

Co-funded by the Horizon 2020 Programme of the European Union
under grant agreement No 877056.

Deliverable

D6.4 FRACTAL engineering framework validation

Deliverable Id: D6.4

Deliverable Name: FRACTAL engineering framework validation

Status: Final

Dissemination Level: Public

Due date of deliverable: 2023 (M31)

Actual submission date: 2023 (M31)

Work Package: WP6 CPS Communication Framework

Organization name of lead

contractor for this

deliverable:

IKERLAN

Author(s): Ana Patricia Bautista, IKER

Adrián Morán, IKER

Luca Visconti, AKKODIS

Pietro Abbatangelo, AKKODIS

Enrico Ferrari, RULEX

Nicola Alchera, RULEX

Reviewers: Roman Obermaisser, SIEG

Stefan Krassin, PLC2

Abstract:

D6.4 “FRACTAL engineering framework validation” is a report of the results of

the validation tests of the functionalities and components of the FRACTAL Edge

Node, designed and implemented in tasks T6.1 and T6.2. The tests were carried

out following the validation methodology defined in deliverable D6.3, where the

steps to be followed to carry out the validation process were set out.

This project has received funding from the ECSEL
Joint Undertaking (JU) under grant agreement
No 877056

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 2 of 149

Contents

1 History ... 4

2 Summary ... 5

2.1 Achievements ... 5

3 Introduction .. 7

4 Validation test template overview .. 8

5 Edge Node architecture review ... 10

5.1 FRACTAL Edge Node processing architecture .. 10

5.2 FRACTAL Edge Node processing architecture implementation 11

6 Validation tests implementation of the Edge Node microservices to test

connectivity functionalities. .. 12

6.1 Test case development ... 12

6.2 Test environment setup .. 17

6.3 Test execution ... 19

7 FRACTAL Edge Controller review ... 23

8 Validation test plan and implementation of the Edge Controller 25

8.1 Orchestration (Edge Controller) .. 25

8.1.1 Test planification .. 25

8.1.2 Test case development ... 27

8.1.3 Test environment setup .. 28

8.1.4 Test execution ... 28

8.2 Orchestration (Agent Nodes Controller) ... 33

8.2.1 Test planification .. 33

8.2.2 Test case development ... 35

8.2.3 Test environment setup .. 36

8.2.4 Test execution ... 37

8.3 Runtime Manager ... 42

8.3.1 Test planification .. 42

8.3.2 Test case development ... 43

8.3.3 Test environment setup .. 50

8.3.4 Test execution ... 53

8.4 Data Ingestion ... 58

8.4.1 Test planification .. 58

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 3 of 149

8.4.2 Test case development ... 60

8.4.3 Test environment setup .. 61

8.4.4 Test execution ... 61

8.5 Federated Data Collection .. 65

8.5.1 Test planification .. 65

8.5.2 Test case development ... 66

8.5.3 Test environment setup .. 66

8.5.4 Test execution ... 67

8.6 Low End Node .. 69

8.6.1 Test planification .. 69

8.6.2 Test case development ... 70

8.6.3 Test environment setup .. 78

8.6.4 Test execution ... 79

8.7 Hardware-level Edge Controller .. 83

8.7.1 Test planification .. 83

8.7.2 Test case development ... 86

8.7.3 Test environment setup .. 101

8.7.4 Test execution ... 104

9 Conclusions ... 109

10 Bibliography .. 110

11 List of figures ... 111

12 List of tables .. 113

13 List of abbreviations.. 116

14 Annexes .. 117

14.1 Orchestration (Edge Controller) component complete templates 117

14.2 Orchestration (Agent Nodes Controller) component complete templates

 122

14.3 Runtime Manager component complete templates 129

14.4 Data Ingestion component complete templates 134

14.5 Federated Data Collection component complete templates 139

14.6 Low End Node component complete templates 141

14.7 Hardware-level Edge Controller component complete templates 145

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 4 of 149

1 History

Version Date Modification reason Modified by

0.0 30/05/2022 Draft Ana Patricia Bautista

0.1 15/11/2022 Redefinition of sections Ana Patricia Bautista

0.2 15/03/2023 Deliverable ready for review Authors

1.0 29/03/2023 Final version Authors

Table 1 Document history

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 5 of 149

2 Summary

This deliverable reports the results of the validation tests implemented in the

framework of task T6.3. The inputs of this task have been the developments of tasks

T6.1 and T6.2, the Edge Node design, and implementation and the Edge Controller

design and implementation, respectively.

For the development of this task, deliverables D6.1 and D6.2, other code, video

demos, and repositories that were delivered as results of tasks T6.1 and T6.2 were

studied and considered. The methodology outlined in D6.3 has been followed to

define and develop the validation tests that will ensure that the components function

correctly. However, the tests for tasks T6.1 and T6.2 have been approached in

different ways and are presented in different chapters. The reason is that the results

have been presented differently, and some of the developments that were in the

scope of task T6.1 were moved to task T6.2 as is the case for the Low End Node.

Therefore, the components of Task T6.2 complement the developments in Task T6.1,

so the results presented in this document are aligned with that situation.

It is important to mention that during the definition of the validation tests, developers

have been consulted to gain a better understanding of how the components work. In

addition, they have also received feedback and have been able to implement some

improvements to the components while the validation was being carried out.

2.1 Achievements

Highlights

1) “Coverage” – the microservices related to connectivity presented in D6.1

have been considered in this deliverable.

2) “Coverage” - all components presented in D6.2 have been taken into

account in this deliverable.

3) “Coverage” - D6.2 presents all functionalities related to each component,

but some of them are out of project scope or for future scope; in this

deliverable there is a clarification on what is working at this project step and

what is out of scope.

4) “External view” - in many cases partners who led the validation activities and

test cases definition were not involved in the development.

5) “Know-how sharing” - as per point 4, partner had the possibility to work

together, tester and developer.

6) “Quality improvement” - The validation work has helped to identify some bugs

in the components, and these have been fixed in the course of the validation.

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 6 of 149

In addition, feedback has been sent to the developers with some suggestions

for improvement.

Lowlights

1) “Coverage”: some functionality presented in D6.1 and D6.2 are of future

scope.

2) In some cases, functionalities are presented and tested in simple scenarios.

More complex scenarios will be defined during Use Cases implementation.

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 7 of 149

3 Introduction

The main content of this deliverable is the report of the validation results of the

components developed in WP6 (tasks T6.1 and T6.2). The validation tests defined in

this deliverable are based on deliverables D6.1, D6.2 and other materials such as

video demos, code scripts and repositories that have been delivered by the

developers of tasks T6.1 “FRACTAL processing node design and implementation” and

T6.2 “FRACTAL Edge Controller design and implementation”.

The phases of the validation process defined in section 5.4 of deliverable D6.3 have

been followed to carry out the validation tests:

1. Test planification: where the scope of the test is defined, and the identification

data is assigned.

2. Test case development: where the steps to carry out the test are defined, and

the necessary scripts or configurations are created.

3. Test environment setup: This section refers to or explains how to prepare the

test environment for the test (this information is given by the developers).

4. Test execution: the test is carried out and the results are reported according

to these guidelines.

The reporting process was documented through subchapters with the name of the

phases of the validation process, and in the case of the tests performed for task T6.2

components, they were documented in a validation template which encloses these

steps. An overview of the validation template and usage is given in chapter 4.

First, chapter 5 provides an overview of the architecture of the Edge Node and the

input received by task T6.1, and in chapter 6 the implementation of the validation

tests of the microservices to test connectivity functionalities are documented.

Then, a brief description of the FRACTAL Edge Controller is presented in chapter 7,

and in chapter 8, the implementation of the validation tests of the components

developed in task T6.2 are documented.

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 8 of 149

4 Validation test template overview

As it is mentioned in the introduction, in this chapter, the validation test template is

briefly explained. It was designed as a supporting document to report the phases of

the validation process based on the validation methodology approach defined in

deliverable D6.3, section 5.4.

Figure 1: Validation test template

The template is self-explanatory. However, here's how to fill in some important

fields:

TestID: consist of the test number + component code e.g., the first test for

component WP6T62-06 would be:

T01_ WP6T62-06

Test type: it depends on the kind of test to be implemented, it could be functional

or nonfunctional.

• Functional requirements describe the function of the system and its

components, defining the behaviour between inputs and outputs of the

system.

• Nonfunctional requirements establish the standardized criteria to assess the

quality of the product developed. This kind of requirements should be tested

on the actual HW platform. Since in a simulated environment the data might

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 9 of 149

not be accurate, and the results will be meaningless for the implementation

in real use cases.

Test scope or objective: it defines what is to be validated and why.

Steps: the steps for carrying out the test are defined.

Results/Evidence: this space shows evidence that the test was carried out

(screenshot of the execution, message from the application, etc.).

Success criteria: describe the criteria to consider the test successful.

Test observations:

• Test configuration: provide the set-up configuration and requirements to

carry out the test. It could be a link to the FRACTAL repository or the reference

to a document.

• Test conditions: briefly describe the conditions of the test, e.g., the test was

done remotely, three servers were used to perform the test, etc.

• Remarks: report the issues detected during the testing process.

Test result: passed or failed/Not passed.

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 10 of 149

5 Edge Node architecture review

This chapter briefly describes the Edge Node architecture design implemented in task

T6.1, which developed and deployed the necessary Edge Computing infrastructure.

For more information and detail on the Edge Node software design and

implementation, refer to deliverable D6.1.

The Edge Node architecture was designed using mostly open-source software. It

includes core functionalities, core microservices and appropriate mechanisms to

support remote monitoring, resource management and dynamic reconfiguration. It

also provides connection interfaces to different IoT devices and cloud platforms.

According to D6.1, the reference architecture for the development of the Edge Node

was Kubernetes with Docker, which suits the interoperability approach and

integrations with other systems. In addition, it is open to extensions, which provides

more openness and fits into fractality design principles. The implementation was

based on Kubernetes family Microk8S and k3S as it brings lightweight, fully-featured,

conformant Kubernetes for IoT devices.

5.1 FRACTAL Edge Node processing architecture

The FRACTAL architecture is hierarchical, which means that upon layers are built

upon, and consume data and services provided by lower layers. Each layer performs

an important function throughout the architecture. The application layer, for

example, contains modules to implement core functions for visualization, control,

analytics, data fusion, filtering, and storage database. On the other hand, the

communication and connectivity layer provide the intermediate elements required in

terms of hardware and software to exchange data between the data center and the

network devices. For a detailed explanation of the different layers, refer to D6.1.

The following image shows the FRACTAL Edge Node processing architecture designed

in task T6.1:

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 11 of 149

Figure 2 FRACTAL Edge Node processing architecture designed in task T6.1

5.2 FRACTAL Edge Node processing architecture

implementation

The FRACTAL Edge Node processing architecture is the main input for this deliverable.

The validation test plan will be designed based on it to validate the correct

functionality of the Edge Node.

As it was mentioned before, the FRACTAL processing architecture was implemented

using open-source applications and following an architecture based on microservices,

which allows the Edge Node to have flexibility and scalability, as well as

interoperability between heterogeneous devices and applications. Figure 3 below

shows the FRACTAL Edge Node processing architecture implementation developed in

task T6.1. For further detail, refer to deliverable D6.1.

Figure 3 FRACTAL Edge Node processing architecture implementation developed in task T6.1

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 12 of 149

6 Validation tests implementation of the Edge Node

microservices to test connectivity functionalities.

This chapter presents the results of the implementation of the tests for connectivity

functionalities of the Edge Node. The first step, “Test planification” was done in the

previous deliverable D6.3. It is important to mention that not all tests foreseen in the

deliverable D6.3 were feasible to perform because the developments were not in the

scope of task T6.1.

The code provided for testing can be founded in this link: Code

6.1 Test case development

In this test case, the interoperability between different data technologies has been

evaluated. In order to understand the validations carried out, the whole test bed

prepared must be explained. The testbed architecture is shown in Figure 4.

Figure 4 FRACTAL Edge Node testbed architecture

In the proposed testbed, there are three main entities that is worth to be described

independently.

The so-called Node A has a data producer generating, in this case, the temperature

of a city every 3 seconds. This data is produced randomly (with values between 1

and 30) and sent to the MQTT Broker in the same node. This node has a bridge to

translate MQTT data to KAFKA. This will be one of the main entities under test.

On the other side, there is a so-called Node B that also has a bridge but, in this case,

to translate information between KAFKA and a SQL database. This bridge is

https://ikerlan.sharepoint.com/:f:/r/sites/FRACTAL_project/Documentos%20compartidos/WP6%20-%20CPS%20Communication%20Framework/Tasks/Task%206.1%20Edge%20node%20design%20and%20implementation%20HALTIAN%E2%80%8B/Demonstrations/Demo2/Code?csf=1&web=1&e=AgPFpV

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 13 of 149

bidirectional and will be the second main entity under test. This bridge has been

configured to retrieve temperature data from KAFKA to store it in the SQL database

and to periodically export the stored temperature value to another KAFKA topic.

Finally, there is the KAFKA INSTANCE that works as a central node to exchange

data between nodes. Connected to this KAFKA broker, there is a data consumer in

charge of reading information exchanged over the KAFKA broker to verify that the

testbed is working correctly.

As aforementioned, this testbed was designed to validate that intercommunication

between nodes is possible regardless of their differences in terms of technology.

The code of each entity is quite simple and is provided below for a better

understanding:

Figure 5 - MQTT data producer code

As can be seen in Figure 5, the data producer entity generates, every 3 seconds, a

random number between 1 and 30 and publish that value on the MQTT broker in the

topic temp_measured.

import paho.mqtt.client as mqtt

from random import randint

import time

MQTT Address

HOST = "localhost"

TOPIC = "temp_measured"

mqtt_client = mqtt.Client("Random_Generator")

mqtt_client.connect(HOST, 1883)

while True:

 randNumber = randint(1, 30)

 mqtt_client.publish(TOPIC, randNumber)

 print("Send a message to MQTT: " + str(randNumber) + " to topic " + TOPIC)

 time.sleep(3)

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 14 of 149

Figure 6 - Bridge MQTT-KAFKA code

As can be seen in Figure 6, the MQTT-KAFKA bridge performs a connection to Node

A’s MQTT broker, in which it subscribes to the topic temp_measured (the one in which

the data producer sends the generated data). On the other side, it also performs a

connection with the KAFKA broker. Each time the bridge receives new data on the

subscribed MQTT topic, it produces the same data of the KAFKA topic called

temp_on_data. This way, the data produced by the data producer is available over

MQTT within Node A (in MQTT’s topic temp_measured) and also over KAFKA from

other nodes (in KAFKA’s temp_on_kafka topic).

from kafka import KafkaProducer

import paho.mqtt.client as mqtt

import time

The Topic Name

MQTT_TOPIC = "temp_measured"

KAFKA_TOPIC = "temp_on_kafka"

The address of Kafka server

KAFKA_HOST = "127.0.0.1:29092"

Mqtt Address

MQTT_HOST = "localhost"

MQTT Settings

mqtt_client = mqtt.Client("BridgeMQTT2Kafka")

mqtt_client.connect(MQTT_HOST, 1883)

Kafka Settings

kafka_producer = KafkaProducer(bootstrap_servers=KAFKA_HOST)

def on_message(client, userdata, message):

 msg_payload = message.payload

 msg_payload = msg_payload.decode()

 print("Received MQTT message: ", msg_payload)

 kafka_producer.send(KAFKA_TOPIC, message.payload)

 print("Send the message: " + msg_payload + f" to Kafka with topic {KAFKA_TOPIC}!")

mqtt_client.loop_start()

mqtt_client.subscribe(MQTT_TOPIC)

mqtt_client.on_message = on_message

time.sleep(30000)

mqtt_client.loop_end()

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 15 of 149

import psycopg2

from kafka import KafkaConsumer

from kafka import KafkaProducer

import time

import threading

KAFKA Address

KAFKA_HOST = "127.0.0.1:29092"

PostgresSQL Settings

PS_DB_NAME = "ikerlan"

PS_USERNAME = "ikerlan"

PS_PASSWORD = "ikerlan"

PS_HOST = "localhost"

PS_PORT = 5432

The Topic Name

TOPIC_WT = "postgresql"

TOPIC_RD = "temp_on_kafka"

def send_to_kafka():

 # Kafka Settings

 kafka_producer = KafkaProducer(bootstrap_servers=KAFKA_HOST)

 # POSTGRESQL

 connection = psycopg2.connect(f"dbname={PS_DB_NAME} user={PS_USERNAME}

password={PS_PASSWORD} host={PS_HOST} port={PS_PORT}")

 cursor = connection.cursor()

 while True:

 cursor.execute("SELECT * FROM weather WHERE city = 'Oulu'")

 data = cursor.fetchall()

 for d in data:

 kafka_producer.send(TOPIC_WT, str(d[1]).encode())

 print("Sent the " + d[0] + " temperature " + str(d[1]) + f" to topic {TOPIC_WT}")

 time.sleep(1)

def fetch_from_kafka():

 # Kafka Settings

 kafka_consumer = KafkaConsumer(bootstrap_servers=KAFKA_HOST)

 kafka_consumer.subscribe(TOPIC_RD)

 # POSTGRESQL

 connection = psycopg2.connect(f"dbname={PS_DB_NAME} user={PS_USERNAME}

password={PS_PASSWORD} host={PS_HOST} port={PS_PORT}")

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 16 of 149

 cursor = connection.cursor()

 while True:

 for msg in kafka_consumer:

 data = msg.value.decode()

 cursor.execute("UPDATE weather SET temp = " + data + " WHERE city = 'Oulu'")

 connection.commit()

 print("Received city temperature: " + data)

if __name__ == "__main__":

 threading.Thread(target=send_to_kafka).start()

 fetch_from_kafka()

Figure 7 - Bridge SQL-KAFKA code

As aforementioned, SQL-KAFKA bridge was designed as a bidirectional bridge. In this

sense, it can be seen in the code (Figure 7) hat there are two threads, one in charge

of moving data from the KAFKA broker to the SQL database and a second thread in

charge of extracting data from SQL database and publishing it on KAFKA topic. The

thread in charge of getting data from KAFKA reads information from KAFKA’s topic

temp_on_kafka, and each time it receives data, it stores the received data in the

database. On the other side, the thread in charge of sending data to KAFKA reads

information from the database and sends it to KAFKA’s topic postgresql periodically.

At this point of the testbed’s explanation, it is possible to see that the data generated

by the data generator is available at these points:

• At MQTT level in Node A’s scope.

• At KAFKA level in KAFKA instance’s scope.

• At SQL level in Node B’s scope.

Moreover, the value stored in the database is also available for reading at KAFKA’s

scope.

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 17 of 149

Figure 8 - Data consumer code

Finally, as can be seen in Figure 8, the data consumer subscribes itself on KAFKA

broker to the topics temp_on_kafka and postgresql. It is a simple way to check that

data exported from Node A is correct and that data imported to Node B is also

successfully stored in the database and exported then to KAFKA again.

6.2 Test environment setup

For the simplicity of the test, all the testbed has been developed over a single node

using Docker. The node used for this purpose is described in Table 6:

OS Ubuntu 20.04 LTS

CPUs 2

RAM 4GB

Docker engine version 20.10.21

Python version 3.8

Table 2 – Testing node specifications

To run common entities of the testbed in an autonomous way, docker compose has

been used, Figure 9 shows the configuration for the automatic launching of MQTT,

KAFKA and SQL instances:

from kafka import KafkaConsumer

Address of the Kafka

HOST = "127.0.0.1:29092"

LIST OF THE TOPICS

topics_list = ["temp_on_kafka", "postgresql"]

consumer = KafkaConsumer(bootstrap_servers=HOST)

consumer.subscribe(topics_list)

for i in consumer:

 print("Message from topic: ", i.topic, "VALUE: ", i.value)

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 18 of 149

Figure 9 - Automatic launching of MQTT, KAFKA and SQL instances

This docker compose configuration launches:

• MQTT broker based on Mosquitto.

