K40 GPU, Caffe can process over 60 million

images per day.

• Expressive and modular architecture: the user can define the models and

optimize them without hard-coding efforts. The framework allows switching

between GPU and CPU by using a single-flag and train the ML model on a GPU

machine.

• Multiple deployment options: the trained model can be deployed to mobile

device platforms (Android) or commodity clusters; Caffe also runs on

embedded CUDA hardware.

• Extensible code and community support: researchers and developers using

Caffe have made many changes and improvements over the time, which can

also be a good support for new users.

Caffe’s main classes are Blob, Net, Layer and Solver: the framework uses blobs to

store and process data. Blobs are N-D arrays for storing and communicating

information. In Caffe, blobs can:

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 62 of 77

• Hold data, derivatives, and parameters.

• Shuttle between CPU and GPU: in fact, they can be thought of as an

abstraction layer between the CPU and GPU: the data from the CPU is loaded

into the blob, which is then passed to the GPU for computation.

• Lazily allocate memory on demand for the host and device.

The blobs are passed as input to the Layers and correspondingly output is generated.

The layers have different setup options, like Convolution and Pooling, but they can

also be extended to a new custom user layer implementation. Caffe uses a data

structure called a directed acyclic graph for storing operations performed by the

underlying layers. A typical Caffe model network starts with a data layer loading data

from a disk and ends with a loss layer based on the application requirements; the

model is trained by a fast and standard stochastic gradient descent algorithm. Data

can be processed into mini batches which pass in the network sequentially.

Caffe also supports fine-tuning, in order to allow an existing model to be used to

support new architecture or data. The previous model weights are updated for the

new application and new weights are assigned wherever needed.

Built on Caffe, Caffe2 has been developed as a lightweight, scalable and modular

deep learning framework and it was, subsequently, merged with PyTorch.

7.11 Darknet

Darknet (Redmon, Darknet, 2021) is an open-source neural network framework. It

is a fast and highly accurate framework (accuracy for custom trained model depends

on training data, epochs, batch size and some other factors) for real-time object

detection (can also be used for images). It is particularly fast thanks to the fact that

it is written in C and CUDA and it can be integrated with CPUs and GPUs.

Darknet is installed with only two optional dependencies: OpenCV if users want a

wider variety of supported image types or CUDA if they want GPU computation.

Darknet displays information as it loads the config file and weights then it classifies

the image and prints the top-10 classes for the image. Moreover, the framework can

be used to run neural networks backward in a feature appropriately named

Nightmare.

Advanced implementations of deep neural networks can be done using Darknet.

These implementations include You Only Look Once (YOLO) for real-time object

detection, ImageNet classification, recurrent neural networks (RNNs), and many

others.

7.12 OpenCV

Open-Source Computer Vision Library (OpenCV) (OpenCV, 2021) is a open source

library mainly devoted to artificial vision in real time. It has been originally developed

by Intel and is currently released for free under the open/source Apache 2 License.

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 63 of 77

OpenCV is written in C++ and interfaces mainly with C++, but is still retains a less

comprehensive interface in C. Also interfacing with Python, Java and Matlab is allowed

by means of APIs. Moreover, wrappers in several programming language have been

developed during the years.

OpenCV can make use of Intel’s Integrated Performance Primitives to accelerate its

execution. Moreover, CUDA and OpenCL interfaces for GPUs computations have been

developed.

OpenCV is currently available on several operating systems, namely Windows, Linux,

macOS and the BSD OS family. Moreover, also implementation on mobile devices

(Android, IoS, in particular) is allowed.

7.13 Comparison among different tools

The tools considered in this chapter are listed in Table 13 together with a brief recap

of their characteristics.

Tool Creator OS Written

in

Interface Open

source

Algorithms GPU

support

License

TensorFlow Google

Brain team

Linux,

Mac OS,

Windows

C++,

Python

Python,

C/C++

Yes RNN, CN,

RBM, DBN

Yes Apache

2.02

Keras François

Chollet

(ONEIROS

project)

Ubuntu,

Windows,

macOS

Python Python Yes High level

abstraction to

TensorFlow

methods

Yes MIT3

Apache

TVM

Apache

Foundation

Ubuntu,

Windows,

macOS

 Python,

C++,

Rust, Go,

Java,

JavaScript

Yes It allows

deployment of

models

generated by

other tools

Yes Apache

2.02

Apache

MXNET

Apache

Foundation

Linux,

macOS,

Windows

C++ Python,

Scala,

Julia,

Clojure,

Java,

C++, R,

Perl

Yes Deep learning

algorithms

included in

Gluon library

Yes Apache

2.02

Pandas W.McKinney Linux,

macOS,

Windows

Python Python Yes Data

manipulation

No BSD4

2 (Apache Software Foundation, 2004)
3 Massachusetts Institute of Technology License (MIT, 1988)
4 Berkeley Software Distribution (Berkeley University, 1990)

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 64 of 77

Scikit F.

Pedregosa

et al.

Linux,

macOS,

Windows

Python Python Yes Data pre-

processing

and standard

machine

learning

No BSD4

Stable

Baselines

A. Raffin

and A. Hill

Linux,

macOS,

Windows

Python Python Yes Reinforcement

Learning:

A2C, PPO,

TRPO, DQN,

ACKKTR

No MIT3

Gym OpenAI Linux,

macOS,

Windows

Python Python Yes Reinforcement

Learning

No MIT3

PyTorch A. Paszke et

al.

Linux,

Android,

Mac OS,

iOS,

Windows

Python Python,

C++

Yes Machine

learning, deep

learning,

Natural

Language

Processing

Yes BSD4

Caffe Berkeley

Vision and

Learning

Center

Ubuntu,

Max OS

X,

Windows

C++,

Python

C++,

Python,

MATLAB

Yes Deep

learning: CN

and RNN

Yes BSD4

Darknet Joseph

Redmon

Linux,

macOS

C,

CUDA

 Yes Deep

learning: Yolo

Yes YOLO5

OpenCV Intel Windows,

Linux,

Mac OS,

Android,

iOS

C++ C, C++,

Python,

Java

Yes Computer

vision,

machine

learning.

Yes Apache

2.02

Table 13 – The tools and frameworks considered for AI implementation.

7.14 ONNX and ONNX Runtime

The Open Neural Network Exchange (ONNX) Project (ONNX, 2021) provides an open

standard for machine learning interoperability. The project has been adopted as

Graduated Project by the Linux AI Foundation (LF AI) and is published under MIT

License via Github (Github ONNX, 2021) (https://github.com/onnx/onnx).

The ONNX specification describes a Machine Learning model by defining a common

representation of the model computation graph and operators. The actual

specification forwards a serialized format of a common computational graph and

allows for model specific extension e.g., provide own operators. The flow for the

ONNX standard is shown in Figure 23

5 (Redmon, 2016)

https://github.com/onnx/onnx

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 65 of 77

Figure 23 – The ONNX flow

To enable conversion between each ML frameworks’ internal representations to and

from the ONNX format the project provides converters for a large set of frameworks

as available from the source repository. In this way any model from the supported

frameworks can be converted into other frameworks through ONNX format as

Intermediary Representation (IR). Instead of converting ONNX models to any of the

supported ML frameworks for further processing the accompanying project ONNX

Runtime (see Figure 24) provides direct deployment of these models for inference on

various targets that serve as Execution Providers (EP).

Figure 24 – The ONNX runtime

With relevance to the commercial FRACTAL node platform some few Xilinx target

platforms are enabled and Vitis AI is available as execution provider. Through this

the mapping of models to the Deep Learning Processing Unit (DPU) is available in

principle. This DPU is the accelerator kernel to process the AI tasks. ONNX Runtime

applies a number of graph optimizations on the ONNX model graph then partitions it

into subgraphs based on the accelerator hardware specifics. Optimized computation

kernels in core ONNX Runtime provide performance improvements and assigned

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 66 of 77

subgraphs benefit from further acceleration from the execution provider

implementation.