• KAFKA broker (which also requires Zookeeper).

• SQL database based on PostgreSQL.

version: "3"

services:

 mosquitto:

 image: eclipse-mosquitto:1.6.12

 ports:

 - 1883:1883

 zookeeper:

 image: confluentinc/cp-zookeeper:latest

 environment:

 ZOOKEEPER_CLIENT_PORT: 2181

 ZOOKEEPER_TICK_TIME: 2000

 ports:

 - 22181:2181

 kafka:

 image: confluentinc/cp-kafka:latest

 depends_on:

 - zookeeper

 environment:

 KAFKA_BROKER_ID: 1

 KAFKA_ZOOKEEPER_CONNECT: zookeeper:2181

 KAFKA_ADVERTISED_LISTENERS: PLAINTEXT://kafka:9092,PLAINTEXT_HOST://localhost:29092

 KAFKA_LISTENER_SECURITY_PROTOCOL_MAP: PLAINTEXT:PLAINTEXT,PLAINTEXT_HOST:PLAINTEXT

 KAFKA_INTER_BROKER_LISTENER_NAME: PLAINTEXT

 KAFKA_OFFSETS_TOPIC_REPLICATION_FACTOR: 1

 ports:

 - 29092:29092

 - 9092:9092

 postgres:

 image: postgres

 environment:

 POSTGRES_PASSWORD: ikerlan

 POSTGRES_USER: ikerlan

 POSTGRES_DB: ikerlan

 ports:

 - 5432:5432

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 19 of 149

6.3 Test execution

The first step to execute the test, is running the docker compose configuration with

basic services as it is shown in Figure 10:

Figure 10 - Run common services

Now that we have MQTT, KAFKA and PostgreSQL running, the next step is to run the

data producer (Figure 11):

Figure 11 - Run data producer

Now that we have data in Node A’s MQTT broker, it is time to run the bridge that

exports this data to KAFKA’s scope (Figure 12):

Figure 12 - Run MQTT-KAFKA bridge

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 20 of 149

With the data in KAFKA’s scope, it is time to run the bridge (Figure 13) that imports

such data into SQL scope and also exports databased stored information into KAFKA’s

scope:

Figure 13 - Run SQL-KAFKA bridge

At this point, the only missing entity to run is the data consumer (Figure 14), which

is, in turn, the entity that allows us to validate that the data pipeline is working

correctly:

Figure 14 - Run data consumer

Now that we have all the entities involved in the test up and running, it is time to

validate that the data workflow is the expected one. For this task, capture of all

entities generating/moving data is presented in order to analyse it:

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 21 of 149

Figure 15 - Testbed data analysis

As can be seen in the results above (Figure 15), each data generated by the data

producer is received by MQTT-KAFKA bridge and forwarded to KAFKA. This forwarded

data is received by the SQL-KAFKA bridge and stored into the SQL database. Finally,

the value stored in the database is retrieved every second and sent to the KAFKA

broker. At the consumer level, it is possible to validate that the value retrieved from

MQTT and the one retrieve from SQL are ok.

The scripts used to perform these validation tests are not exactly the same as the

received ones (from task T6.1). Some adaptations were necessary, but the

fundamental idea of the tests can be carried out to validate that data exchange

Data producer

MQTT-KAFKA bridge

SQL-KAFKA bridge

Data consumer

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 22 of 149

mechanism designed in the project is viable and usable. Therefore, the tests are

considered passed.

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 23 of 149

7 FRACTAL Edge Controller review

This chapter briefly describes the FRACTAL Edge Controller architecture implemented

in task T6.2, which focuses on the development of a communication and system

monitoring component to optimize the overall system resources of a group of

FRACTAL nodes. Therefore, it is an open-source software component to provide the

Edge platform with self-orchestration and independence mechanisms at various

levels. Figure 5 shows a diagram with the architecture of the Edge Controller designed

in Task T6.2. For more detailed information on the Edge Controller design and

implementation, refer to the deliverable D6.2.

Figure 16: Multi-node Edge Controller architectural design (designed in task T6.2)

The main inputs to Task T6.2 are the following eigth components:

1. WP6T62-06 Orchestration (Edge Controller)

2. WP6T62-06 Orchestration (Agent Nodes Controller)

3. WP6T62-03 Run time Manager

4. WP6T62-01 Data Ingestion

5. WP6T62-0W MQTT Cloud comm. System --> Merged into Data Ingestion

6. WP6T62-02 Federated Data Collection

7. WP6T62-06 Low-end node orchestrator

8. WP6T62-0X Hardware Edge Controller

Through chapter 8, the validation report of each component will be presented. Here

is a summary of each component:

WP6T62-06 Orchestration (Edge Controller)

The Edge Controller is an autonomous orchestrator for containers to support K8S,

Docker, or orchestrator-less Fractal nodes.

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 24 of 149

WP6T62-06 Orchestration (Agent Nodes Controller)

The Agent Nodes Controller is part of the orchestration and is an add-on to the Edge

Controller that provides Edge Nodes with the ability to orchestrate tasks and assign

them to available nodes.

WP6T62-03 Run time Manager

The Runtime Manager is a component developed to coordinate and manage task

scheduling and load balancing operations between modules in one or more fractal

nodes at runtime. The purpose of the Runtime Manager is to enable communication

and data dispatch among the various components installed on the node, and to

manage the load balancing operations, when needed, by assigning the execution of

the activities to a different instance of the Runtime Manager module installed on

another node.

WP6T62-01 Data Ingestion

The Data Ingestion component provides data ingestion and data streaming

processing tools for the High-End and Mid-End Fractal nodes.

WP6T62-0W MQTT Cloud comm. System

This component is part of the WP6T62-01 Data Ingestion component.

WP6T62-02 Federated Data Collection

The federated Data Collection component provides data storage capabilities for the

Fractal High-End and Mid-End nodes.

WP6T62-06 Low-end node orchestrator

As a result of WP3, Nuttx RTOS was ported to the PULP low-end systems to offer a

Posix completable application environment and reported in D3.6. In WP6 an IoT Hub

was integrated into the Nuttx. In this way, nodes connect to the cloud, where they

are orchestrated based on their identity.

WP6T62-0X Hardware Edge Controller

The hardware Edge Controller based on a network-on-chip (NoC) multicore

architecture was developed in WP4 and reported in D4.4. It supports heterogeneous

cores connected via NoC. In order to allow multiple nodes communication within WP6,

one of the NoC cores was devoted to function as a hardware gateway controller. It

allows communication between on-chip and off-chip network, as described in D6.2.

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 25 of 149

8 Validation test plan and implementation of the Edge

Controller

This section will be dedicated to the definition of the validation tests and their

implementation for the validation of the Edge Controller and the components

implemented in task T6.2. For further information on each component, refer to D6.2

and components from task T6.2 in the FRACTAL GitHub repository. In addition, to

facilitate the reading of this section a complete overview of each test can be found in

the Annexes (chapter 14).

8.1 Orchestration (Edge Controller)

According to D6.2, the main functionality of this component is to monitor (separately)

the status of “n” number of nodes where it is deployed. It is in charge of collecting

all the resources information inside each of the Fractal nodes and was designed

following a modular design. This software is composed of two main modules: the

metrics exporter and the resource manager. These modules are managed by the

custom Edge Orchestrator, which is designed to modify and take actions on both

Kubernetes and Docker nodes, as well as user-defined orchestrators, by using the

information from the metrics-exporter.

It is based on the architecture illustrated in Figure 5.

8.1.1 Test planification

8.1.1.1 Define the testing scope and identify the functionality that needs to

be tested

Since this component and the next one (WP6T62-06-mid-range-orchestration “Agent

Nodes Controller”) has the same code but were delivered as individual components

in different repositories, we have differentiated their tests by adding EC (e.g.

T01_WP6T62-06_EC) when it comes to Edge Controller and ANC (e.g. T01_WP6T62-

06_ANC) when it comes to Agent Nodes Controller.

After careful study of this component, 4 test cases have been identified, which can

be carried out.

1. Installation.

2. Validate if the master node can monitor several (2) workers' nodes.

3. Validate through the REST API if the “metrics exporter” is working properly.

4. Test how the resource manager behaves if the nodes are stressed.

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 26 of 149

a) T01_WP6T62-06_EC - Testing the installation of the component

Table 3 - Validation Test T01_WP6T62-06_EC

b) T02_WP6T62-06_EC - Testing if the master node can monitor several (2)

workers' nodes

Table 4 - Validation Test T02_WP6T62-06_EC

c) T03_WP6T62-06_EC - Testing through the REST API if the metrics

exporter is working properly

Table 5 - Validation Test T03_WP6T62-06_EC

d) T04_WP6T62-06_EC - Testing how the resource manager behaves if the

nodes are stressed

Table 6 - Validation Test T04_WP6T62-06_EC

Test ID T01_WP6T62-06_EC

Test type Functional-Installation

Test name Testing the installation of the component

Date 15/11/2022

Tester's Name Ana Bautista

Validation test

Test scope or objective

The objective of this test is to validate if the Edge Controller Orchestrator can be installed without any issues.

Test ID T02_WP6T62-06_EC

Test type Functional

Test name Testing if the master node can monitor several (2) workers' nodes

Date 20/01/2023

Tester's Name Ana Bautista

Validation test

Test scope or objective
The objective of this test is to validate if the master node can monitor two workers' nodes.

Test ID T03_WP6T62-06_EC

Test type Functional

Test name Testing through the REST API if the metrics exporter is working properly

Date 15/11/2022

Tester's Name Ana Bautista

Validation test

Test scope or objective
The objective of this test is to validate through the REST API if the metrics exporter is working properly.

Test ID T04_WP6T62-06_EC

Test type Functional

Test name Testing how the resource manager behaves if the nodes are stressed

Date 15/11/2022

Tester's Name Ana Bautista

Validation test

Test scope or objective
The objective of this test is to observe how the resource manager behaves if the nodes are stressed.

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 27 of 149

8.1.2 Test case development

In this section, the steps to be followed to carry out the validation tests for the Edge

Controller were identified.

8.1.2.1 T01_WP6T62-06_EC - Testing the installation of the component

Table 7 - Steps for Validation Test T01_WP6T62-06_EC

8.1.2.2 T02_WP6T62-06_EC - Testing if the master node can monitor

several (2) workers' nodes

Table 8 - Steps for Validation Test T02_WP6T62-06_EC

8.1.2.3 T03_WP6T62-06_EC - Testing through the REST API if the metrics

exporter is working properly

Table 9 - Steps for Validation Test T03_WP6T62-06_EC

Step 1 Prepare a node with Ubuntu and all needed dependencies (Python). This will be the master node.

Step 2 Deploy the metrics exporter container.

Step 3 Deploy the resource manager container.

Step 4 Deploy the custom orchestrator container.

Steps

Step 1 Prepare a node with Ubuntu and all needed dependencies (Python). This will be the master node.

Step 2 Deploy the metrics exporter container.

Step 3 Deploy the resource manager container.

Step 4 Deploy the custom orchestrator container.

Step 5
Prepare tow nodes with Ubuntu and all needed dependencies (Python). These will be the worker's

nodes.

Step 6 Deploy the metrics exporter container on each of the worker nodes.

Step 7 Review the logs from the resource manager (deployed on the master node).

Steps

Step 1 Prepare a node with Ubuntu and all needed dependencies (Python). This will be the master node.

Step 2 Deploy the metrics exporter container.

Step 3 Deploy the resource manager container.

Step 4 Deploy the custom orchestrator container.

Step 5
Prepare tow nodes with Ubuntu and all needed dependencies (Python). These will be the worker's

nodes.

Step 6 Deploy the metrics exporter container on each of the worker nodes.

Step 7 Go to: http://<NODE_IP>:61208/api/3/cpu

Steps

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 28 of 149

8.1.2.4 T04_WP6T62-06_EC - Testing how the resource manager behaves if

the nodes are stressed

Table 10 - Steps for Validation Test T04_WP6T62-06_EC

8.1.3 Test environment setup

The steps to install and configure the component can be found in the FRACTAL project

GitHub repository: https://github.com/project-fractal/WP6T62-06-edge-controller-

orchestrator

8.1.4 Test execution

The following tables showthe results of the execution of each of the tests.

Some issues that were detected during the testing process are reported in remarks

and some of them were already solved by developers.

Step 1 Prepare a node with Ubuntu and all needed dependencies (Python). This will be the master node.

Step 2 Deploy the metrics exporter container.

Step 3 Deploy the resource manager container.

Step 4 Deploy the custom orchestrator container.

Step 5 Prepare tow nodes with Ubuntu and all needed dependencies (Python). These will be the worker's nodes.

Step 6 Deploy the metrics exporter container on each of the worker nodes.

Step 7 Install stress-ng on one of the worker nodes.

Step 8 Execute the command stress-ng --cpu 8 --timeout 60s which will stress the node for 60 seconds.

Step 9 Review the logs from the resource manager (deployed on the master node).

Step 10 Check the alerts and the metrics in the logs of the resource manager.

Steps

https://github.com/project-fractal/WP6T62-06-edge-controller-orchestrator
https://github.com/project-fractal/WP6T62-06-edge-controller-orchestrator

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 29 of 149

8.1.4.1 T01_WP6T62-06_EC - Testing the installation of the component

Table 11 - Results of the test T01_WP6T62-06_EC

No error messages/All partial results are as expected

Test configuration https://github.com/project-fractal/WP6T62-06-edge-controller-orchestrator

Test conditions
The metrics exporter, resource manager and custom orchestrator containers runs in the same node

(master node).

Two bugs were found during installation that have been reported and corrected by the

developers.

1. apt-get update no longer works on containers with Ubuntu21.10 so we need to use Ubuntu22.04.

2. The import 'aux_func' was corrected.

Success criteria

Test observations

Test result

 Passed

Results/Evidence

Remarks

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 30 of 149

8.1.4.2 T02_WP6T62-06_EC - Testing if the master node can monitor

several (2) workers' nodes

Table 12 - Results of the test T02_WP6T62-06_EC

No error messages/All partial results are as expected

Test configuration https://github.com/project-fractal/WP6T62-06-edge-controller-orchestrator

Test conditions
The metrics exporter, resource manager and custom orchestrator containers run in the master node.

The metrics exporter runs in the two worker's nodes.

Remarks
Reviewing the logs from the resource manager it can be observed that the information from the

worker's nodes is given in the right way (as expected).

Master node:

Worker node 1:

Worker node 2:

Results/Evidence

Success criteria

Test observations

Test result

 Passed

Review logs from the resorce manager:

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 31 of 149

8.1.4.3 T03_WP6T62-06_EC - Testing through the REST API if the metrics

exporter is working properly

Table 13 - Results of the test T03_WP6T62-06_EC

No error messages/All partial results are as expected

Test configuration https://github.com/project-fractal/WP6T62-06-edge-controller-orchestrator

Test conditions
The metrics exporter, resource manager and custom orchestrator containers run in the master node.

The metrics exporter runs in the two worker's nodes.

Remarks
The REST API exposed by the custom orchestrator is reached by the resource manager and provides

information about the nodes previously configured (as expected).

Success criteria

Test observations

Test result

 Passed

Results/Evidence

Master node:

Worker node 1:

Worker node 2:

NODE_IP

NODE_IP

NODE_IP

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 32 of 149

8.1.4.4 T04_WP6T62-06_EC - Testing how the resource manager behaves if

the nodes are stressed

Table 14 - Results of the test T04_WP6T62-06_EC

No error messages/All partial results are as expected

Test configuration https://github.com/project-fractal/WP6T62-06-edge-controller-orchestrator

Test conditions

The metrics exporter, resource manager and custom orchestrator containers run in the master node.

The metrics exporter runs in the two worker's nodes.

The node called fractal-k8s0.ipd.ikerlan.es is the node that was stressed.

Remarks

As it can be observed in the "Results 1" screenshot: when the CPU usage of a node is over 80% it is considered

as tainted (low on resources and restricted) as NoSchedule. According to the component documentation, if

any of the monitored resources are above some fixed thresholds, that node is no longer able to perform any

new container deployments until the resource limitation is lifted.

Success criteria

Test observations

Test result

 Passed

Results/Evidence

Master node:

Stressed worker node: fractal-k8s0.ipd.ikerlan.es

Results 1:

Stressed worker node: fractal-k8s0.ipd.ikerlan.es

Worker node: fractal-k8s1.ipd.ikerlan.es

 Results 2:

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 33 of 149

8.2 Orchestration (Agent Nodes Controller)

This component is part of the Edge Controller, so it has to do with orchestration, in

this case of “tasks”. The name of this component is WP6T62-06-mid-range-

orchestration and according to the developers’ documentation, this software

consists of three main components based on the architecture illustrated in Figure

176:

Figure 17: WP6T62-06-mid-range-orchestration architecture (designed in task T6.2)

The main functionality of this component is to orchestrate tasks execution on the

available “Executor Nodes”. For more details on how this component works, see the

D6.2 deliverable and the GitHub repository https://github.com/project-

fractal/WP6T62-06-mid-range-orchestration.

8.2.1 Test planification

8.2.1.1 Define the testing scope and identify the functionality that needs to

be tested

After careful study of this component, 6 test cases have been identified, which can

be carried out.

1. Installation.

2. Basic orchestration functionality.

3. Validate that a running task can be deleted.

4. Validate that a running task can be stopped and started again.

5. Validate that running multiple tasks is possible and list their state.

6. Validate the behaviour of the orchestrator with multiple Executor Nodes.

https://github.com/project-fractal/WP6T62-06-mid-range-orchestration
https://github.com/project-fractal/WP6T62-06-mid-range-orchestration

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 34 of 149

a) T01_WP6T62-06_ANC - Testing that the Agent Nodes Controller can be

installed without any issues

Table 15 - Validation Test T01_WP6T62-06_ANC

b) T02_WP6T62-06_ANC - Testing basic orchestration functionality.

Table 16 - Validation Test T02_WP6T62-06_ANC

c) T03_WP6T62-06_ANC - Testing that a running task can be deleted

Table 17 - Validation Test T03_WP6T62-06_ANC

d) T04_WP6T62-06_ANC - Testing that a running task can be stopped and

started again

Table 18 - Validation Test T04_WP6T62-06_ANC

Test ID T01_WP6T62-06_ANC

Test type Functional

Test name Testing that the Agent nodes controller can be installed without any issues

Date 20/01/2023

Tester's Name Ana Bautista, Adrian Moran

Validation test

Test scope or objective

The objective of the test is to validate if the Agent nodes controller can be installed without any issues.

Test ID T02_WP6T62-06_ANC

Test type Functional

Test name Testing WP6T62-06-mid-range-orchestration component

Date 09/02/2023

Tester's Name Ana Bautista, Adrian Moran

Validation test

Test scope or objective

The objective of the test is validate basic orchestration functionality.

Test ID T03_WP6T62-06_ANC

Test type Functional

Test name Testing WP6T62-06-mid-range-orchestration component

Date 09/02/2023

Tester's Name Ana Bautista, Adrian Moran

Validation test

Test scope or objective

The objective of the test is validate that a running task can be deleted.

Test ID T04_WP6T62-06_ANC

Test type Functional

Test name Testing WP6T62-06-mid-range-orchestration component

Date 09/02/2023

Tester's Name Ana Bautista, Adrian Moran

Validation test

Test scope or objective

The objective of the test is validate that a running task can be stopped and started again.