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 67 of 77

8 Conclusions

This deliverable has synthesized the first outcomes from T5.3, in particular as regards

the collection of requirements from use cases about AI applications and the selection

of methods to be used to satisfy these requirements. The selected methods are

described in detail with a particular focus on the applications needed for the

implementation of use cases.

It is worth noting that the deliverable should be considered as a first version of the

methods description. Actually, the work of T5.3 will continue in the next months of

the project, taking benefit from the progress also on other WP, mainly WP2

“Specifications and Methodology” and WP8 “Case Studies, Specification,

Benchmarking & Justification File” and on other tasks of WP5, in particular T5.1

“FRACTAL AI Theory”. The progress of use case specifications on one side and on the

AI theory on the other side will allow a better definition of AI methods that will be

included in D5.6 “Final AI methods for use case applications and mechanism for AI

transparency interactions”.

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 68 of 77

9 Bibliography

Abdulrahman, S., Tout, H., Ould-Slimane, H., Mourad, A., Talhi, C., & Guizani, M. (2021). A Survey

on Federated Learning: The Journey From Centralized to Distributed On-Site Learning

and Beyond. IEEE Internet of Things Journal, 5476-5497.

Amazon Web Service. (2019). AWS documentation. Retrieved from Message Broker for AWS IoT:

https://docs.aws.amazon.com/iot/latest/developerguide/iot-message-broker.html

Amazon Web Service. (2019). AWS Documentation. Retrieved from AWS IoT SDK:

https://docs.aws.amazon.com/iot/latest/developerguide/iot-sdks.html

Amazon Web Service. (2019). AWS Documentation. Retrieved from Security and Identity:

https://docs.aws.amazon.com/iot/latest/developerguide/iot-security-identity.html

Amazon Web Service. (2019). AWS IoT Core. Retrieved from Features:

https://aws.amazon.com/iot-core/features/

Apache MXNet. (2021).

Apache Software Foundation. (2004). Retrieved from https://www.apache.org/licenses/

Apache TVM. (2021). Retrieved from https://tvm.apache.org/

Arlen, T. C. (2018, March 1). Timothy Arlem. Retrieved from medium.com:

https://medium.com/@timothycarlen/understanding-the-map-evaluation-metric-for-

object-detection-a07fe6962cf3

Barto, R. S. (2018). Reinforcement Learning: An Introduction.

Berkeley Artificial Intelligence Research. (2021). Caffe. Retrieved from

https://caffe.berkeleyvision.org/

Berkeley University. (1990). Retrieved from opensource.org:

https://opensource.org/licenses/bsd-license.php

Bochovskiy, A., Wang, C.-Y., & Mark, H.-Y. (2020). YOLOv4: Optimal Speed and Accuracy of Object

Detection. Retrieved from arXiv:2004.10934

Bosch. (2019). Gateway software. Retrieved from https://www.bosch-si.com/iot-platform/iot-

platform/gateway/software.html?ref=ot-2-inst-de-2017h1-sales-contact-forms-iot-

platform

Brownlee, J. (2019, January 11). Machine Learning Mastery. Retrieved from How to fix the

Vanishing Gradients Problem Using the ReLU:

https://machinelearningmastery.com/how-to-fix-vanishing-gradients-using-the-

rectified-linear-activation-function/

Comer. (2000). Datagram Size, Network MTU, and Fragmentation. In Sect. 7.7.4 (p. p. 104).

Cortes, C., & Vapnik, V. (1995). Support Vector Machine. Machine Learning, 20(3), 273-297.

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 69 of 77

D. Vidhate, P. K. (2017). Cooperative Multi-agent Reinforcement Learning models (CMRLM) for

intelligent traffic control. 1st International Conference on Intelligent Systems and

Information Management (ICISIM).

Dey, A. K. (2000). Providing Architectural Support for Building Context-Aware Applications. Ph.D.

Thesis, College of Computing, Georgia Institute of Technology.

Fielding, R. T. (2000). Architectural styles and the design of network-based software

architectures. Irvine: University of California.

Github ONNX. (2021). Retrieved from https://github.com/onnx/onnx

Graf, S., Herbig, T., Buck, M., & Schmidt, G. (2015). Features for voice activity detection: a

comparative analysis. EURASIP Journal on Advances in Signal Processing, 91.

doi:https://doi.org/10.1186/s13634-015-0277-z

Gupta, M. (2020). YOLO — You Only Look Once. Retrieved from towardsdatascience.com:

https://towardsdatascience.com/yolo-you-only-look-once-3dbdbb608ec4

Gym OpenAI. (2021). Retrieved from https://gym.openai.com/

Hui, J. (2018, March 18). Real-time Object Detection with YOLO, YOLOv2 and now YOLOv3.

Retrieved from https://jonathan-hui.medium.com/real-time-object-detection-with-

yolo-yolov2-28b1b93e2088

Jordan, J. (2017, July 18). Federated Learning: Challenges, Methods, and Future Directions.

Retrieved from jeremyjordan.me: https://www.jeremyjordan.me/neural-networks-

training/

Kaiqing Zhang, Z. Y. (2021). Multi-Agent Reinforcement Learning: A Selective Overview of

Theories and Algorithms. Springer.

Kamal, A. (2019, August 3). Amro Kamal. Retrieved from medium.com: https://amrokamal-

47691.medium.com/yolo-yolov2-and-yolov3-all-you-want-to-know-7e3e92dc4899

Keras. (2021). Retrieved from https://keras.io/

Lampkin, V., Tat Leong, W., Olivera, L., Rawat, S., Subrahmanyam, N., Xiang, R., . . . Locke, D.

(2012). Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ

Telemetry. IMB Redbooks.

Li, T., Sahu, A. K., Talwalkar, A., & Smith, V. (2020). Federated Learning: Challenges, Methods,

and Future Directions. IEEE Signal Processing Magazine, 37, 50-60.

Marco Wiering, R. S. (1999, January). Reinforcement Learning Soccer Teams with Incomplete

World Models. Autonomous Robots.

MIT. (1988). Retrieved from https://opensource.org/licenses/mit-license.php

ONNX. (2021). Retrieved from onnx.ai

OpenCV. (2021). Retrieved from https://opencv.org/

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 70 of 77

Paleyes, A., Urma, R.-G., & Lawrence, N. D. (2020). Challenges in Deploying Machine Learning: a

Survey.

Pandas. (2021). Retrieved from https://pandas.pydata.org/

PyTorch. (2021). Retrieved from https://pytorch.org/

Qingrui Zhang, H. D. (2020, 11 25). Lyapunov-Based Reinforcement Learning for Decentralized

Multi-agent Control. International Conference on Distributed Artificial Intelligence.

Redmon, J. (2016). Retrieved from https://github.com/pjreddie/darknet/blob/master/LICENSE

Redmon, J. (2016). You only look once: Unified, real-time object detection. IEEE Conference on

Computer Vision and Pattern Recognition. Retrieved from arXiv:1506.02640.

Bibcode:2015arXiv150602640R.

Redmon, J. (2021). Darknet. Retrieved from https://pjreddie.com/darknet/

Redmon, J., & Farhadi, A. (2016). YOLO9000: Better, Faster, Stronger. Retrieved from

https://arxiv.org/pdf/1612.08242.pdf

Redmon, J., & Farhadi, A. (2017). YOLO9000: Better, Faster, Stronger. IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), (pp. 7263-7271).

Redmon, J., & Farhadi, A. (2018). YOLOv3: An Incremental Improvement. Retrieved from

arXiv:1804.02767

Sabra, A. (2021, February 16). Retrieved from Towards Data Science:

https://towardsdatascience.com/learning-from-audio-the-mel-scale-mel-

spectrograms-and-mel-frequency-cepstral-coefficients-f5752b6324a8

Saint-Andre, P., Smith, K., & Tronçon, R. (2009). XMPP: The Definitive Guide. Building Real-Time

Applications with Jabber. O’Reilly Media, Inc.