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 35 of 149

e) T05_WP6T62-06_ANC - Testing that a running multiple tasks is possible and

list their state

Table 19 - Validation Test T05_WP6T62-06_ANC

f) T06_WP6T62-06_ANC - Testing the behaviour of the orchestrator with

multiple Executor Nodes

Table 20 - Validation Test T06_WP6T62-06_ANC

8.2.2 Test case development

In this section, the steps to be followed to carry out the validation tests for the Agent

Nodes Controller were identified.

8.2.2.1 T01_WP6T62-06_ANC - Testing that the Agent Nodes Controller can

be installed without any issues

Table 21 - Steps for Validation Test T01_WP6T62-06_ANC

8.2.2.2 T02_WP6T62-06_ANC - Testing basic orchestration functionality

Table 22 - Steps for Validation Test T02_WP6T62-06_ANC

Test ID T05_WP6T62-06_ANC

Test type Functional

Test name Testing WP6T62-06-mid-range-orchestration component

Date 09/02/2023

Tester's Name Ana Bautista, Adrian Moran

Validation test

Test scope or objective

The objective of the test is validate that a running multiple tasks is possible and list their state.

Test ID T06_WP6T62-06_ANC

Test type Functional

Test name Testing WP6T62-06-mid-range-orchestration component

Date 09/02/2023

Tester's Name Ana Bautista, Adrian Moran

Validation test

Test scope or objective

The objective of the test is validate the behaviour of the orchestrator with multiple Executor Nodes.

Step 1 Prepare a node with Ubuntu and all needed dependencies (Python).

Step 2 Launch backend-service-manager (Service Manager).

Step 3 Launch API Server.

Step 4 Launch frontend-service-manager (Executor Node).

Steps

Step 1 Prepare a node with Ubuntu and all needed dependencies (Python).

Step 2 Launch backend-service-manager (Service Manager).

Step 3 Launch API Server.

Step 4 Launch frontend-service-manager (Executor Node).

Step 5 From a different device, use REST API to create a new task.

Steps

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 36 of 149

8.2.2.3 T03_WP6T62-06_ANC - Testing that a running task can be deleted

Table 23 - Steps for Validation Test T03_WP6T62-06_ANC

8.2.2.4 T04_WP6T62-06_ANC - Testing that a running task can be stopped

and started again

Table 24 - Steps for Validation Test T04_WP6T62-06_ANC

8.2.2.5 T05_WP6T62-06_ANC - Testing that a running multiple tasks is

possible and list their state

Table 25 - Steps for Validation Test T05_WP6T62-06_ANC

8.2.2.6 T06_WP6T62-06_ANC - Testing the behaviour of the orchestrator

with multiple Executor Nodes

Table 26 - Steps for Validation Test T06_WP6T62-06_ANC

8.2.3 Test environment setup

The steps to install and configurate the component can be found in the FRACTAL

project repository: https://github.com/project-fractal/WP6T62-06-mid-range-

orchestration

Step 1 Prepare a node with Ubuntu and all needed dependencies (Python).

Step 2 Launch backend-service-manager (Service Manager).

Step 3 Launch API Server.

Step 4 Launch frontend-service-manager (Executor Node).

Step 5 From a different device, use REST API to create a new task and delete it.

Steps

Step 1 Prepare a node with Ubuntu and all needed dependencies (Python).

Step 2 Launch backend-service-manager (Service Manager).

Step 3 Launch API Server.

Step 4 Launch frontend-service-manager (Executor Node).

Step 5 From a different device, use REST API to create a new task, stop and then start it.

Steps

Step 1 Prepare a node with Ubuntu and all needed dependencies (Python).

Step 2 Launch backend-service-manager (Service Manager).

Step 3 Launch API Server.

Step 4 Launch frontend-service-manager (Executor Node).

Step 5 From a different device, use REST API to create a new tasks.

Steps

Step 1 Prepare a node with Ubuntu and all needed dependencies (Python).

Step 2 Launch backend-service-manager (Service Manager).

Step 3 Launch API Server.

Step 4 Launch two instances of frontend-service-manager (Executor Node).

Step 5 From a different device, use REST API to create two simultaneous tasks.

Steps

https://github.com/project-fractal/WP6T62-06-mid-range-orchestration
https://github.com/project-fractal/WP6T62-06-mid-range-orchestration

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 37 of 149

8.2.4 Test execution

The following tables show the results of the execution of each of the tests.

Some issues that were detected during the testing process are reported in remarks

and were also reported as feedback to developers.

8.2.4.1 T01_WP6T62-06_ANC - Testing that the Agent Nodes Controller can

be installed without any issues

Table 27 - Results of the test T01_WP6T62-06_ANC

Test configuration https://github.com/project-fractal/WP6T62-06-mid-range-orchestration

Test conditions API Server, Service Manager and Executor Node runs in the same node.

Remarks All the subcomponents are up and running.

Results/Evidence

Success criteria

Test observations

Test result

 Passed

No error messages/All partial results are as expected

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 38 of 149

8.2.4.2 T02_WP6T62-06_ANC - Testing basic orchestration functionality

Table 28 - Results of the test T02_WP6T62-06_ANC

8.2.4.3 T03_WP6T62-06_ANC - Testing that a running task can be deleted

Table 29 - Results of the test T03_WP6T62-06_ANC

Test configuration https://github.com/project-fractal/WP6T62-06-mid-range-orchestration

Test conditions API Server, Service Manager and Executor Node runs in the same node.

Remarks Basic workflow is completed successfully.

Success criteria

No error messages/All partial results are as expected

Test observations

Test result

 Passed

Client:

API:

Executor Node:

Results/Evidence

Test configuration https://github.com/project-fractal/WP6T62-06-mid-range-orchestration

Test conditions API Server, Service Manager and Executor Node runs in the same node.

Task is deleted from API Server repository succesfully.

Deleted task is not deleted from Executor node .tasks folder, which can lead to problems

like lack of storage or DoS attacks.

Client:

API:

Results/Evidence

Success criteria

No error messages/All partial results are as expected

Test observations

Test result

 Passed

Remarks

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 39 of 149

8.2.4.4 T04_WP6T62-06_ANC - Testing that a running task can be stopped

and started again

Table 30 - Results of the test T04_WP6T62-06_ANC

Test configuration https://github.com/project-fractal/WP6T62-06-mid-range-orchestration

Test conditions API Server, Service Manager and Executor Node runs in the same node.

Remarks Task lifecycle in correctly handled.

Client:

API:

Executor Node:

Results/Evidence

Success criteria

No error messages/All partial results are as expected

Test observations

Test result

 Passed

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 40 of 149

8.2.4.5 T05_WP6T62-06_ANC - Testing that a running multiple tasks is

possible and list their state

Table 31 - Results of the test T05_WP6T62-06_ANC

Test configuration https://github.com/project-fractal/WP6T62-06-mid-range-orchestration

Test conditions API Server, Service Manager and Executor Node runs in the same node.

It is possible to list the tasks.

It is possible to add multiple tasks and get their status.

A bug has occured generating two task, one named "test" and other one named "test2".

Executor Node computes the execution path from name, and since it does not deletes the old

tasks, this leads to failure:

This way of computing task_dir is bugged. If the same node has executed in their lifetime a tasks

called "test" and "test2", there won't be any chance of running "test" task, since this piece of code

will always select last "test2-timestamp" folder:

Client:

API:

Results/Evidence

Success criteria

No error messages/All partial results are as expected

Test observations

Test result

 Not passed

Remarks

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 41 of 149

8.2.4.6 T06_WP6T62-06_ANC - Testing the behaviour of the orchestrator

with multiple Executor Nodes

Table 32 - Results of the test T06_WP6T62-06_ANC

Test configuration https://github.com/project-fractal/WP6T62-06-mid-range-orchestration

Test conditions API Server, Service Manager and Executor Node runs in the same node.

Remarks Multiple nodes works fine.

Client:

API:

Executor Node 1:

Executor Node 2:

Results/Evidence

Success criteria

No error messages/All partial results are as expected

Test observations

Test result

 Passed

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 42 of 149

8.3 Runtime Manager

The Runtime Manager coordinates and manages task scheduling and load balancing

operation between modules in one or more FRACTAL nodes at runtime. It performs

the scheduling of various operations which are entirely configurable. In addition, it

provides load balancing capabilities using the interface with the Load Balancer

component, sending the task execution to a different node.

8.3.1 Test planification

In this section Runtime Manager functionalities are defined as per D6.2 and, for each

function, test cases are defined. We will have three test cases for the first function

and two test cases for the second one.

8.3.1.1 Define the testing scope and identify the functionality that needs to

be tested

The functionality that was identified for the Runtime Manager Component that needs

to be tested are related to how to distribute the computational load and the task

scheduling, they were defined as follows:

1. The Runtime Manager mustbe able to distribute the computational load;

2. Execution of configured task related to the task scheduling.

For the first functioningthree test cases are defined and shown below:

a) T01_WP6T62-03 - Testing interaction between nodes with local node

overloaded

Table 33 - Validation Test T01_WP6T62-03

b) T02_WP6T62-03 - Testing interaction in the local node when the local node

can perform the computation

Table 34 - Validation Test T02_WP6T62-03

Test ID T01_WP6T62-03

Test type Functional

Test Name Testing interaction between nodes with local node overloded

Date 05/12/2022

Tester's Name Luca Visconti (Modis Consulting SRL)

Validation test

Test scope or objective

The objective of this test is to validate the correct interaction and data exchange between nodes

Test ID T02_WP6T62-03

Test type Functional

Test Name Testing interaction in the local node when the local node can perform the computation

Date 05/12/2022

Tester's Name Luca Visconti (Modis Consulting SRL)

Validation test

Test scope or objective

The objective of this test is to validate the correct interaction and data exchange in the local node

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 43 of 149

c) T03_WP6T62-03 - Testing interaction between nodes with Node 1 and Node

2 overloaded

Table 35 - Validation Test T03_WP6T62-03

For the second functioning there are defined two test cases that are shown below:

d) T04_WP6T62-03 - Task Scheduling on the local node

Table 36 - Validation Test T04_WP6T62-03

e) T05_WP6T62-03 - Task Scheduling on the remote node

Table 37 - Validation Test T05_WP6T62-03

8.3.2 Test case development

All test cases are based on the same architecture. The test environment is presented

in detail in section 8.3.3.

There are three nodes and a Runtime Manager on each node (“RMx” on node “Nx”).

N1, the local node, is on a Xilinx board, N2 and N3, the remote nodes are virtual

machines.

Test ID T03_WP6T62-03

Test type Functional

Test Name Testing interaction between nodes with Node 1 and Node 2 overloaded

Date 05/12/2022

Tester's Name Luca Visconti (Modis Consulting SRL)

Validation test

Test scope or objective

The objective of this test is to validate the correct interaction and data exchange between nodes

Test ID T04_WP6T62-03

Test type Functional

Test Name Task Scheduling on the local node

Date 05/12/2022

Tester's Name Luca Visconti (Modis Consulting SRL)

Validation test

Test scope or objective

The objective of this test is to validate the correct execution of the Task in the local node

Test ID T05_WP6T62-03

Test type Functional

Test Name Task Scheduling on the remote node

Date 05/12/2022

Tester's Name Luca Visconti (Modis Consulting SRL)

Validation test

Test scope or objective

The objective of this test is to validate the correct execution of the tasks in the remote node

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 44 of 149

Figure 18 - Node interconnection

8.3.2.1 T01_WP6T62-03 - Testing interaction between nodes with local

node overloaded

Step 1: Create the condition that overload the Node 1

For the overload condition of the N1 node, a simple "While True" cycle was executed

on the python interpreter. This occupies resources at the node’s processor. This

procedure needs to be repeated until the processor is not overloaded (>85%). The

procedure is described as follows:

- Open the command prompt of the N1 nodes and execute the following

line:

▪ python3 #to open the python interpreter

▪ while True: #infinite cycle

print(1)

As it is possible to notice in the table (using the htop command) the overload

condition is verified and the node is in an overloaded state.

Step 2: Send the command of the execution flow to RM1 running

"test_mqtt_published.py"

Expected Results: having generated the overload condition for the N1 node, RM1 will

ask at Load Balancer instances which of the nodes can perform the workflow. The

load balancer will respond with {“id_node”:2}. RM1 will direct the workflows to the

N2 node as shown in the figures below.

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 45 of 149

Table 38 - Steps for Validation Test T01_WP6T62-03

8.3.2.2 T02_WP6T62-03 - Testing interaction in the local node when the

local node can perform the computation

Step 1: Send the command of the execution flow to RM1 running

"test_mqtt_published.py"

Expected Result: Having not generated the overload condition for N1 nodes, it will be

to execute the computational load locally. RM1 will ask at load balancer instance what

is the node that can execute the computational load, the load balancer respond with

{“id_node”: none}. RM1 will execute the flows on the node N1 as shown below in the

figure.

Table 39 – Steps for Validation Test T02_WP6T62-03

8.3.2.3 T03_WP6T62-03 - Testing interaction between nodes with Node 1

and Node 2 overloaded

Step 1: Create the condition that overload the Node 1

For the overload condition of the N1 node, it was executed some simple “while True”

cycles on the python interpreter. This occupies resources at the node’s processor.

This procedure needs to be repeated until the processor is not overloaded. The

procedure is described as follows:

- Open the command prompt of the N1 nodes and execute the following

line:

▪ python3 #to open the python interpreter

▪ while True: #infinite cycle

print(1)

As is possible to notice in the table (using the htop command), the overload condition

(>85%) is verified and the node is to be in an overloaded state.

Step 1 Create the condition that overload the Node 1

Step 2 Send the command of the execution flow to RM1 running "test_mqtt_published.py"

Steps

Step 1 Send the command of the execution flow to RM1 running "test_mqtt_published.py"

Steps

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 46 of 149

Step 2: Create the condition that overload the Node 2

In the same way as Node N1, - has been performed the overload condition on Node

N2.

Step 3: Send the command of the execution flow to RM1 running

"test_mqtt_published.py"

Expected Results: having generated the overload condition for the N1 and N2 nodes,

RM1 will ask at Load Balancer instances which of the nodes can perform the workflow.

The load balancer will respond with {“id_node”:3}. RM1 will direct the workflows to

the N3 node as shown in the table.

Table 40 – Steps for Validation Test T03_WP6T62-03

8.3.2.4 T04_WP6T62-03 - Task Scheduling on the local node

Step 1: Send the command of the execution flow “1” to RM1 running

“test_mqtt_published.py” with “id_flow=1”.

Flow 1, as described in the configuration file “flows.conf”, provides the following

information:

Figure 19 - Runtime Manager Flow 1

Expected Results: N1 executes correctly the flow 1 compared to configuration files.

N1 receives the json message with “id_flow” and “payload” information, in particular

“id_flow=1”, it takes and executes the flow with the same id within the configuration

file “flows.conf”.

Step 2: Send the command of the execution flow “2” to RM1 running

“test_mqtt_published.py” with “id_flow=2”.

Step 1 Create the condition that overload the Node 1

step 2 Create the condition that overload the Node 2

Step 3 Send the command of the execution flow to RM1 running "test_mqtt_published.py"

Steps

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 47 of 149

Flow 2, as described in the configuration file “flows.conf”, provides the following

information:

Figure 20 - Runtime Manager Flow 2

Expected Results: N1 executes correctly the flow 2 compared to configuration files.

N1 receives the json message with “id_flow” and “payload” information, in particular

“id_flow=2”, it takes and executes the flow with the same id within the configuration

file “flows.conf”.

Step 3: Send the command of the execution flow “3” to RM1 running

“test_mqtt_published.py” with “id_flow=3”.

Flow 3, as described in the configuration file “flows.conf”, provides the following

information:

Figure 21 - Runtime Manager Flow 3

Expected Results: N1 executes correctly the flow 3 compared to configuration files.

N1 receives the json message with “id_flow” and “payload” information, in particular

“id_flow=3”, it takes and executes the flow with the same id within the configuration

file “flows.conf”.

Table 41 – Steps for Validation Test T04_WP6T62-03

Step 1 Send the command of the execution flow “1” to RM1 running “test_mqtt_published.py” with

“id_flow=1”.

Step 2 Send the command of the execution flow “2” to RM1 running “test_mqtt_published.py” with

“id_flow=2”.

Step 3 Send the command of the execution flow “3” to RM1 running “test_mqtt_published.py” with

“id_flow=3”.

Steps

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 48 of 149

8.3.2.5 T05_WP6T62-03 - Task Scheduling on the remote node

Step 1: Create the condition that overload the Node 1

For the overload condition of the N1 node, it was executed some simple “while True”

cycles on the python interpreter. This occupies resources at the node’s processor.

This procedure needs to be repeated until the processor is not overloaded (>85%).

The procedure is described as follows:

- Open the command prompt of the N1 nodes and execute the following

line:

▪ python3 #to open the python interpreter

▪ while True: #infinite cycle

print(1)

As is possible to notice in the table (using the htop command), the overload condition

is verified and the node is to be in an overloaded state.

Step 1: Send the command of the execution flow “1” to RM1 running

“test_mqtt_published.py” with “id_flow=1”.

Flow 1, as described in the configuration file “flows.conf”, provides the following

information:

Figure 22 - Runtime Manager Flow 1

Expected Results: having generated the overload condition for the N1, RM1 will ask

at Load Balancer instances which of the nodes can perform the workflow. The load

balancer will respond with {“id_node”: 2}. RM1 will direct the workflows to the N2

node as shown in the table. N2 executes correctly the flow 1 compared to

configuration files. N2 receives the json message with “id_flow” and “payload”

information, in particular “id_flow=1”, it takes and executes the flow with the same

id within the configuration file “flows.conf”.

Step 2: Send the command of the execution flow “2” to RM1 running

“test_mqtt_published.py” with “id_flow=2”.

Flow 2, as described in the configuration file “flows.conf”, provides the following

information:

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 49 of 149

Figure 23- Runtime Manager Flow 2

Expected Results: having generated the overload condition for the N1, RM1 will ask

at Load Balancer instances which of the nodes can perform the workflow. The load

balancer will respond with {“id_node”: 2}. RM1 will direct the workflows to the N2

node as shown in the table. N2 executes correctly the flow 2 compared to

configuration files. N2 receives the json message with “id_flow” and “payload”

information, in particular “id_flow=2”, it takes and executes the flow with the same

id within the configuration file “flows.conf”.

Step 3: Send the command of the execution flow “3” to RM1 running

“test_mqtt_published.py” with “id_flow=3”.

Flow 3, as described in the configuration file “flows.conf”, provides the following

information:

Figure 24 - Runtime Manager Flow 3

Expected Results: having generated the overload condition for the N1, RM1 will ask

at Load Balancer instances which of the nodes can perform the workflow. The load

balancer will respond with {“id_node”: 2}. RM1 will direct the workflows to the N2

node as shown in the table. N2 executes correctly the flow 3 compared to

configuration files. N2 receives the json message with “id_flow” and “payload”

information, in particular “id_flow=3”, it takes and executes the flow with the same

id within the configuration file “flows.conf”.

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 50 of 149

Table 42 - Steps for Validation Test T05_WP6T62-03

8.3.3 Test environment setup

The Test environment in the Runtime Manager Validation Test is configured using

three different nodes:

• Local Node with id = 1 is the Zynq UltraScale+ ZCU102 board having Quad-

Core Arm Cortex-A53 processor, CPU frequency up to 1.5GHz and 4GB of RAM

Memory;

• Remote Node with id = 2 is the Virtual Machine Computer having 2 Core Intel

i7-8650U processor, CPU Frequency up to 1.90 GHz and 2 GB RAM Memory;

• Remote Node with id = 3 is the Virtual Machine Computer having the same

characteristics of Remote Node with id = 2.

The nodes have been interconnected using an ethernet connection. A schematic is

reported in Figure 18 just presented in previous section.

To better understand the nomenclature, we have defined the following legend:

- RM {1, 2, 3} = Runtime Manager on the node with id = 1, 2, 3;

- LB {1, 2, 3} = Load Balancer on the node with id = 1, 2, 3 related to RM {1,

2, 3}

- N {1, 2, 3} = Node with id = 1, 2, 3.

On each node were installed all the requirements specified on the GitHub repository

of the Runtime Manager Component [https://github.com/project-fractal/WP6T62-

03-Runtime-Manager.git].

Step 1 Create the condition that overload the Node 1

Step 2 Send the command of the execution flow “1” to RM1 running “test_mqtt_published.py” with

“id_flow=1”.

Step 3 Send the command of the execution flow “2” to RM1 running “test_mqtt_published.py” with

“id_flow=2”.

Step 4 Send the command of the execution flow “3” to RM1 running “test_mqtt_published.py” with

“id_flow=3”.

Steps

https://github.com/project-fractal/WP6T62-03-Runtime-Manager.git
https://github.com/project-fractal/WP6T62-03-Runtime-Manager.git

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 51 of 149

After that, the configurations files of the Runtime Manager Component were modified

as follows. In this way, a test environment was created within a local network.

The nodes N1, N2, N3 have been configured in the following way:

-N1:

 RM1:

ip = "192.168.0.1"

ip api = "192.168.0.1"

port api = 7777

entrypoint api = "/startrm"

loadbalancer ip = "127.0.0.1"

loadbalancer port = 7776

loadbalancer endpoint = "LB/id_node"

 LB1:

id = 1

ip = 192.168.0.1

ip api = 127.0.0.1

port_api = 7776

ip_broker = 192.168.0.2

-N2:

 RM2:

ip = 192.168.0.2

ip api = "192.168.0.2"

port api = 8888

entrypoint = "/nodo2"

loadbalancer ip = "127.0.0.1"

loadbalancer port = 8886

loadbalancer endpoint = "LB/id_node"

 LB2:

id = 2

ip = 192.168.0.2

ip_api = 127.0.0.1

port_api = 8887

ip_broker = "localhost"

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 52 of 149

-N3:

 RM3:

ip = 192.168.0.2

ip api = "192.168.0.2"

port api = 9999

entrypoint = "/nodo3"

loadbalancer ip = "127.0.0.1"

loadbalancer port = 9998

loadbalancer endpoint = "LB/id_node"

 LB3:

id = 3

ip = 192.168.0.2

ip_api = 127.0.0.1

port_api = 9998

ip_broker = "localhost"

As described in the github repository, to execute Runtime Manager has been used

“rm_apy.py” and “rm_mqtt.py” scripts. For example, on the node N1:

- Runtime Manager listens on API REST

Figure 25 - Run "rm_api.py" script

- Runtime Manager listens on MQTT

Figure 26 - Run "rm_mqtt.py" script

Furthermore, the “test_mqtt_publisher.py” script has been used to send a JSON

message with the following field:

- “id_flow”, describes the execution flow

- “payload”, describes the data that needs to be exchanged between

nodes.

Modifying the “id_flow” field with {1, 2, 3} is possible to execute different workflows.

To create the condition that overloads the nodes it is possible to execute a blocking

function (ex: a few instances of a while True cycle) The results of this action is a

processor overloaded.

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 53 of 149

8.3.4 Test execution

8.3.4.1 T01_WP6T62-03 - Testing interaction between nodes with local

node overloaded

Table 43 - Results of the test T01_WP6T62-03

https://github.com/project-fractal/WP6T62-03-Runtime-Manager

RM{1, 2, 3} = Runtime Manager on the node with id = 1, 2, 3

N{1, 2, 3} = Node with id = 1, 2, 3

N1 is defined by Zynq UltraScale+ ZCU102 board with IP=192.168.0.1 and PORT=7777

N2 is defined by a Virtual Machine on Computer with IP=192.168.0.2 and PORT=8888

N3 is defined by a Virtual Machine on Computer with IP=192.168.0.2 and PORT=9999

Test conditions N1 is overloaded and it cannot perform other computation

Three bugs were foud during validation test that have been reported and corrected by the

developers.

1. Error on the configuration file "component.conf"

2. Error on the configuration file "comm.conf"

3. Error on the POST Request

Passed

Results/Evidence

N1:

Success criteria

The interaction and data exchange between nodes have to be executed successfully

Test observations

Test Result

Test configuration

Remarks

N2:

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 54 of 149

8.3.4.2 T02_WP6T62-03 - Testing interaction in the local node when the

local node can perform the computation

Table 44 - Results of the test T02_WP6T62-03

https://github.com/project-fractal/WP6T62-03-Runtime-Manager

RM{1, 2, 3} = Runtime Manager on the node with id = 1, 2, 3

N{1, 2, 3} = Node with id = 1, 2, 3

N1 is defined by Zynq UltraScale+ ZCU102 board with IP=192.168.0.1 and PORT=7777

N2 is defined by a Virtual Machine on Computer with IP=192.168.0.2 and PORT=8888

N3 is defined by a Virtual Machine on Computer with IP=192.168.0.2 and PORT=9999

Test conditions N1 is not overloaded and it can perform any computation

Remarks

Passed

Results/Evidence

N1:

Success criteria

The interaction and data exchange in the local nodes have to be executed successfully

Test observations

Test configuration

Test Result

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 55 of 149

8.3.4.3 T03_WP6T62-03 - Testing interaction between nodes with Node 1

and Node 2 overloaded

Table 45 - Results of the test T03_WP6T62-03

https://github.com/project-fractal/WP6T62-03-Runtime-Manager

RM{1, 2, 3} = Runtime Manager on the node with id = 1, 2, 3

N{1, 2, 3} = Node with id = 1, 2, 3

N1 is defined by Zynq UltraScale+ ZCU102 board with IP=192.168.0.1 and PORT=7777

N2 is defined by a Virtual Machine on Computer with IP=192.168.0.2 and PORT=8888

N3 is defined by a Virtual Machine on Computer with IP=192.168.0.2 and PORT=9999

Test conditions N1 and N2 is overloaded and it cannot perform other computation

Remarks

Passed

Results/Evidence

The interaction and data exchange between nodes have to be executed successfully

Success criteria

Test observations

Test configuration

Test Result

N1: N3:

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 56 of 149

8.3.4.4 T04_WP6T62-03 - Task Scheduling on the local node

Table 46 - Results of the test T04_WP6T62-03

https://github.com/project-fractal/WP6T62-03-Runtime-Manager

RM{1, 2, 3} = Runtime Manager on the node with id = 1, 2, 3

N{1, 2, 3} = Node with id = 1, 2, 3

N1 is defined by Zynq UltraScale+ ZCU102 board with IP=192.168.0.1 and PORT=7777

N2 is defined by a Virtual Machine on Computer with IP=192.168.0.2 and PORT=8888

N3 is defined by a Virtual Machine on Computer with IP=192.168.0.2 and PORT=9999

Test conditions N1 is not overloaded and it can perform any computation

Remarks

Results/Evidence

Test Result

Passed

Result Step 1:

Success criteria

The execution of the task in local node have to be executed successfully

Test observations

Test configuration

Result Step 2:

Result Step 3:

Flow1: N1:

Flow2: N1:

Flow3: N1:

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 57 of 149

8.3.4.5 T05_WP6T62-03 - Task Scheduling on the remote node

Table 47 - Results of the test T05_WP6T62-03

https://github.com/project-fractal/WP6T62-03-Runtime-Manager

RM{1, 2, 3} = Runtime Manager on the node with id = 1, 2, 3

N{1, 2, 3} = Node with id = 1, 2, 3

N1 is defined by Zynq UltraScale+ ZCU102 board with IP=192.168.0.1 and PORT=7777

N2 is defined by a Virtual Machine on Computer with IP=192.168.0.2 and PORT=8888

N3 is defined by a Virtual Machine on Computer with IP=192.168.0.2 and PORT=9999

Test conditions N1 is overloaded and it cannot perform other computation

Remarks

Passed

Results/Evidence

Result step 2:

Success criteria

The execution of the task and the exchange data with remote node have to be executed successfully

Test observations

Test configuration

Test Result

Result step 3:

Result step 4:

Flow1:

N1: N2:

Flow2:

N1: N2:

Flow2:

N1: N2:

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 58 of 149

8.4 Data Ingestion

Data may come into the Fractal Edge Node in various forms, formats, file sizes, and

from various sources. For this reason, a Fractal component able to deal with all these

heterogeneous types of data is needed. Data ingestion is the process of collecting,

importing, and processing raw data from various sources into a data storage or

analysis system. This process is a crucial step in data management and is essential

to prepare data for analysis and knowledge extraction. Data ingestion involves

several steps, including data collection, transformation, and loading. In D6.2 different

open-source robust and reliable tools have been identified to support the data

ingestion task. Each of them can be used according to the specific needs, the

requirements, and the operating system where the component is installed. The tools

have been selected to support the different environment and architectures used in

the FRACTAL node. In particular, tools have been selected for use in ARM64, RISCV64

and RISCV32 architectures. Since they are well consolidated and open-source tools,

a broad documentation can be found online for each of them.

8.4.1 Test planification

8.4.1.1 Define the testing scope and identify the functionality that needs to

be tested

In this section the tools proposed in D6.2 are reviewed to check that they can be

installed and used according to the guidelines that can be found here

https://github.com/project-fractal/WP6T62-01-data-ingestion.

The tests that have been identified consist of installing the components and validating

that they are up and running and able to perform basic tasks. More detailed validation

can be found in the documentation of the different tools.

T01_WP6T62-01_DI – Testing that Apache NiFi can be installed without any issue.

Table 48 - Validation Test T01_WPT62-01_DI

https://github.com/project-fractal/WP6T62-01-data-ingestion

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 59 of 149

T02_WP6T62-01_DI – Testing that PySpark can be installed and configured without

any issue.

Table 49 - Validation Test T02_WPT62-01_DI

T03_WP6T62-01_DI – Testing that Faust can be installed and configured without any

issue.

Table 50 - Validation Test T03_WPT62-01_DI

T04_WP6T62-01_DI – Testing that RedNote can be installed and configured without

any issue.

Table 51 - Validation Test T04_WPT62-01_DI

T05_WP6T62-01_DI – Testing that the MQTT is working properly.

Table 52 - Validation Test T05_WPT62-01_DI

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 60 of 149

8.4.2 Test case development

8.4.2.1 T01_WP6T62-01_DI - Testing Apache NiFi

Table 53 - Steps for Validation Test T01_WP6T62-01_DI

8.4.2.2 T02_WP6T62-01_DI – Testing PySpark

Table 54 - Steps for Validation Test T02_WP6T62-01_DI

8.4.2.3 T03_WP6T62-01_DI – Testing Faust

Table 55 - Steps for Validation Test T03_WP6T62-01_DI

8.4.2.4 T04_WP6T62-01_DI – Testing RedNote

Table 56 - Steps for Validation Test T04_WP6T62-01_DI

8.4.2.5 T05_WP6T62-01_DI – Testing MQTT Broker

Table 57 - Steps for Validation Test T05_WP6T62-01_DI

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 61 of 149

8.4.3 Test environment setup

The steps to install and configure the component can be found in the FRACTAL project

repository https://github.com/project-fractal/WP6T62-01-data-ingestion. According

to the guidelines reported there, the tests have been performed on an Ubuntu 22.04

machine.

8.4.4 Test execution

8.4.4.1 T01_WP6T62-01_DI - Testing Apache NiFi

Table 58 - Results for test T01_WP6T62-01_DI

https://github.com/project-fractal/WP6T62-01-data-ingestion

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 62 of 149

8.4.4.2 T02_WP6T62-01_DI - Testing PySpark

Table 59 - Results for test T02_WP6T62-01_DI

8.4.4.3 T03_WP6T62-01_DI - Testing Faust

Table 60 - Results for test T03_WP6T62-01_DI

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 63 of 149

8.4.4.4 T04_WP6T62-01_DI - Testing RedNote

Table 61 - Results for test T04_WP6T62-01_DI

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 64 of 149

8.4.4.5 T05_WP6T62-01_DI - Testing MQTT Broker

Table 62 - Results for test T05_WP6T62-01_DI

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 65 of 149

8.5 Federated Data Collection

Federated data collection is a process that enables organizations to collect and

analyse data from multiple sources in a decentralized manner. Unlike traditional data

collection methods, which involve bringing all data into a single central location for

analysis, federated data collection allows organizations to analyze data in place,

without moving it to a central location. In D6.2 different solutions, based on open-

source tools, are proposed to handle the federated collection of the data coming from

the Edge Nodes.

8.5.1 Test planification

In this section the tools proposed in D6.2 are reviewed to check that they can be

installed and used according to the guidelines that can be found here

https://github.com/project-fractal/WP6T62-02-federated_data_collection.

The tests that have been identified consist of installing the components and validating

that they are up and running and able to perform basic tasks. More detailed validation

can be found in the documentation of the different tools.

T01_WP6T62-02_FDC – Testing that CrateDB can be installed and used without any

issue.

Table 63 - Validation Test T01_WPT62-02_FDC

T01_WP6T62-02_FDC – Testing that MongoDB can be installed and used without any

issue.

Table 64 - Validation Test T02_WPT62-02_FDC

https://github.com/project-fractal/WP6T62-02-federated_data_collection

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 66 of 149

8.5.2 Test case development

8.5.2.1 T01_WP6T62-02_FDC - Testing CrateDB

Table 65 - Steps for Validation Test T01_WP6T62-02_FDC

8.5.2.2 T02_WP6T62-02_FDC - Testing MongoDB

Table 66 - Steps for Validation Test T02_WP6T62-02_FDC

8.5.3 Test environment setup

The steps to install and configure the component can be found in the FRACTAL

project repository https://github.com/project-fractal/WP6T62-02-

Federated_Data_Collection. According to the guidelines reported there, the tests

have been performed on a Ubuntu 22.04 machine following all the instruction

reported in the guidelines repository.

https://github.com/project-fractal/WP6T62-02-Federated_Data_Collection
https://github.com/project-fractal/WP6T62-02-Federated_Data_Collection

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 67 of 149

8.5.4 Test execution

8.5.4.1 T01_WP6T62-02_FDC - Testing CrateDB

Table 67 - Results for Validation Test T01_WP6T62-02_FDC

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 68 of 149

8.5.4.2 T02_WP6T62-02_FDC - Testing MongoDB

Table 68 - Results for Validation Test T02_WP6T62-02_FDC

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 69 of 149

8.6 Low End Node

This component is based on the open-source RISC-V based PULP platform. The main

features of the Low End Node are:

- Bridges between the IoT Hub and Kubernetes Cluster

- Shows the Nodes in CRD format in the Kubernetes Cluster

- Support any other MQTT broker-based connection

8.6.1 Test planification

8.6.1.1 Define the testing scope and identify the functionality that needs to

be tested

The functionalities identified for the Low End Node component that need to be tested

are related to how to connect and communicate with the cloud platform and the task

scheduling.They were defined as follows:

1. The Low End Node has to be able to connect and communicate with the Cloud

Platform;

2. The Low End Node has to be able to execute task scheduling;

3. The Low End Node has to be able to manage Ingestion and Storage.

For the first functioning three test cases are defined as shown below.

a) T01_WP6T62-06 – Testing the connection between the Device and the Cloud

Platform.

Table 69 - Validation Test T01_WP6T62-06

b) T02_WP6T62-06 – Testing the communication from the Device to the Cloud.

Table 70 - Validation Test T02_WP6T62-06

Test ID T01_WP6T62-06

Test type Functional

Test name Testing the connection between the Device and the Cloud Platform

Date 19/01/2022

Tester's Name Luca Visconti (Akkodis)

Validation Test

Test scope or objective

The objective of this test is to validate the connection between Low End Node Device and Cloud Platform.

Test ID T02_WP6T62-06

Test type Functional

Test name Testing the communication from Device to the Cloud

Date 19/01/2022

Tester's Name Luca Visconti (Akkodis)

Validation Test

Test scope or objective

The objective of this test is to validate communication between Low End Node Device and Cloud Platform.

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 70 of 149

c) T03_WP6T62-06 – Testing the communication from the Cloud Platform to the

Device.

Table 71 - Validation Test T03_WP6T62-06

For the second functioning, one test case is defined and shown below.

d) T04_WP6T62-06 – Testing the task scheduling running Nuttx on the Device.

Table 72 - Validation Test T04_WP6T62-06

Nuttx supports normal posix socket and posix file systems, where data flow control

can be handled with adequate drivers. In this way, various communication and

storage mediums may be added. However, driver development is out of scope of

validation activities.

8.6.2 Test case development

8.6.2.1 T01_WP6T62-06 - Testing the connection between the Device and

the Cloud Platform

Step 1: Power up the device.

In this step, the device is connected to a power source with 5V to start it correctly.

Expected Results: having booted correctly the device is possible to notice that the

red LED switch on as expected.

Step 2: Connect the device to the Internet.

In this step, the device is connected to an Access Point using SSID and password

parameters. The figures below show that the device is connected to the network.

Test ID T03_WP6T62-06

Test type Functional

Test name Testing the communication from the Cloud Platform to the Device

Date 19/01/2022

Tester's Name Luca Visconti (Akkodis)

Validation Test

Test scope or objective

The objective of this test is to validate the communication between Cloud Platform and Low End Node Device.

Test ID T04_WP6T62-06

Test type Functional

Test name Testing the Tasks Scheduling running Nuttx on the Device

Date 19/01/2022

Tester's Name Luca Visconti (Akkodis)

Validation Test

Test scope or objective

The objective of this test is to validate the task scheduling on the Low End Node

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 71 of 149

Figure 27 - The list of the provisioned devices as CRD in Kubernetes cluster with their ids

In the figure below is shown the list of IoT Devices on the Cloud side that are

Connected or Disconnected. The connected device id is “fractal-node-8063XXX".

Figure 28 - The list of devices in IoT hub

The following figure shows through “kubectl” command the description of the Low

End node in the Kubernetes cluster. The K8s generated id is low-end-5r2gf and the

device id is “fractal-node-8063XX".

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 72 of 149

Figure 29 - The description of the connected to the Kubernetes device

The figures below show the connected device and its green LED for the connection

status.

Figure 30 - The connected device with its serial number: 8063

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 73 of 149

Figure 31 - Device connected with the green LED

Expected Results: during the connection period green LED is dim. When the device

is connected the green LED is turned on. In this way, having connected the device to

the internet is possible to notice that it is accepted and connected to the Cloud

Platform.

Table 73 - Steps for Validation Test T01_WP6T62-06

8.6.2.2 T02_WP6T62-06 – Testing the communication from the Device to

the Cloud

Step 1: Power up the device.

In this step, the device is connected to a power source with 5V to start it correctly.

Expected Results: having booted correctly the device is possible to notice that the

red LED switch on as expected.

Step 2: Connect the device to the Internet.

In this step, the device is connected to an Access Point using SSID and password

parameters. The figure below shows that the device is connected to the network.

Figure 32 - Device connected with the green LED

Step 1 Power up the device

Step 2 Connect the device to internet

Steps

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 74 of 149

Expected Results: During the connection period green LED is dim. When the device

is connected the green LED is turned on. In this way, having connected the device to

the Internet is possible to notice that it is accepted and connected to the Cloud

Platform.

Step 3: Change the device status

There is a button on the device that changes its desired state. To perform this step,

we simply press the button on the device. The figures below show that the device

status is changed, also the status LEDs are changed from red to green.