Sato, D., Wider, A., & Windheuser, C. (2019). Continuous delivery for machine learning. Retrieved

from https://martinfowler.com/articles/cd4ml.html

Scikit Learn. (2021). Retrieved from https://scikit-learn.org/stable/

Shelby, Z. a. (2011). 6LoWPAN: The wireless embedded Internet (Vol. 43). John Wiley \& Sons.

Siemens. (2018). https://www.plm.automation.siemens.com. Retrieved from

https://www.plm.automation.siemens.com:

https://www.plm.automation.siemens.com/media/global/en/Siemens-MindSphere-

Whitepaper-69993_tcm27-29087.pdf

Stable Baselines. (2021). Retrieved from https://stable-baselines.readthedocs.io/en/master/

TensorFlow. (2021). Retrieved from https://www.tensorflow.org/

UbuntuPit. (2018). https://www.ubuntupit.com/. Retrieved from https://www.ubuntupit.com/:

https://www.ubuntupit.com/choose-the-right-iot-platform-top-20-iot-cloud-

platforms-reviewed/

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 71 of 77

Uhle, C., & Bäckström, T. (2017). Voice Activity Detection. In Speech Coding. Signals and

Communication Technology. Springer.

Zhang, C., Xie, Y., Bai, H., Yu, B., Li, W., & Gao, Y. (2021). A survey on federated learning.

Knowledge-Based Systems.

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 72 of 77

10 List of Figures

Figure 1 – Functioning of the online training for the FRACTAL node 11

Figure 2 – Learning Approaches in FRACTAL: (left) Centralized Learning; (centre)

Decentralized Learning; (right) Federated Learning. .. 12

Figure 3 – Common functional silos in large organizations can create barriers, stifling

the ability to automate the end-to-end process of deploying ML applications to

production. Picture taken from (Sato, Wider, & Windheuser, 2019). 22

Figure 4 – Continuous Delivery for Machine Learning end-to-end process (Sato,

Wider, & Windheuser, 2019). ... 23

Figure 5 – Classic structure of a CNN for image recognition 39

Figure 6 – Action of a convolutional kernel over a 4x4 input: this is how a

convolutional layer works inside a CNN. .. 40

Figure 7 – Convolution between an input matrix 8x8 with a kernel filter 3x3. The

output is a matrix 6x6. .. 40

Figure 8 – Example of pooling .. 41

Figure 9 – Forward and backward pass in backpropagationKeep in mind that the

forward propagation computes the result of an operation and save any intermediates

needed for gradient computation in memory. Backward: apply the chain rule to

compute the gradient of the loss function with respect to the inputs. 42

Figure 10 – The forward pass on the left calculates z as a function f(x,y) using the

input variables x and y. The right side of the figures shows the backward pass.

Receiving dL/dz, the gradient of the loss function with respect to z from above, the

gradients of x ... 42

Figure 11 – Bounding boxes and class probability map. Source: (Redmon, You only

look once: Unified, real-time object detection, 2016) .. 44

Figure 12 – IoU operation .. 44

Figure 13 – The effect of non-max suppression in bounding box identification. Source:

(Gupta, 2020) .. 45

Figure 14 – YOLO Architecture (source: You Only Look Once: Unified, Real-Time

Object detection) .. 45

Figure 15 – Confusion matrix structure for binary classification problems 46

Figure 16 – Some theoretical precision-recall curves ... 47

Figure 17 – Differences between YOLO and YOLO v2 (source (Redmon & Farhadi,

YOLO9000: Better, Faster, Stronger, 2017) ... 48

Figure 18 – YOLO with Darknet-19 .. 48

Figure 19 – The performances of the different YOLO versions on the MS COCO

benchmark. Source (Bochovskiy, Wang, & Mark, 2020) 49

Figure 20 – The agent–environment interaction in a Markov decision process. (Barto,

2018) .. 53

Figure 21 – The multi-agent interaction with a shared environment in a Markov game

setup. (Kaiqing Zhang, 2021) .. 54

Figure 22 – Apache TVM Blog - Bringing AMD GPUs to TVM Stack and NNVM Compiler

with ROCm. ... 58

Figure 23 – The ONNX flow .. 65

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 73 of 77

Figure 24 – The ONNX runtime ... 65

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 74 of 77

11 List of Tables

Table 1 – Document History .. 6

Table 2 – Different categories of algorithms in Machine Learning 17

Table 3 – Considerations, issues and concerns explored in (Paleyes, Urma, &

Lawrence, 2020). ... 21

Table 4 – Requirements for Use Case 1 – Demonstrator 1 25

Table 5 – Requirements for Use Case 1 - Demonstrator 2 26

Table 6 – Requirements for Use Case 2 ... 28

Table 7 – Requirements for Use Case 3 ... 29

Table 8 – Requirements for Use Case 4 ... 30

Table 9 – Requirements for Use Case 5 ... 33

Table 10 – Requirements for Use Case 6 ... 34

Table 11 – Requirements for Use Case 7 ... 36

Table 12 – Requirements for Use Case 8 ... 37

Table 13 – The tools and frameworks considered for AI implementation. 64

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 75 of 77

12 List of Abbreviations

A2C Actor-Critic

ACKTR Actor-Critic using Kronecker-Factored

Trust Region

BPF Band Pass Filter

BSD Berkeley Software Distribution

CIoU Complete Intersection over Union

CmBN Cross mini Batch Normalization

CMRLM Cooperative Multi-Agent Reinforcement

Learning Models

CNN Convolutional Neural Network

CPU Central Processing Unit

CSP Cross Stage Partial connections

CSV Comma Separated Values

DDPG Deep Deterministic Policy Gradients

DDR Double Data Rate

DeepRL Deep Reinforcement Learning

DevOps Development Operations

DNN Deep Neural Network

DQN Deep Q-Networks

EDDL European Distributed Deep Learning

EP Execution Provider

ERI Energy Ratio Index

FN False Negative

FCNN Fully Connected Neural Network

FLOPS Floating point Operation Per Second

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 76 of 77

fps frames per second

Gbit Gigabit

GFLOPS Giga Floating-Point Operations Per

Second

GPU Graphical Processing Unit

HDMI High-Definition Multimedia Interface

HW Hardware

IoT Internet of Things

IoU Intersection over Union

IR Intermediary Representation

LF AI Linux AI Foundation

LRCM Long-Term Recurrent Convolutional

Network

LSTM Long Short-Term Memory

mAP mean Average Precision

MARL Multi-Agent Reinforcement Learning

MASAC Multi-Agent Soft-Actor Critic

MDP Markov Decision Process

MFCC Mel-Frequency Cepstral Coefficient

MIT Massachusetts Institute of Technology

ML Machine Learning

MLI Maximum Likelihood Index

MLOps Machine Learning Operations

ms millisecond

NLP Natural Language Processing

OAA One-Against-All

OAO One-Against-One

Project FRACTAL

Title Specification of AI methods for use case applications

Del. Code D5.1

 Copyright © FRACTAL Project Consortium 77 of 77

ONNX Open Neural Network Exchange

OpenCV Open-Source Computer Vision Library

OS Operating System

PM Probability Matrix

PPO Proximal Policy Optimization

RAM Random Access Memory

RL Reinforcement Learning

RNN Recurrent Neural Network

SAT Self-Adversarial Training

SFI Smart Flatness Index

TP True Positive

TRPO Trust Region Policy Optimization

TPU Tensor Processing Unit

TSV Tab Separated Values

URL Uniform Resource Locator

USB Universal Serial Bus

VAD Voice Activity Detection

WRC Weighted Residual Connections

YOLO You Look Only Once