Figure 33 - The desired state is OFF before pressing the button

Figure 34 - The device before pressing button

The following figures are shown that the desired state and reported flags of the

“fractal-node-7AEDXXXX" are changed, and its related LEDs green is switched on.

Figure 35 - The status of the device is changed in IoT hub after pressing button

Figure 36 - The device LED is green after pressing button

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 75 of 149

Expected Results: having connected the device on the Internet and having changed

the device status is possible to notice that is reported status on the Cloud Platform

side is as expected. In this way, it was tested the communication from the Device to

the Cloud Platform.

Table 74 - Steps for Validation Test T02_WP6T62-06

8.6.2.3 T03_WP6T62-06 - Testing the communication from the Device to the

Cloud

Step 1: Power up the device.

In this step, the device is connected to a power source with 5V to start it correctly.

Expected Results: having booted correctly the device is possible to notice that the

red LED switch on as expected.

Step 2: Connect the device to the Internet.

In this step, the device is connected to an Access Point using SSID and password

parameters. The figure below shows that the device is connected to the network.

Figure 37 - Device connected with the green LED

Expected Results: During the connection period green LED is dim. When the device

is connected the green LED is turned on. In this way, having connected the device to

the Internet is possible to notice that it is accepted and connected to the Cloud

Platform.

Step 3: Change the status in Kubernetes by the “patch” method.

In this step, there is a Kubernetes method called “kubectl patch” that updates the

Kubernetes object or updates the running configuration. It uses “json merge” patch

type passing json message with “desired state: 1” or “desired state: 0”. The structure

of the command is shown below.

Step 1 Power up the device

Step 2 Connect the device to internet

Step 3 Change device status

Steps

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 76 of 149

- kubectl patch -n low-end-ctrl lowends.fractal-cluster.eu low-end-5r2gf --type

merge --patch '{ "spec": { "desiredState": { "state": 1} }}'

Figure 38 - Running the patch command using K8s CLI (Updating the time is ignored here)

In the following figures is shown that the desired state of the Low End node is

changed from 0 to 1 and its related LED green is switched on.

Figure 39 - Desired state of the device is changed to 1 in Kubernetes CRD (ON)

Figure 40 - Kubernetes log showing the invocation of update function

Figure 41 - The state in IoT hub has been switched to green

Figure 42 - The device before the patch command on the left, and after the patch command on the right

Expected Results: having connected the device on the Internet and having changed

the device status on the Cloud Platform side is possible to notice that its reported

status on the Device side is as expected. In this way, it was tested the communication

from the Cloud Platform and the Device.

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 77 of 149

Table 75 - Steps for Validation Test T03_WP6T62-06

8.6.2.4 T04_WP6T62-06 - Testing the tasks scheduling running Nuttx

Step 1: Power up the device.

In this step, the device is connected to a power source with 5V to start it correctly.

Expected Results: having booted correctly the device is possible to notice that the

red LED switch on as expected.

Step 2: Connect the device by USB to the PC.

In this step, the device is connected to the PC via USB (that can also power the

device).

At Linux PC with “dmesg” command is possible to show all the USB peripheral

connected to the device:

Figure 43 - dmesg command

The device is at ttyUSB1 port.

Step 3: Open the terminal connection and run the command “ps”.

After connecting the device to the PC we run the process status (ps) command. It is

used to get information about currently running processes and their PIDs in your

system.

Using the command below is possible to access at the serial console of the device.

Figure 44 - Command to open the terminal of device

Step 1 Power up the device

Step 2 Connect the device to internet

Step 3 Change status in Kubernetes by "patch" method

Steps

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 78 of 149

The “ps” command and its related information are shown below:

Figure 45 - ps command

Expected Results: having connected the device to the PC and after running the “ps”

command on the device terminal, the result is as expected. This command prints all

the parallel tasks that are running on the device.

Table 76 - Steps for Validation Test T04_WP6T62-06

8.6.3 Test environment setup

First of all, we put in the config.yaml file the IoT hub credential that should be

encoded to base64. After that, we defined a Wi-Fi configuration with parameters SSID

and password for the local network.

Other configuration and information of the Low End Node Device at the GitHub

Repository, in the following link https://github.com/project-fractal/WP6T62-06-low-

end-node-orchestrator.

Step 1 Power up the device

Step 2 Connect the device by usb to a pc

Step 3 Open terminal connection and run command "ps"

Steps

https://github.com/project-fractal/WP6T62-06-low-end-node-orchestrator
https://github.com/project-fractal/WP6T62-06-low-end-node-orchestrator

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 79 of 149

8.6.4 Test execution

8.6.4.1 T01_WP6T62-06 - Testing the connection between the Device and

the Cloud Platform

Table 77 - Results of the test T01_WP6T62-06

Device accepted and device status "connected"

Test configuration Device access point config: SSID and PW

Test conditions Device connected to local wifi

Remarks

 Passed

Results/Evidence

Test observations

Test result

Step 2:

Success criteria

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 80 of 149

8.6.4.2 T02_WP6T62-06 – Testing the communication from the Device to

the Cloud Platform

Table 78 - Results of the test T02_WP6T62-06

Test configuration Device access point config: SSID and PW

Test conditions Device connected to local wifi

Remarks

Success criteria

Test observations

Test result

 Passed

Reported status as expected

Step 2:

Step 3:

Results/Evidence

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 81 of 149

8.6.4.3 T03_WP6T62-06 - Testing the communication from the Cloud

Platform to the Device

Table 79 - Results of the test T03_WP6T62-06

Device accepted and device status "connected"

Test configuration Device access point config: SSID and PW

Test conditions Device connected to local wifi

Remarks

Test observations

Test result

 Passed

Results/Evidence

Step 2:

Step 3:

Success criteria

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 82 of 149

8.6.4.4 T04_WP6T62-06 - Testing the tasks scheduling running Nuttx on the

device

Table 80 - Results of the test T04_WP6T62-06

Print all parallel running task as expected

Test configuration GitHub repository: https://github.com/project-fractal/WP6T62-06-low-end-node-

orchestrator

Device access point config: SSID and PW

Test conditions Device connected to local wifi

Remarks

Test result

 Passed

Success criteria

Test observations

Results/Evidence

Step 2:

Step 3:

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 83 of 149

8.7 Hardware-level Edge Controller

The hardware Edge Controller controls the underlying hardware, such as

communications and computations. The underlying hardware is based on a network-

on-chip (NoC) multicore architecture that supports heterogeneous cores connected

via NoC. The description of the underlying NoC-based multicore architecture is

reported in contribution D4.4 (WP4). It is a time-triggered extension layer used in

the VERSAL NoC to establish the temporal partitioning over the Chip.

In order to allow multiple nodes communication, within WP6, one of the NoC cores

was devoted to function as a hardware gateway controller. It allows communication

between on-chip and off-chip networks.

About the validation work in T6.3, we focused on the Network Gateway Interface that

connect both on-chip and off-chip.

8.7.1 Test planification

8.7.1.1 Define the testing scope and identify the functionality that needs to

be tested

In D6.2, several services are presented for this network hardware gateway

architecture. Some of them are for future extensions, and they are not in this project

scope.

This section will focus on following functionalities:

1. Message-Classification and Message-Scheduling Service;

2. Egress-Queuing and Ingress-Queuing Service;

3. Serialization Service.

For the first functioning, three test cases were defined, and they are shown below.

Message scheduling refers to timing and port definition according to configuration,

so we check messages from sending port to destination, seeing timing and message

content correctness.

Message classification refers to the ability of the NGW to manage different types of

messages. They are TT (Time Triggered), RATE (Rate Constraint), BE (Best Effort),

but in the project scope, only TT messages are used.

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 84 of 149

a) T01_WP6T62-0X – Testing the Message-Classification and Message-

Scheduling Services at different port according to scheduling configuration

Figure 46 - Validation Test T02_WP6T62-0X

b) T02_WP6T62-0X – Testing the Message-Classification and Message-

Scheduling Services at same port according to scheduling configuration

Figure 47 - Validation Test T02_WP6T62-0X

c) T03_WP6T62-0X – Testing the Message-Classification and Message-

Scheduling Services at same NI

Figure 48 - Validation Test T03_WP6T62-0X

Test ID T02_WP6T62-0X

Test type Functional

Test name Testing the Message-Classification and Message-Scheduling Services at same port

according to scheduling configuration
Date 03/02/2022

Tester's Name Luca Visconti (Akkodis)

Validation Test

Test scope or objective

The objective of this test is to validate the message-classification and message-scheduling services sending

message at same port according to scheduling configuration

Test ID T03_WP6T62-0X

Test type Functional

Test name Testing the Message-Classification and Message-Scheduling Services at same NI

Date 03/02/2022

Tester's Name Luca Visconti (Akkodis)

Validation Test

Test scope or objective

The objective of this test is to validate the message-classification and message-scheduling services sending

message at same NI when have 2 port configured

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 85 of 149

For the second functioning, one test case was defined, and it is shown below. Each

NI has a queue for each port, and it can be configured as ingress or egress. Here we

check the capacity of these queues using different lengths.

d) T04_WP6T62-0X – Testing the Ingress and Egress-queuing Services

Figure 49 - Validation Test T04_WP6T62-0X

For the third functioning one test case was defined and it is shown below:

e) T05_WP6T62-0X – Testing the serialization services

Serializer component is a subcomponent of NGW. As, it is not possible to see what

happens inside the NGW, we defined according to the developers to run a simulation

in order to proof the correct behaviors.

The Scope of the serializer is to take a message from the off-chip network and to

provide a protocol conversion. It also works from on-chip to off-chip network in the

same way.

Figure 50 - Validation Test T05_WP6T62-0X

Test ID T04_WP6T62-0X

Test type Functional

Test name Testing the Ingress and Egress-queuing Services

Date 03/02/2022

Tester's Name Luca Visconti (Akkodis)

Validation Test

Test scope or objective

The objective of this test is to validate the ingress-queuing and egress-queuing services using the max lenght of

queue.

Test ID T05_WP6T62-0X

Test type Functional

Test name Testing the serialization services

Date 03/02/2022

Tester's Name Luca Visconti (Akkodis)

Validation Test

Test scope or objective

The objective of this test is to validate the serialization service on NGW out port

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 86 of 149

8.7.2 Test case development

8.7.2.1 T01_WP6T62-0X - Testing the Message-Classification and Message-

Scheduling Services at different port according to scheduling

configuration

Step 1: Define a set of messages to send (3 messages at 3 different ports according

to the scheduling configuration TTCommSched.cfg of each NI).

- One message to NI0 on port 2

Figure 51 - Information described in "ttcommsched.cfg" on NI0

- Two messages to NI1 respectively on port 2 and 3

Figure 52 - Information described in "ttcommsched.cfg" on NI1

In the “ttcommsched.cfg” on the NI0 we have defined the following row:

- 000000000000000000000000003BC020

In the “ttcommsched.cfg” on the NI1 we have defined the following rows:

- 00000000000000000000000001444020

- 00000000000000000000000000A22030

The “hw.cfg” file is the same for all NIs, so it has the following rows:

- 04

1

1601010C0000000000000001

1601010A0000000000000001

1006

1006

1006

1006

Step 2: Send messages to NI0 and to NI1.

In the architecture, we have four processing elements, and one processing element

is working as a network gateway, and the rest of the processing elements are working

as cores.

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 87 of 149

We have created this file in a C language that simply creates and send the message

on a specific NI and Port. The first message is sent to NI0 on port 2, the second

message is sent to NI1 on port 2 and the third message is sent to NI1 on port 3.

Figure 53 - Send messages scripts

Expected Results: In this case, having defined and sent messages to different NI, we

expect to receive at the defined port the complete message. As depicted in the figures

below is possible to see that the messages are arrived at the destination port and

period according to the scheduling. The message content is also not corrupted.

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 88 of 149

Figure 54 - Messages received

Furthermore, as shown in the figure below, the injection time and the different time

between messages are correct according to configuration files.

Figure 55 - Time different and Injection time

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 89 of 149

Table 81 - Steps for Validation Test T01_WP6T62-0X

8.7.2.2 T02_WP6T62-0X - Testing the Message-Classification and Message-

Scheduling Services at the same port according to scheduling

configuration

Step 1: Define a set of messages to send (3 messages from the same port according

to the scheduling configuration TTCommScheld.cfg of NI1)

- Three messages to NI1 on the port 2:

Figure 56 - Information described in "ttcommsched.cfg" on NI1

In the “ttcommsched.cfg” on the NI1 we have defined the following rows:

- 00000000000000000000000001444020

- 00000000000000000000000000A22030

Step 1 Define a set of messages to send (3 messages at 3 different port according to the

scheduling configuration TTCommScheld.cfg of each NI)

- 1 message to NI0 on the port 2

- 2 messages to NI1 on the port 2 and 3

Step 2 Send a message to NI0:

Send a messages to NI1:

Steps

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 90 of 149

The “hw.cfg” file is the same for all NIs, so it has the following rows:

- 04

1

1601010C0000000000000001

1601010A0000000000000001

1006

1006

1006

1006

Step 2: Send messages to NI1

We have created this file in a C language that simply create and send the message

on a specific NI and Ports.

Figure 57 - Send messages scripts

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 91 of 149

Expected Results: In this case, having defined and sending messages to the same

NI, we expect to receive at the defined port the complete message. In the figures

below is possible to see that the messages arrived at the destination port and period

according to the scheduling. The message content is also not corrupted.

Figure 58 - Messages received

Furthermore, as shown in the figure below, the injection time and the period between

messages are correct according to configuration files. Each message is received in a

different period.

Figure 59 - Time different between messages

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 92 of 149

Table 82 - Steps for Validation Test T02_WP6T62-0X

8.7.2.3 T03_WP6T62-0X - Testing the Message-Classification and Message-

Scheduling Services at the same NI

Step 1: Define a set of messages to send (3 messages at 2 ports according to the

scheduling configuration TTCommScheld.cfg of NI2)

- Two messages to NI2 on the port 1

- One message to NI2 on the port 2

Figure 60 - Information described in "ttcommsched.cfg" on NI2

Step 1 Define a set of messages to send (3 messages at 3 from the same port according to

the scheduling configuration TTCommScheld.cfg of NI0)

- 3 messages to NI0 on the port 2:

Step 2 Send messages to NI1:

Steps

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 93 of 149

In the “ttcommsched.cfg” on the NI2 we have defined the following rows:

- 00000000000000000000000001800020

- 00000000000000000000000000889030

The “hw.cfg” file is the same for all NIs, so it has the following rows:

- 04

1

1601010C0000000000000001

1601010A0000000000000001

1006

1006

1006

100

Step 2: Send messages to NI2:

We have created this file in a C language that simply creates and sends the message

on a specific NI and Port. The first message is sent to NI2 on port 2, the second

message is sent to NI2 on port 3 and the third message is sent to NI2 on port 2.

Figure 61 - Send messages scripts

Expected Results: In this case, having defined and sending messages to the same NI

we expect to receive at the defined port the complete message. In the figures below

is possible to see that the messages arrived at destination port and period according

to the scheduling. The message content is also not corrupted.

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 94 of 149

Figure 62 - Messages received

Furthermore, as shown in the figure below, the period between messages is correct

according to the configuration files. Two messages are received in the same period

and one message is received in the next period.

Figure 63 - Time different between messages

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 95 of 149

Table 83 - Steps for Validation Test T03_WP6T62-0X

8.7.2.4 T04_WP6T62-0X - Testing the Ingress and Egress-Queuing Services

We have defined the same configuration of Validation Test T01. In the

“ttcommsched.cfg” on the NI0 we have defined the following row:

- 000000000000000000000000003BC020

And in the “hw.cfg” file is the same for all NIs, so it has the following rows:

- 04

1

1601010C0000000000000001

1601010A0000000000000001

1006

1006

1006

1006

We defined a set of messages to send, in particular, three messages from the same

port according to the scheduling configuration TTCommScheld.cfg of NI0 with a

queue length equal to 16:

• Message 1 size: 8-bit, length 10;

Step 1 Define a set of messages to send (3 messages at 2 ports according to the scheduling

configuration TTCommScheld.cfg of NI2)

- 2 messages to NI2 on the port 1

- 1 message to NI2 on the port 2

Step 2 Send messages to NI2:

Steps

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 96 of 149

• Message 2 size: 16-bit, length 16;

• Message 3 size: 32-bit, length 50.

Step 1: Send a message with length less than queue length.

We have created this file in a C language that simply creates and sends the message

to NI0 on port 2. The message has a length of 10. In the configuration file “port.cfg”

is defined a queue length equal to 16.

Figure 64 - Send message

Expected Results: In this case, having defined and sent a message with length 10 we

expect to receive at the defined port the complete message. In the figures below is

possible to see that the message has arrived at the destination port. The message

content is also not corrupted.

Figure 65 - Message received

Step 2: Send a message with length equal than queue length

We have created this file in a C language that simply creates and sends the message

to NI0 on port 2. The message has a length of 16. In the configuration file “ort.cfg”

is defined a queue length equal to 16.

Figure 66 - Send message

Expected Results: In this case, having defined and sent a message with length 16 we

expect to receive at the defined port the complete message. In the figures below is

possible to see that the message has arrived at the destination port. The message

content is also not corrupted.

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 97 of 149

Figure 67 - Message received

Step 3: Send a message with length longer than queue length

We have created this file in a C language that simply creates and sends the message

to NI0 on port 2. The message has a length of 32. In the configuration file “port.cfg”

is defined a queue length equal to 16.

Figure 68 - Send message

Expected Results: In this case, having defined and sent a message with length 32,

we expect to receive at the defined port the only first 16 rows and to have a queue

overflow. In the figures below is possible to see that the message has arrived at the

destination port, but the message content is corrupted after the 16 rows.

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 98 of 149

Figure 69 - Messages received

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 99 of 149

Table 84 - Steps for Validation Test T04_WP6T62-0X

8.7.2.5 T05_WP6T62-0X - Testing the Serialization service

Step 1: Define a set of messages to send (1 message at 1 port according to the

scheduling configuration TTCommScheld.cfg of NI3)

- One message to NI3 on port 2

Figure 70 - Information described in "ttcommsched.cfg" on NI3

In the “ttcommsched.cfg” on the NI3 we have defined the following rows:

- 000000000000000000000000005DE020

The “hw.cfg” file is the same for all NIs, so it has the following rows:

- 04

1

1601010C0000000000000001

1601010A0000000000000001

1006

1006

1006

1006

Step 2: Send a message to NI3 on port 2.

We have created this file in a C language that simply creates and sends the message

to NI3 on port 2.

Step 1 Send a message to NI0 on port 1 with a length less than the queue length

Step 2 Send a message to NI0 on port 1 with a length equal to the queue length

Step 3 Send a message to NI0 on port 1 with a length bigger than the queue length

Steps

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 100 of 149

Figure 71 - Send message

Expected Results: In this case, we expect to see the serialized messages in the NI

sender, after messages pass through the serialize component.

In this way, we check the message from the NI sender on port 2. We can see the

message on the “buffer_inst” field, it is a queue with a 005 “msglen”.

Figure 72 - Message on NI sender

In order to see the message in a waveform we wrote it in memory. We can see the

message before serialization and refer to the clock.

Figure 73 - Message before serialization

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 101 of 149

Here we see the serialize packetized message and added all information needed to

forward the message to the NoC (head filt that contains the message path,

timestamp, destination port, etc.)

Figure 74 - Message after serialization

Table 85 - Steps for Validation Test T05_WP6T62-0X

8.7.3 Test environment setup

The Hardware Edge Controller component is mainly configured through the following

configuration and scheduling files:

- “hw.cfg”, contains the overall information about the NoC;

- “port.cfg” contains the port configuration for each NI;

- “ttcommsched.mem”, contains the time-triggered communication schedule.

The “hw.cfg” represents the configuration of the whole NoC and serves as the basis

for the instantiation of the NIs and their internal building blocks. The file is composed

as described in the following figure:

Step 1 Define a set of messages to send (1 message at 1 port according to the scheduling

configuration TTCommScheld.cfg of NI3)

- One message to NI3 on port 2

Step 2 Send message at one port

Steps

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 102 of 149

Figure 75 – “hw.cfg” file

The “port.cfg” contains the configuration parameters of the ports for each NI. All

configuration parameters are represented by hexadecimal digits, which are

generated based on the parameters. The file is composed as described in the

following figure:

Figure 76 – “hw.cfg” file

The “ttcommsched.cfg” is conceptually made up of a circular linked list. Each list is

associated with a period. The information included in this file is shown below:

- “next”, this field is the next pointer. It points to the next entry of the circular

linked list, and it has a width of 5 bits.

- “instant”, this field denotes the phase of the injection of the message which

is located at the given port (in PortId). It has a width of 8 bits.

- “PortId”, this field represents the ID of the port, whose message is injected

into the NoC at the time given by Instant. It has a width of 4 bits.

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 103 of 149

In particular, in those configuration files we have defined:

- period of the clock (122us)

- Clock granularity (28,483ns)

- Injection time for messages (Instant)

We also installed ATTNoC on the FPGA board from Xilinx. The configuration has been

applied with the Vitis Unified Development Environment. The simulation and

visualization of the off-chip network was driven with the Vivado Design Suite.

All the configuration and information of the Hardware Edge Control at the GitHub

Repository, in the following link https://github.com/project-fractal/WP6T62-HW-

Edge-Controller.

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 104 of 149

8.7.4 Test execution

8.7.4.1 T01_WP6T62-0X - Testing the Message-Classification and Message-

Scheduling Services at different port

Table 86 - Results of the test T01_WP6T62-0X

Test configuration Config: "ttcommsched.cfg", "port.cfg", "hw.cfg"

Test conditions Vitis for FPGA configuration, ATTNoC running on the board, all configuration files at

github link https://github.com/project-fractal/WP6T62-HW-Edge-Controller

Remarks

 Passed

Results/Evidence

Test observations

Test result

Step 2:

Success criteria

Check:

- destination port as per configuration "port.cfg"

- message content (not corrupted)

- period as per configuration "hw.cfg"

- Is it possible to check the “instant” (Time Unit)?

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 105 of 149

8.7.4.2 T02_WP6T62-0X - Testing the Message-Classification and Message-

Scheduling Services at the same port

Table 87 - Results of the test T02_WP6T62-0X

Test configuration Config: "ttcommsched.cfg", "port.cfg", "hw.cfg"

Test conditions Vitis for FPGA configuration, ATTNoC running on the board, all configuration files at

github link https://github.com/project-fractal/WP6T62-HW-Edge-Controller

Remarks

Success criteria

Check:

- destination port (and NI) as "port.cfg"

- the message content (not corrupted)

- period (we expect three different period)

Test observations

Test result

 Passed

Step 2:

Results/Evidence

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 106 of 149

8.7.4.3 T03_WP6T62-0X - Testing the Message-Classification and Message-

Scheduling Services at the same NI

Table 88 - Results of the test T03_WP6T62-0X

Test configuration Config: "ttcommsched.cfg", "port.cfg", "hw.cfg"

Test conditions Vitis for FPGA configuration, ATTNoC running on the board, all configuration files at

github link https://github.com/project-fractal/WP6T62-HW-Edge-Controller

Remarks

Check:

- destination port (and NI) as "port.cfg"

- the message content (not corrupted)

- period ?? (Two different periods)

Test observations

Test result

 Passed

Results/Evidence

Step 2:

Success criteria

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 107 of 149

8.7.4.4 T04_WP6T62-0X - Testing the Ingress and Egress-Queuing Services

Table 89 - Results of the test T04_WP6T62-0X

8.7.4.5 T05_WP6T62-0X - Testing the Serialization service

In this case, as introduced in test planification session we defined to perform a

simulation. We used Vivado to see the waveform in subcomponents referred to clock

signal, so we can observe the behaviour with a time reference.

The scope is to compare the message before and after the serializer in order to

validate the serializer subcomponent that is in charge of the serialization service as

described in D6.2.

Test configuration Config: "ttcommsched.cfg", "port.cfg", "hw.cfg"

Test conditions Vitis for FPGA configuration, ATTNoC running on the board, all configuration files at

github link https://github.com/project-fractal/WP6T62-HW-Edge-Controller, max

queue length for a port = 16

Remarks

Success criteria

Check:

- to receive all messages on destination NI

- all messages on sending NI

Test observations

Test result

 Passed

Step 1: Step 3:

Step 2:

Results/Evidence

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 108 of 149

Serializer subcomponent is very important in order to have at the end, a complete

message packet to send through the network, from on-chip to off-chip network and

vice versa.

Table 90 - Results of the test T05_WP6T62-0X

Test configuration Config: "ttcommsched.cfg", "port.cfg", "hw.cfg"

Test conditions Vitis for FPGA configuration, ATTNoC running on the board, all configuration files at

github link https://github.com/project-fractal/WP6T62-HW-Edge-Controller

Remarks

Success criteria

Check:

- the message from the NI sender on the port 2

- the serialized message (flits in ordered)

Test observations

Test result

 Passed

Step 2:

Results/Evidence

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 109 of 149

9 Conclusions

In conclusion, this deliverable is focused on identifying the functionalities of the

FRACTAL Edge Node Architecture implemented in task T6.1 and task T6.2, and on

defining, implementing, and documenting the results of the validation tests that have

been performed to validate the FRACTAL Edge Node proper operation at a component

level.

Validation was carried out starting with the microservices regarding to connectivity,

then the orchestration components, the runtime manager component, the Data

ingestion component and Federated data collection component for the High-end

nodes and Mid-range nodes. For the Low End Node there were a series of tests to

validate the following functionalities:

• connection and communication with the Cloud Platform

• execution of task scheduling

• management of ingestion and storage

Finally, the Hardware-level Edge Controller was also validated, focused on the

Network Gateway Interface that connects both on chip and off chip networks.

Some of the tests were performed on real HW, that is to say, on the HW platforms

that are part of the project, and others in a virtual environment. In the case of some

components, the functionalities could be tested on any HW/virtual environment, since

by design they were valid for both High-end nodes and Mid-range nodes. In the case

of the Low End Node, it was crucial to test the functionalities on the real HW.

Almost all tests passed validation. Except for one: T05_WP6T62-06_ANC. This failed

test was communicated to the developers in order to improve the quality of the

component.

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 110 of 149

10 Bibliography

Richardson, C. (2021). Microservices Pattern: Microservice Architecture pattern.

Retrieved 12 April 2022, from

https://microservices.io/patterns/microservices.html

Vaid, A., Maria, M., & Udupa, N. (2020). A Framework-driven Approach for

Verification and Validation (V&V) of IoT Systems. Retrieved 5 April 2022, from

https://www.wipro.com/content/dam/nexus/en/service-lines/product-

engineering/latest-thinking/a-framework-driven-approach-for-verification-

and-validation-v-and-v-of-iot-systems.pdf

https://www.wipro.com/content/dam/nexus/en/service-lines/product-engineering/latest-thinking/a-framework-driven-approach-for-verification-and-validation-v-and-v-of-iot-systems.pdf
https://www.wipro.com/content/dam/nexus/en/service-lines/product-engineering/latest-thinking/a-framework-driven-approach-for-verification-and-validation-v-and-v-of-iot-systems.pdf
https://www.wipro.com/content/dam/nexus/en/service-lines/product-engineering/latest-thinking/a-framework-driven-approach-for-verification-and-validation-v-and-v-of-iot-systems.pdf

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 111 of 149

11 List of figures

Figure 1: Validation test template .. 8

Figure 2 FRACTAL Edge Node processing architecture designed in task T6.1 11

Figure 3 FRACTAL Edge Node processing architecture implementation developed in

task T6.1 ... 11

Figure 4 FRACTAL Edge Node testbed architecture .. 12

Figure 5 - MQTT data producer code ... 13

Figure 6 - Bridge MQTT-KAFKA code ... 14

Figure 7 - Bridge SQL-KAFKA code .. 16

Figure 8 - Data consumer code ... 17

Figure 9 - Automatic launching of MQTT, KAFKA and SQL instances 18

Figure 10 - Run common services ... 19

Figure 11 - Run data producer.. 19

Figure 12 - Run MQTT-KAFKA bridge ... 19

Figure 13 - Run SQL-KAFKA bridge ... 20

Figure 14 - Run data consumer .. 20

Figure 15 - Testbed data analysis ... 21

Figure 16: Multi-node Edge Controller architectural design (designed in task T6.2)

 .. 23

Figure 17: WP6T62-06-mid-range-orchestration architecture (designed in task T6.2)

 .. 33

Figure 18 - Node interconnection .. 44

Figure 19 - Runtime Manager Flow 1 ... 46

Figure 20 - Runtime Manager Flow 2 ... 47

Figure 21 - Runtime Manager Flow 3 ... 47

Figure 22 - Runtime Manager Flow 1 ... 48

Figure 23- Runtime Manager Flow 2 .. 49

Figure 24 - Runtime Manager Flow 3 ... 49

Figure 15 - Run "rm_api.py" script .. 52

Figure 16 - Run "rm_mqtt.py" script ... 52

Figure 17 - The list of the provisioned devices as CRD in Kubernetes cluster with their

ids .. 71

Figure 18 - The list of devices in IoT hub ... 71

Figure 19 - The description of the connected to the Kubernetes device 72

Figure 20 - The connected device with its serial number: 8063 72

Figure 21 - Device connected with the green LED ... 73

Figure 22 - Device connected with the green LED ... 73

Figure 23 - The desired state is OFF before pressing the button 74

Figure 24 - The device before pressing button .. 74

Figure 25 - The status of the device is changed in IoT hub after pressing button .. 74

Figure 26 - The device LED is green after pressing button 74

Figure 27 - Device connected with the green LED ... 75

Figure 28 - Running the patch command using K8s CLI (Updating the time is ignored

here) .. 76

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 112 of 149

Figure 29 - Desired state of the device is changed to 1 in Kubernetes CRD (ON) .. 76

Figure 30 - Kubernetes log showing the invocation of update function 76

Figure 31 - The state in IoT hub has been switched to green 76

Figure 32 - The device before the patch command on the left, and after the patch

command on the right ... 76

Figure 33 - dmesg command.. 77

Figure 34 - Command to open the terminal of device .. 77

Figure 35 - ps command .. 78

Figure 36 - Validation Test T02_WP6T62-0X .. 84

Figure 37 - Validation Test T02_WP6T62-0X .. 84

Figure 38 - Validation Test T03_WP6T62-0X .. 84

Figure 39 - Validation Test T04_WP6T62-0X .. 85

Figure 40 - Validation Test T05_WP6T62-0X .. 85

Figure 41 - Information described in "ttcommsched.cfg" on NI0 86

Figure 42 - Information described in "ttcommsched.cfg" on NI1 86

Figure 43 - Send messages scripts .. 87

Figure 44 - Messages received ... 88

Figure 45 - Time different and Injection time ... 88

Figure 46 - Information described in "ttcommsched.cfg" on NI1 89

Figure 47 - Send messages scripts .. 90

Figure 48 - Messages received ... 91

Figure 49 - Time different between messages .. 91

Figure 50 - Information described in "ttcommsched.cfg" on NI2 92

Figure 51 - Send messages scripts .. 93

Figure 52 - Messages received ... 94

Figure 53 - Time different between messages .. 94

Figure 54 - Send message ... 96

Figure 55 - Message received ... 96

Figure 56 - Send message ... 96

Figure 57 - Message received ... 97

Figure 58 - Send message ... 97

Figure 59 - Messages received ... 98

Figure 60 - Information described in "ttcommsched.cfg" on NI3 99

Figure 61 - Send message ... 100

Figure 62 - Message on NI sender .. 100

Figure 63 - Message before serialization .. 100

Figure 64 - Message after serialization .. 101

Figure 65 – “hw.cfg” file .. 102

Figure 66 – “hw.cfg” file .. 102

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 113 of 149

12 List of tables

Table 1 Document history ... 4

Table 2 – Testing node specifications .. 17

Table 3 - Validation Test T01_WP6T62-06_EC .. 26

Table 4 - Validation Test T02_WP6T62-06_EC .. 26

Table 5 - Validation Test T03_WP6T62-06_EC .. 26

Table 6 - Validation Test T04_WP6T62-06_EC .. 26

Table 7 - Steps for Validation Test T01_WP6T62-06_EC 27

Table 8 - Steps for Validation Test T02_WP6T62-06_EC 27

Table 9 - Steps for Validation Test T03_WP6T62-06_EC 27

Table 10 - Steps for Validation Test T04_WP6T62-06_EC 28

Table 11 - Results of the test T01_WP6T62-06_EC ... 29

Table 12 - Results of the test T02_WP6T62-06_EC ... 30

Table 13 - Results of the test T03_WP6T62-06_EC ... 31

Table 14 - Results of the test T04_WP6T62-06_EC ... 32

Table 15 - Validation Test T01_WP6T62-06_ANC .. 34

Table 16 - Validation Test T02_WP6T62-06_ANC .. 34

Table 17 - Validation Test T03_WP6T62-06_ANC .. 34

Table 18 - Validation Test T04_WP6T62-06_ANC .. 34

Table 19 - Validation Test T05_WP6T62-06_ANC .. 35

Table 20 - Validation Test T06_WP6T62-06_ANC .. 35

Table 21 - Steps for Validation Test T01_WP6T62-06_ANC 35

Table 22 - Steps for Validation Test T02_WP6T62-06_ANC 35

Table 23 - Steps for Validation Test T03_WP6T62-06_ANC 36

Table 24 - Steps for Validation Test T04_WP6T62-06_ANC 36

Table 25 - Steps for Validation Test T05_WP6T62-06_ANC 36

Table 26 - Steps for Validation Test T06_WP6T62-06_ANC 36

Table 27 - Results of the test T01_WP6T62-06_ANC ... 37

Table 28 - Results of the test T02_WP6T62-06_ANC ... 38

Table 29 - Results of the test T03_WP6T62-06_ANC ... 38

Table 30 - Results of the test T04_WP6T62-06_ANC ... 39

Table 31 - Results of the test T05_WP6T62-06_ANC ... 40

Table 32 - Results of the test T06_WP6T62-06_ANC ... 41

Table 33 - Validation Test T01_WP6T62-03 .. 42

Table 34 - Validation Test T02_WP6T62-03 .. 42

Table 35 - Validation Test T03_WP6T62-03 .. 43

Table 36 - Validation Test T04_WP6T62-03 .. 43

Table 37 - Validation Test T05_WP6T62-03 .. 43

Table 38 - Steps for Validation Test T01_WP6T62-03 .. 45

Table 39 – Steps for Validation Test T02_WP6T62-03 .. 45

Table 40 – Steps for Validation Test T03_WP6T62-03 .. 46

Table 41 – Steps for Validation Test T04_WP6T62-03 .. 47

Table 42 - Steps for Validation Test T05_WP6T62-03 .. 50

Table 43 - Results of the test T01_WP6T62-03 ... 53

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 114 of 149

Table 44 - Results of the test T02_WP6T62-03 ... 54

Table 45 - Results of the test T03_WP6T62-03 ... 55

Table 46 - Results of the test T04_WP6T62-03 ... 56

Table 47 - Results of the test T05_WP6T62-03 ... 57

Table 48 - Validation Test T01_WPT62-01_DI .. 58

Table 49 - Validation Test T02_WPT62-01_DI .. 59

Table 50 - Validation Test T03_WPT62-01_DI .. 59

Table 51 - Validation Test T04_WPT62-01_DI .. 59

Table 52 - Validation Test T05_WPT62-01_DI .. 59

Table 53 - Steps for Validation Test T01_WP6T62-01_DI .. 60

Table 54 - Steps for Validation Test T02_WP6T62-01_DI 60

Table 55 - Steps for Validation Test T03_WP6T62-01_DI 60

Table 56 - Steps for Validation Test T04_WP6T62-01_DI 60

Table 57 - Steps for Validation Test T05_WP6T62-01_DI 60

Table 58 - Results for test T01_WP6T62-01_DI .. 61

Table 59 - Results for test T02_WP6T62-01_DI .. 62

Table 60 - Results for test T03_WP6T62-01_DI .. 62

Table 61 - Results for test T04_WP6T62-01_DI .. 63

Table 62 - Results for test T05_WP6T62-01_DI .. 64

Table 63 - Validation Test T01_WPT62-02_FDC .. 65

Table 64 - Validation Test T02_WPT62-02_FDC .. 65

Table 65 - Steps for Validation Test T01_WP6T62-02_FDC 66

Table 66 - Steps for Validation Test T02_WP6T62-02_FDC 66

Table 67 - Results for Validation Test T01_WP6T62-02_FDC 67

Table 68 - Results for Validation Test T02_WP6T62-02_FDC 68

Table 69 - Validation Test T01_WP6T62-06 .. 69

Table 70 - Validation Test T02_WP6T62-06 .. 69

Table 71 - Validation Test T03_WP6T62-06 .. 70

Table 72 - Validation Test T04_WP6T62-06 .. 70

Table 73 - Steps for Validation Test T01_WP6T62-06 .. 73

Table 74 - Steps for Validation Test T02_WP6T62-06 .. 75

Table 75 - Steps for Validation Test T03_WP6T62-06 .. 77

Table 76 - Steps for Validation Test T04_WP6T62-06 .. 78

Table 77 - Results of the test T01_WP6T62-06 ... 79

Table 78 - Results of the test T02_WP6T62-06 ... 80

Table 79 - Results of the test T03_WP6T62-06 ... 81

Table 80 - Results of the test T04_WP6T62-06 ... 82

Table 81 - Steps for Validation Test T01_WP6T62-0X .. 89

Table 82 - Steps for Validation Test T02_WP6T62-0X .. 92

Table 83 - Steps for Validation Test T03_WP6T62-0X .. 95

Table 84 - Steps for Validation Test T04_WP6T62-0X .. 99

Table 85 - Steps for Validation Test T05_WP6T62-0X 101

Table 86 - Results of the test T01_WP6T62-0X ... 104

Table 87 - Results of the test T02_WP6T62-0X ... 105

Table 88 - Results of the test T03_WP6T62-0X ... 106

Table 89 - Results of the test T04_WP6T62-0X ... 107

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 115 of 149

Table 90 - Results of the test T05_WP6T62-0X ... 108

Table 91 - Validation Test T01_WP6T62-06_EC (overview) 117

Table 92 - Validation Test T02_WP6T62-06_EC (overview) 118

Table 93 - Validation Test T03_WP6T62-06_EC (overview) 119

Table 94 - Validation Test T04_WP6T62-06_EC (overview) 121

Table 95 - Validation Test T01_WP6T62-06_ANC (overview) 122

Table 96 - Validation Test T02_WP6T62-06_ANC (overview) 123

Table 97 - Validation Test T03_WP6T62-06_ANC (overview) 124

Table 98 - Validation Test T04_WP6T62-06_ANC (overview) 125

Table 99 - Validation Test T05_WP6T62-06_ANC (overview) 127

Table 100 - Validation Test T06_WP6T62-06_ANC (overview) 128

Table 101 - Validation Test T01_WP6T62-03 (overview) 129

Table 102 - Validation Test T02_WP6T62-03 (overview) 130

Table 103 - Validation Test T03_WP6T62-03 (overview) 131

Table 104 - Validation Test T04_WP6T62-03 (overview) 132

Table 105 - Validation Test T05_WP6T62-03 (overview) 133

Table 106: Validation Test T01_WP6T62-01_DI (overview) 134

Table 107: Validation Test T02_WP6T62-01_DI (overview) 135

Table 108: Validation Test T03 WP6T62-01_DI (overview) 136

Table 109: Validation Test T04_WP6T62-01_DI (overview) 137

Table 110: Validation Test T05_WP6T62-01_DI (overview) 138

Table 111: Validation Test T01_WP6T62-02_FDC (overview)............................ 139

Table 112: Validation Test T02_WP6T62-02_FDC (overview)............................ 140

Table 108 - Validation Test T01_WP6T62-06 (overview) 141

Table 109 - Validation Test T02_WP6T62-06 (overview) 142

Table 110 - Validation Test T03_WP6T62-06 (overview) 143

Table 111 - Validation Test T04_WP6T62-06 (overview) 144

Table 112 - Validation Test T01_WP6T62-0X (overview) 145

Table 113 - Validation Test T02_WP6T62-0X (overview) 146

Table 114 - Validation Test T03_WP6T62-0X (overview) 147

Table 115 - Validation Test T04_WP6T62-0X (overview) 148

Table 116 - Validation Test T05_WP6T62-0X (overview) 149

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 116 of 149

13 List of abbreviations

API Application Programming Interface

ATTNoC Adaptable Time Triggered Network on Chip

CPU Central Processing Unit

CRD Custom Resource Definition

DB Database

FPGA Field Programmable Gate Array

HW Hardware

ID Identifier

IoT Internet of Things

LED Light Emitting Diode

MQTT Message Queue Telemetry Transport

NGW Network Gateway

NI Network Interface

NoC Network on Chip

PC Personal Computer

PW Password

RAM Random Access Memory

REST

SQL

Representational State Transfer

Structured Query Language

SSID Service Set Identifier

USB Universal Serial Bus

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 117 of 149

14 Annexes

14.1 Orchestration (Edge Controller) component complete

templates

Table 91 - Validation Test T01_WP6T62-06_EC (overview)

Test ID T01_WP6T62-06_EC

Test type Functional-Installation

Test name Testing the installation of the component

Date 15/11/2022

Tester's Name Ana Bautista

Step 1 Prepare a node with Ubuntu and all needed dependencies (Python). This will be the master node.

Step 2 Deploy the metrics exporter container.

Step 3 Deploy the resource manager container.

Step 4 Deploy the custom orchestrator container.

No error messages/All partial results are as expected

Test configuration https://github.com/project-fractal/WP6T62-06-edge-controller-orchestrator

Test conditions
The metrics exporter, resource manager and custom orchestrator containers runs in the same node

(master node).

Two bugs were found during installation that have been reported and corrected by the

developers.

1. apt-get update no longer works on containers with Ubuntu21.10 so we need to use Ubuntu22.04.

2. The import 'aux_func' was corrected.

Success criteria

Test observations

Test result

 Passed

Validation test

Test scope or objective

The objective of this test is to validate if the Edge Controller Orchestrator can be installed without any issues.

Steps

Results/Evidence

Remarks

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 118 of 149

Table 92 - Validation Test T02_WP6T62-06_EC (overview)

Test ID T02_WP6T62-06_EC

Test type Functional

Test name Testing if the master node can monitor several (2) workers' nodes

Date 20/01/2023

Tester's Name Ana Bautista

Step 1 Prepare a node with Ubuntu and all needed dependencies (Python). This will be the master node.

Step 2 Deploy the metrics exporter container.

Step 3 Deploy the resource manager container.

Step 4 Deploy the custom orchestrator container.

Step 5
Prepare tow nodes with Ubuntu and all needed dependencies (Python). These will be the worker's

nodes.

Step 6 Deploy the metrics exporter container on each of the worker nodes.

Step 7 Review the logs from the resource manager (deployed on the master node).

No error messages/All partial results are as expected

Test configuration https://github.com/project-fractal/WP6T62-06-edge-controller-orchestrator

Test conditions
The metrics exporter, resource manager and custom orchestrator containers run in the master node.

The metrics exporter runs in the two worker's nodes.

Remarks
Reviewing the logs from the resource manager it can be observed that the information from the

worker's nodes is given in the right way (as expected).

Master node:

Worker node 1:

Worker node 2:

Validation test

Test scope or objective
The objective of this test is to validate if the master node can monitor two workers' nodes.

Steps

Results/Evidence

Success criteria

Test observations

Test result

 Passed

Review logs from the resorce manager:

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 119 of 149

Table 93 - Validation Test T03_WP6T62-06_EC (overview)

Test ID T03_WP6T62-06_EC

Test type Functional

Test name Testing through the REST API if the metrics exporter is working properly

Date 15/11/2022

Tester's Name Ana Bautista

Step 1 Prepare a node with Ubuntu and all needed dependencies (Python). This will be the master node.

Step 2 Deploy the metrics exporter container.

Step 3 Deploy the resource manager container.

Step 4 Deploy the custom orchestrator container.

Step 5
Prepare tow nodes with Ubuntu and all needed dependencies (Python). These will be the worker's

nodes.

Step 6 Deploy the metrics exporter container on each of the worker nodes.

Step 7 Go to: http://<NODE_IP>:61208/api/3/cpu

No error messages/All partial results are as expected

Test configuration https://github.com/project-fractal/WP6T62-06-edge-controller-orchestrator

Test conditions
The metrics exporter, resource manager and custom orchestrator containers run in the master node.

The metrics exporter runs in the two worker's nodes.

Remarks
The REST API exposed by the custom orchestrator is reached by the resource manager and provides

information about the nodes previously configured (as expected).

Success criteria

Test observations

Test result

 Passed

Validation test

Test scope or objective
The objective of this test is to validate through the REST API if the metrics exporter is working properly.

Steps

Results/Evidence

Master node:

Worker node 1:

Worker node 2:

NODE_IP

NODE_IP

NODE_IP

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 120 of 149

(continues)

Test ID T04_WP6T62-06_EC

Test type Functional

Test name Testing how the resource manager behaves if the nodes are stressed

Date 15/11/2022

Tester's Name Ana Bautista

Step 1 Prepare a node with Ubuntu and all needed dependencies (Python). This will be the master node.

Step 2 Deploy the metrics exporter container.

Step 3 Deploy the resource manager container.

Step 4 Deploy the custom orchestrator container.

Step 5 Prepare tow nodes with Ubuntu and all needed dependencies (Python). These will be the worker's nodes.

Step 6 Deploy the metrics exporter container on each of the worker nodes.

Step 7 Install stress-ng on one of the worker nodes.

Step 8 Execute the command stress-ng --cpu 8 --timeout 60s which will stress the node for 60 seconds.

Step 9 Review the logs from the resource manager (deployed on the master node).

Step 10 Check the alerts and the metrics in the logs of the resource manager.

Validation test

Test scope or objective
The objective of this test is to observe how the resource manager behaves if the nodes are stressed.

Steps

Results/Evidence

Master node:

Stressed worker node: fractal-k8s0.ipd.ikerlan.es

Results 1:

Stressed worker node: fractal-k8s0.ipd.ikerlan.es

Worker node: fractal-k8s1.ipd.ikerlan.es

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 121 of 149

(continued)

Table 94 - Validation Test T04_WP6T62-06_EC (overview)

No error messages/All partial results are as expected

Test configuration https://github.com/project-fractal/WP6T62-06-edge-controller-orchestrator

Test conditions

The metrics exporter, resource manager and custom orchestrator containers run in the master node.

The metrics exporter runs in the two worker's nodes.

The node called fractal-k8s0.ipd.ikerlan.es is the node that was stressed.

Remarks

As it can be observed in the "Results 1" screenshot: when the CPU usage of a node is over 80% it is considered

as tainted (low on resources and restricted) as NoSchedule. According to the component documentation, if

any of the monitored resources are above some fixed thresholds, that node is no longer able to perform any

new container deployments until the resource limitation is lifted.

Success criteria

Test observations

Test result

 Passed

 Results 2:

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 122 of 149

14.2 Orchestration (Agent Nodes Controller) component

complete templates

Table 95 - Validation Test T01_WP6T62-06_ANC (overview)

Test ID T01_WP6T62-06_ANC

Test type Functional

Test name Testing that the Agent nodes controller can be installed without any issues

Date 20/01/2023

Tester's Name Ana Bautista, Adrian Moran

Step 1 Prepare a node with Ubuntu and all needed dependencies (Python).

Step 2 Launch backend-service-manager (Service Manager).

Step 3 Launch API Server.

Step 4 Launch frontend-service-manager (Executor Node).

Test configuration https://github.com/project-fractal/WP6T62-06-mid-range-orchestration

Test conditions API Server, Service Manager and Executor Node runs in the same node.

Remarks All the subcomponents are up and running.

Success criteria

Test observations

Test result

 Passed

No error messages/All partial results are as expected

Validation test

Test scope or objective

The objective of the test is to validate if the Agent nodes controller can be installed without any issues.

Steps

Results/Evidence

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 123 of 149

Table 96 - Validation Test T02_WP6T62-06_ANC (overview)

Test ID T02_WP6T62-06_ANC

Test type Functional

Test name Testing basic orchestration functionality

Date 09/02/2023

Tester's Name Ana Bautista, Adrian Moran

Step 1 Prepare a node with Ubuntu and all needed dependencies (Python).

Step 2 Launch backend-service-manager (Service Manager).

Step 3 Launch API Server.

Step 4 Launch frontend-service-manager (Executor Node).

Step 5 From a different device, use REST API to create a new task.

Test configuration https://github.com/project-fractal/WP6T62-06-mid-range-orchestration

Test conditions API Server, Service Manager and Executor Node runs in the same node.

Remarks Basic workflow is completed successfully.

Success criteria

No error messages/All partial results are as expected

Test observations

Test result

 Passed

Client:

API:

Executor Node:

Validation test

Test scope or objective

The objective of the test is to validate basic orchestration functionality.

Steps

Results/Evidence

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 124 of 149

Table 97 - Validation Test T03_WP6T62-06_ANC (overview)

Test ID T03_WP6T62-06_ANC

Test type Functional

Test name Testing that a running task can be deleted

Date 09/02/2023

Tester's Name Ana Bautista, Adrian Moran

Step 1 Prepare a node with Ubuntu and all needed dependencies (Python).

Step 2 Launch backend-service-manager (Service Manager).

Step 3 Launch API Server.

Step 4 Launch frontend-service-manager (Executor Node).

Step 5 From a different device, use REST API to create a new task and delete it.

Test configuration https://github.com/project-fractal/WP6T62-06-mid-range-orchestration

Test conditions API Server, Service Manager and Executor Node runs in the same node.

Task is deleted from API Server repository succesfully.

Deleted task is not deleted from Executor node .tasks folder, which can lead to problems

like lack of storage or DoS attacks.

Client:

API:

Validation test

Test scope or objective

The objective of the test is to validate that a running task can be deleted.

Steps

Results/Evidence

Success criteria

No error messages/All partial results are as expected

Test observations

Test result

 Passed

Remarks

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 125 of 149

Table 98 - Validation Test T04_WP6T62-06_ANC (overview)

Test ID T04_WP6T62-06_ANC

Test type Functional

Test name Testing that a running task can be stopped and started again

Date 09/02/2023

Tester's Name Ana Bautista, Adrian Moran

Step 1 Prepare a node with Ubuntu and all needed dependencies (Python).

Step 2 Launch backend-service-manager (Service Manager).

Step 3 Launch API Server.

Step 4 Launch frontend-service-manager (Executor Node).

Step 5 From a different device, use REST API to create a new task, stop and then start it.

Test configuration https://github.com/project-fractal/WP6T62-06-mid-range-orchestration

Test conditions API Server, Service Manager and Executor Node runs in the same node.

Remarks Task lifecycle in correctly handled.

Client:

API:

Executor Node:

Test scope or objective

The objective of the test is to validate that a running task can be stopped and started again.

Steps

Results/Evidence

Success criteria

No error messages/All partial results are as expected

Test observations

Test result

 Passed

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 126 of 149

(continues)

Test ID T05_WP6T62-06_ANC

Test type Functional

Test name Testing that a running multiple tasks is possible and list their state

Date 09/02/2023

Tester's Name Ana Bautista, Adrian Moran

Step 1 Prepare a node with Ubuntu and all needed dependencies (Python).

Step 2 Launch backend-service-manager (Service Manager).

Step 3 Launch API Server.

Step 4 Launch frontend-service-manager (Executor Node).

Step 5 From a different device, use REST API to create a new tasks.

Client:

API:

Validation test

Test scope or objective

The objective of the test is to validate that a running multiple tasks is possible and list their state.

Steps

Results/Evidence

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 127 of 149

(continued)

Table 99 - Validation Test T05_WP6T62-06_ANC (overview)

Test configuration https://github.com/project-fractal/WP6T62-06-mid-range-orchestration

Test conditions API Server, Service Manager and Executor Node runs in the same node.

It is possible to list the tasks.

It is possible to add multiple tasks and get their status.

A bug has occured generating two task, one named "test" and other one named "test2".

Executor Node computes the execution path from name, and since it does not deletes the

old tasks, this leads to failure:

This way of computing task_dir is bugged. If the same node has executed in their lifetime a

tasks called "test" and "test2", there won't be any chance of running "test" task, since this

piece of code will always select last "test2-timestamp" folder:

Success criteria

No error messages/All partial results are as expected

Test observations

Test result

 Not passed

Remarks

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 128 of 149

Table 100 - Validation Test T06_WP6T62-06_ANC (overview)

Test ID T06_WP6T62-06_ANC

Test type Functional

Test name Testing the behavior of the orchestrator with multiple Executor Nodes

Date 09/02/2023

Tester's Name Ana Bautista, Adrian Moran

Step 1 Prepare a node with Ubuntu and all needed dependencies (Python).

Step 2 Launch backend-service-manager (Service Manager).

Step 3 Launch API Server.

Step 4 Launch two instances of frontend-service-manager (Executor Node).

Step 5 From a different device, use REST API to create two simultaneous tasks.

Test configuration https://github.com/project-fractal/WP6T62-06-mid-range-orchestration

Test conditions API Server, Service Manager and Executor Node runs in the same node.

Remarks Multiple nodes works fine.

Client:

API:

Executor Node 1:

Executor Node 2:

Validation test

Test scope or objective

The objective of the test is to validate the behaviour of the orchestrator with multiple Executor Nodes.

Steps

Results/Evidence

Success criteria

No error messages/All partial results are as expected

Test observations

Test result

 Passed

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 129 of 149

14.3 Runtime Manager component complete templates

Table 101 - Validation Test T01_WP6T62-03 (overview)

Test ID T01_WP6T62-03

Test type Functional

Test Name Testing interaction between nodes with local node overloaded

Date 05/12/2022

Tester's Name Luca Visconti (Modis Consulting SRL)

Step 1 Create the condition that overload the Node 1

Step 2 Send the command of the execution flow to RM1 running "test_mqtt_published.py"

https://github.com/project-fractal/WP6T62-03-Runtime-Manager

RM{1, 2, 3} = Runtime Manager on the node with id = 1, 2, 3

N{1, 2, 3} = Node with id = 1, 2, 3

N1 is defined by Zynq UltraScale+ ZCU102 board with IP=192.168.0.1 and PORT=7777

N2 is defined by a Virtual Machine on Computer with IP=192.168.0.2 and PORT=8888

N3 is defined by a Virtual Machine on Computer with IP=192.168.0.2 and PORT=9999

Test conditions N1 is overloaded and it cannot perform other computation

Three bugs were foud during validation test that have been reported and corrected by the

developers.

1. Error on the configuration file "component.conf"

2. Error on the configuration file "comm.conf"

3. Error on the POST Request

Passed

Validation test

Test scope or objective

The objective of this test is to validate the correct interaction and data exchange between nodes

Steps

Results/Evidence

N1:

Success criteria

The interaction and data exchange between nodes have to be executed successfully

Test observations

Test Result

Test configuration

Remarks

N2:

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 130 of 149

Table 102 - Validation Test T02_WP6T62-03 (overview)

Test ID T02_WP6T62-03

Test type Functional

Test Name Testing interaction in the local node when the local node can perform the computation

Date 05/12/2022

Tester's Name Luca Visconti (Modis Consulting SRL)

Step 1 Send the command of the execution flow to RM1 running "test_mqtt_published.py"

https://github.com/project-fractal/WP6T62-03-Runtime-Manager

RM{1, 2, 3} = Runtime Manager on the node with id = 1, 2, 3

N{1, 2, 3} = Node with id = 1, 2, 3

N1 is defined by Zynq UltraScale+ ZCU102 board with IP=192.168.0.1 and PORT=7777

N2 is defined by a Virtual Machine on Computer with IP=192.168.0.2 and PORT=8888

N3 is defined by a Virtual Machine on Computer with IP=192.168.0.2 and PORT=9999

Test conditions N1 is not overloaded and it can perform any computation

Remarks

Passed

Validation test

Test scope or objective

The objective of this test is to validate the correct interaction and data exchange in the local node

Steps

Results/Evidence

N1:

Success criteria

The interaction and data exchange in the local nodes have to be executed successfully

Test observations

Test configuration

Test Result

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 131 of 149

Table 103 - Validation Test T03_WP6T62-03 (overview)

Test ID T03_WP6T62-03

Test type Functional

Test Name Testing interaction between nodes with Node 1 and Node 2 overloaded

Date 05/12/2022

Tester's Name Luca Visconti (Modis Consulting SRL)

Step 1 Create the condition that overload the Node 1

step 2 Create the condition that overload the Node 2

Step 3 Send the command of the execution flow to RM1 running "test_mqtt_published.py"

https://github.com/project-fractal/WP6T62-03-Runtime-Manager

RM{1, 2, 3} = Runtime Manager on the node with id = 1, 2, 3

N{1, 2, 3} = Node with id = 1, 2, 3

N1 is defined by Zynq UltraScale+ ZCU102 board with IP=192.168.0.1 and PORT=7777

N2 is defined by a Virtual Machine on Computer with IP=192.168.0.2 and PORT=8888

N3 is defined by a Virtual Machine on Computer with IP=192.168.0.2 and PORT=9999

Test conditions N1 and N2 is overloaded and it cannot perform other computation

Remarks

Passed

Validation test

Test scope or objective

The objective of this test is to validate the correct interaction and data exchange between nodes

Steps

Results/Evidence

The interaction and data exchange between nodes have to be executed successfully

Success criteria

Test observations

Test configuration

Test Result

N1: N3:

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 132 of 149

Table 104 - Validation Test T04_WP6T62-03 (overview)

Test ID T04_WP6T62-03

Test type Functional

Test Name Task Scheduling on the local node

Date 05/12/2022

Tester's Name Luca Visconti (Modis Consulting SRL)

Step 1 Send the command of the execution flow “1” to RM1 running “test_mqtt_published.py” with

“id_flow=1”.

Step 2 Send the command of the execution flow “2” to RM1 running “test_mqtt_published.py” with

“id_flow=2”.

Step 3 Send the command of the execution flow “3” to RM1 running “test_mqtt_published.py” with

“id_flow=3”.

https://github.com/project-fractal/WP6T62-03-Runtime-Manager

RM{1, 2, 3} = Runtime Manager on the node with id = 1, 2, 3

N{1, 2, 3} = Node with id = 1, 2, 3

N1 is defined by Zynq UltraScale+ ZCU102 board with IP=192.168.0.1 and PORT=7777

N2 is defined by a Virtual Machine on Computer with IP=192.168.0.2 and PORT=8888

N3 is defined by a Virtual Machine on Computer with IP=192.168.0.2 and PORT=9999

Test conditions N1 is not overloaded and it can perform any computation

Remarks

Validation test

Test scope or objective

The objective of this test is to validate the correct execution of the Task in the local node

Steps

Results/Evidence

Test Result

Passed

Result Step 1:

Success criteria

The execution of the task in local node have to be executed successfully

Test observations

Test configuration

Result Step 2:

Result Step 3:

Flow1: N1:

Flow2: N1:

Flow3: N1:

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 133 of 149

Table 105 - Validation Test T05_WP6T62-03 (overview)

Test ID T05_WP6T62-03

Test type Functional

Test Name Task Scheduling on the remote node

Date 05/12/2022

Tester's Name Luca Visconti (Modis Consulting SRL)

Step 1 Create the condition that overload the Node 1

Step 2 Send the command of the execution flow “1” to RM1 running “test_mqtt_published.py” with

“id_flow=1”.

Step 3 Send the command of the execution flow “2” to RM1 running “test_mqtt_published.py” with

“id_flow=2”.

Step 4 Send the command of the execution flow “3” to RM1 running “test_mqtt_published.py” with

“id_flow=3”.

https://github.com/project-fractal/WP6T62-03-Runtime-Manager

RM{1, 2, 3} = Runtime Manager on the node with id = 1, 2, 3

N{1, 2, 3} = Node with id = 1, 2, 3

N1 is defined by Zynq UltraScale+ ZCU102 board with IP=192.168.0.1 and PORT=7777

N2 is defined by a Virtual Machine on Computer with IP=192.168.0.2 and PORT=8888

N3 is defined by a Virtual Machine on Computer with IP=192.168.0.2 and PORT=9999

Test conditions N1 is overloaded and it cannot perform other computation

Remarks

Passed

Validation test

Test scope or objective

The objective of this test is to validate the correct execution of the tasks in the remote node

Steps

Results/Evidence

Result step 2:

Success criteria

The execution of the task and the exchange data with remote node have to be executed successfully

Test observations

Test configuration

Test Result

Result step 3:

Result step 4:

Flow1:

N1: N2:

Flow2:

N1: N2:

Flow2:

N1: N2:

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 134 of 149

14.4 Data Ingestion component complete templates

Table 106: Validation Test T01_WP6T62-01_DI (overview)

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 135 of 149

Table 107: Validation Test T02_WP6T62-01_DI (overview)

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 136 of 149

Table 108: Validation Test T03 WP6T62-01_DI (overview)

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 137 of 149

Table 109: Validation Test T04_WP6T62-01_DI (overview)

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 138 of 149

Table 110: Validation Test T05_WP6T62-01_DI (overview)

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 139 of 149

14.5 Federated Data Collection component complete

templates

Table 111: Validation Test T01_WP6T62-02_FDC (overview)

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 140 of 149

Table 112: Validation Test T02_WP6T62-02_FDC (overview)

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 141 of 149

14.6 Low End Node component complete templates

Table 113 - Validation Test T01_WP6T62-06 (overview)

Test ID T01_WP6T62-06

Test type Functional

Test name Testing the connection between the Device and the Cloud Platform

Date 19/01/2022

Tester's Name Luca Visconti (Akkodis)

Step 1 Power up the device

Step 2 Connect the device to internet

Device accepted and device status "connected"

Test configuration Device access point config: SSID and PW

Test conditions Device connected to local wifi

Remarks

 Passed

Validation Test

Test scope or objective

Results/Evidence

Test observations

Test result

The objective of this test is to validate the connection between Low End Node Device and Cloud Platform.

Steps

Step 2:

Success criteria

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 142 of 149

Table 114 - Validation Test T02_WP6T62-06 (overview)

Test ID T02_WP6T62-06

Test type Functional

Test name Testing the communication from Device to the Cloud

Date 19/01/2022

Tester's Name Luca Visconti (Akkodis)

Step 1 Power up the device

Step 2 Connect the device to internet

Step 3 Change device status by pressing button

Test configuration Device access point config: SSID and PW

Test conditions Device connected to local wifi

Remarks

Step 2:

Step 3:

Validation Test

Test scope or objective

The objective of this test is to validate communication between Low End Node Device and Cloud Platform.

Steps

Results/Evidence

Success criteria

Test observations

Test result

 Passed

Reported status as expected

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 143 of 149

Table 115 - Validation Test T03_WP6T62-06 (overview)

Test ID T03_WP6T62-06

Test type Functional

Test name Testing the communication from the Cloud Platform to the Device

Date 19/01/2022

Tester's Name Luca Visconti (Akkodis)

Step 1 Power up the device

Step 2 Connect the device to internet

Step 3 Change status in Kubernetes by "patch" method

Device accepted and device status "connected"

Test configuration Device access point config: SSID and PW

Test conditions Device connected to local wifi

Remarks

Test observations

Test result

 Passed

Validation Test

Test scope or objective

The objective of this test is to validate the communication between Cloud Platform and Low End Node Device.

Steps

Results/Evidence

Step 2:

Step 3:

Success criteria

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 144 of 149

Table 116 - Validation Test T04_WP6T62-06 (overview)

Test ID T04_WP6T62-06

Test type Functional

Test name Testing the Tasks Scheduling running Nuttx on the Device

Date 19/01/2022

Tester's Name Luca Visconti (Akkodis)

Step 1 Power up the device

Step 2 Connect the device by usb to a pc

Step 3 Open terminal connection and run command "ps"

Print all parallel running task as expected

Test configuration GitHub repository: https://github.com/project-fractal/WP6T62-06-low-end-node-

orchestrator

Device access point config: SSID and PW

Test conditions Device connected to local wifi

Remarks

Validation Test

Test scope or objective

Steps

Results/Evidence

Step 2:

Step 3:

Test result

 Passed

Success criteria

The objective of this test is to validate the task scheduling on the Low End Node

Test observations

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 145 of 149

14.7 Hardware-level Edge Controller component complete

templates

Table 117 - Validation Test T01_WP6T62-0X (overview)

Test ID T01_WP6T62-0X

Test type Functional

Test name

Testing the Message-Classification and Message-Scheduling Services at different port

according to scheduling configuration

Date 03/02/2022

Tester's Name Luca Visconti (Akkodis)

Step 1 Define a set of messages to send (3 messages at 3 different port according to the

scheduling configuration TTCommScheld.cfg of each NI)

- 1 message to NI0 on the port 2

- 2 messages to NI1 on the port 2 and 3

Step 2 Send a message to NI0:

Send messages to NI1:

Test configuration Config: "ttcommsched.cfg", "port.cfg", "hw.cfg"

Test conditions Vitis for FPGA configuration, ATTNoC running on the board, all configuration files at

github link https://github.com/project-fractal/WP6T62-HW-Edge-Controller

Remarks

 Passed

Validation Test

Test scope or objective

Results/Evidence

Test observations

Test result

The objective of this test is to validate the message-classification and message-scheduling services sending 3

message at a different port and according to the scheduling configuration.

Steps

Step 2:

Success criteria

Check:

- destination port as per configuration "port.cfg"

- message content (not corrupted)

- period as per configuration "hw.cfg"

- Is it possible to check the “instant” (Time Unit)?

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 146 of 149

Table 118 - Validation Test T02_WP6T62-0X (overview)

Test ID T02_WP6T62-0X

Test type Functional

Test name Testing the Message-Classification and Message-Scheduling Services at same port

according to scheduling configuration

Date 03/02/2022

Tester's Name Luca Visconti (Akkodis)

Step 1 Define a set of messages to send (3 messages at 3 from the same port according to

the scheduling configuration TTCommScheld.cfg of NI0)

- 3 messages to NI0 on the port 2:

Step 2 Send messages to NI1:

Test configuration Config: "ttcommsched.cfg", "port.cfg", "hw.cfg"

Test conditions Vitis for FPGA configuration, ATTNoC running on the board, all configuration files at

github link https://github.com/project-fractal/WP6T62-HW-Edge-Controller

Remarks

Step 2:

Validation Test

Test scope or objective

The objective of this test is to validate the message-classification and message-scheduling services sending

message at same port according to scheduling configuration

Steps

Results/Evidence

Success criteria

Check:

- destination port (and NI) as "port.cfg"

- the message content (not corrupted)

- period (we expect three different period)

Test observations

Test result

 Passed

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 147 of 149

Table 119 - Validation Test T03_WP6T62-0X (overview)

Test ID T03_WP6T62-0X

Test type Functional

Test name Testing the Message-Classification and Message-Scheduling Services at same NI

Date 03/02/2022

Tester's Name Luca Visconti (Akkodis)

Step 1 Define a set of messages to send (3 messages at 2 ports according to the scheduling

configuration TTCommScheld.cfg of NI2)

- 2 messages to NI2 on the port 1

- 1 message to NI2 on the port 2

Step 2 Send messages to NI2:

Test configuration Config: "ttcommsched.cfg", "port.cfg", "hw.cfg"

Test conditions Vitis for FPGA configuration, ATTNoC running on the board, all configuration files at

github link https://github.com/project-fractal/WP6T62-HW-Edge-Controller

Remarks

Check:

- destination port (and NI) as "port.cfg"

- the message content (not corrupted)

- period ?? (Two different periods)

Test observations

Test result

 Passed

Validation Test

Test scope or objective

The objective of this test is to validate the message-classification and message-scheduling services sending 3

message at same Port when 2 port configured

Steps

Results/Evidence

Step 2:

Success criteria

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 148 of 149

Table 120 - Validation Test T04_WP6T62-0X (overview)

Test ID T04_WP6T62-0X

Test type Functional

Test name Testing the Ingress and Egress-queuing Services

Date 03/02/2022

Tester's Name Luca Visconti (Akkodis)

Step 1 Send a message to NI0 on port 1 with a length less than the queue length

Step 2 Send a message to NI0 on port 1 with a length equal to the queue length

Step 3 Send a message to NI0 on port 1 with a length bigger than the queue length

Test configuration Config: "ttcommsched.cfg", "port.cfg", "hw.cfg"

Test conditions Vitis for FPGA configuration, ATTNoC running on the board, all configuration files at

github link https://github.com/project-fractal/WP6T62-HW-Edge-Controller, max

queue length for a port = 16

Remarks

Step 1: Step 3:

Step 2:

Validation Test

Test scope or objective

The objective of this test is to validate the ingress-queuing and egress-queuing services using the max lenght of

queue.

Steps

Results/Evidence

Success criteria

Check:

- to receive all messages on destination NI

- all messages on sending NI

Test observations

Test result

 Passed

Project FRACTAL

Title FRACTAL engineering framework validation

Del. Code D6.4

 Copyright © FRACTAL Project Consortium 149 of 149

Table 121 - Validation Test T05_WP6T62-0X (overview)

Test ID T05_WP6T62-0X

Test type Functional

Test name Testing the serialization services

Date 03/02/2022

Tester's Name Luca Visconti (Akkodis)

Step 1 Define a set of messages to send (1 message at 1 port according to the scheduling

configuration TTCommScheld.cfg of NI3)

- One message to NI3 on port 2

Step 2 Send message at one port

Test configuration Config: "ttcommsched.cfg", "port.cfg", "hw.cfg"

Test conditions Vitis for FPGA configuration, ATTNoC running on the board, all configuration files at

github link https://github.com/project-fractal/WP6T62-HW-Edge-Controller

Remarks

Step 2:

Validation Test

Test scope or objective

The objective of this test is to validate the serialization service on NGW out port

Steps

Results/Evidence

Success criteria

Check:

- the message from the NI sender on the port 2

- the serialized message (flits in ordered)

Test observations

Test result

 Passed

	1 History
	2 Summary
	2.1 Achievements

	3 Introduction
	4 Validation test template overview
	5 Edge Node architecture review
	5.1 FRACTAL Edge Node processing architecture
	5.2 FRACTAL Edge Node processing architecture implementation

	6 Validation tests implementation of the Edge Node microservices to test connectivity functionalities.
	6.1 Test case development
	6.2 Test environment setup
	6.3 Test execution

	7 FRACTAL Edge Controller review
	8 Validation test plan and implementation of the Edge Controller
	8.1 Orchestration (Edge Controller)
	8.1.1 Test planification
	8.1.1.1 Define the testing scope and identify the functionality that needs to be tested

	8.1.2 Test case development
	8.1.2.1 T01_WP6T62-06_EC - Testing the installation of the component
	8.1.2.2 T02_WP6T62-06_EC - Testing if the master node can monitor several (2) workers' nodes
	8.1.2.3 T03_WP6T62-06_EC - Testing through the REST API if the metrics exporter is working properly
	8.1.2.4 T04_WP6T62-06_EC - Testing how the resource manager behaves if the nodes are stressed

	8.1.3 Test environment setup
	8.1.4 Test execution
	8.1.4.1 T01_WP6T62-06_EC - Testing the installation of the component
	8.1.4.2 T02_WP6T62-06_EC - Testing if the master node can monitor several (2) workers' nodes
	8.1.4.3 T03_WP6T62-06_EC - Testing through the REST API if the metrics exporter is working properly
	8.1.4.4 T04_WP6T62-06_EC - Testing how the resource manager behaves if the nodes are stressed

	8.2 Orchestration (Agent Nodes Controller)
	8.2.1 Test planification
	8.2.1.1 Define the testing scope and identify the functionality that needs to be tested

	8.2.2 Test case development
	8.2.2.1 T01_WP6T62-06_ANC - Testing that the Agent Nodes Controller can be installed without any issues
	8.2.2.2 T02_WP6T62-06_ANC - Testing basic orchestration functionality
	8.2.2.3 T03_WP6T62-06_ANC - Testing that a running task can be deleted
	8.2.2.4 T04_WP6T62-06_ANC - Testing that a running task can be stopped and started again
	8.2.2.5 T05_WP6T62-06_ANC - Testing that a running multiple tasks is possible and list their state
	8.2.2.6 T06_WP6T62-06_ANC - Testing the behaviour of the orchestrator with multiple Executor Nodes

	8.2.3 Test environment setup
	8.2.4 Test execution
	8.2.4.1 T01_WP6T62-06_ANC - Testing that the Agent Nodes Controller can be installed without any issues
	8.2.4.2 T02_WP6T62-06_ANC - Testing basic orchestration functionality
	8.2.4.3 T03_WP6T62-06_ANC - Testing that a running task can be deleted
	8.2.4.4 T04_WP6T62-06_ANC - Testing that a running task can be stopped and started again
	8.2.4.5 T05_WP6T62-06_ANC - Testing that a running multiple tasks is possible and list their state
	8.2.4.6 T06_WP6T62-06_ANC - Testing the behaviour of the orchestrator with multiple Executor Nodes

	8.3 Runtime Manager
	8.3.1 Test planification
	8.3.1.1 Define the testing scope and identify the functionality that needs to be tested

	8.3.2 Test case development
	8.3.2.1 T01_WP6T62-03 - Testing interaction between nodes with local node overloaded
	8.3.2.2 T02_WP6T62-03 - Testing interaction in the local node when the local node can perform the computation
	8.3.2.3 T03_WP6T62-03 - Testing interaction between nodes with Node 1 and Node 2 overloaded
	8.3.2.4 T04_WP6T62-03 - Task Scheduling on the local node
	8.3.2.5 T05_WP6T62-03 - Task Scheduling on the remote node

	8.3.3 Test environment setup
	8.3.4 Test execution
	8.3.4.1 T01_WP6T62-03 - Testing interaction between nodes with local node overloaded
	8.3.4.2 T02_WP6T62-03 - Testing interaction in the local node when the local node can perform the computation
	8.3.4.3 T03_WP6T62-03 - Testing interaction between nodes with Node 1 and Node 2 overloaded
	8.3.4.4 T04_WP6T62-03 - Task Scheduling on the local node
	8.3.4.5 T05_WP6T62-03 - Task Scheduling on the remote node

	8.4 Data Ingestion
	8.4.1 Test planification
	8.4.1.1 Define the testing scope and identify the functionality that needs to be tested

	8.4.2 Test case development
	8.4.2.1 T01_WP6T62-01_DI - Testing Apache NiFi
	8.4.2.2 T02_WP6T62-01_DI – Testing PySpark
	8.4.2.3 T03_WP6T62-01_DI – Testing Faust
	8.4.2.4 T04_WP6T62-01_DI – Testing RedNote
	8.4.2.5 T05_WP6T62-01_DI – Testing MQTT Broker

	8.4.3 Test environment setup
	8.4.4 Test execution
	8.4.4.1 T01_WP6T62-01_DI - Testing Apache NiFi
	8.4.4.2 T02_WP6T62-01_DI - Testing PySpark
	8.4.4.3 T03_WP6T62-01_DI - Testing Faust
	8.4.4.4 T04_WP6T62-01_DI - Testing RedNote
	8.4.4.5 T05_WP6T62-01_DI - Testing MQTT Broker

	8.5 Federated Data Collection
	8.5.1 Test planification
	8.5.2 Test case development
	8.5.2.1 T01_WP6T62-02_FDC - Testing CrateDB
	8.5.2.2 T02_WP6T62-02_FDC - Testing MongoDB

	8.5.3 Test environment setup
	8.5.4 Test execution
	8.5.4.1 T01_WP6T62-02_FDC - Testing CrateDB
	8.5.4.2 T02_WP6T62-02_FDC - Testing MongoDB

	8.6 Low End Node
	8.6.1 Test planification
	8.6.1.1 Define the testing scope and identify the functionality that needs to be tested

	8.6.2 Test case development
	8.6.2.1 T01_WP6T62-06 - Testing the connection between the Device and the Cloud Platform
	8.6.2.2 T02_WP6T62-06 – Testing the communication from the Device to the Cloud
	8.6.2.3 T03_WP6T62-06 - Testing the communication from the Device to the Cloud
	8.6.2.4 T04_WP6T62-06 - Testing the tasks scheduling running Nuttx

	8.6.3 Test environment setup
	8.6.4 Test execution
	8.6.4.1 T01_WP6T62-06 - Testing the connection between the Device and the Cloud Platform
	8.6.4.2 T02_WP6T62-06 – Testing the communication from the Device to the Cloud Platform
	8.6.4.3 T03_WP6T62-06 - Testing the communication from the Cloud Platform to the Device
	8.6.4.4 T04_WP6T62-06 - Testing the tasks scheduling running Nuttx on the device

	8.7 Hardware-level Edge Controller
	8.7.1 Test planification
	8.7.1.1 Define the testing scope and identify the functionality that needs to be tested

	8.7.2 Test case development
	8.7.2.1 T01_WP6T62-0X - Testing the Message-Classification and Message-Scheduling Services at different port according to scheduling configuration
	8.7.2.2 T02_WP6T62-0X - Testing the Message-Classification and Message-Scheduling Services at the same port according to scheduling configuration
	8.7.2.3 T03_WP6T62-0X - Testing the Message-Classification and Message-Scheduling Services at the same NI
	8.7.2.4 T04_WP6T62-0X - Testing the Ingress and Egress-Queuing Services
	8.7.2.5 T05_WP6T62-0X - Testing the Serialization service

	8.7.3 Test environment setup
	8.7.4 Test execution
	8.7.4.1 T01_WP6T62-0X - Testing the Message-Classification and Message-Scheduling Services at different port
	8.7.4.2 T02_WP6T62-0X - Testing the Message-Classification and Message-Scheduling Services at the same port
	8.7.4.3 T03_WP6T62-0X - Testing the Message-Classification and Message-Scheduling Services at the same NI
	8.7.4.4 T04_WP6T62-0X - Testing the Ingress and Egress-Queuing Services
	8.7.4.5 T05_WP6T62-0X - Testing the Serialization service

	9 Conclusions
	10 Bibliography
	11 List of figures
	12 List of tables
	13 List of abbreviations
	14 Annexes
	14.1 Orchestration (Edge Controller) component complete templates
	14.2 Orchestration (Agent Nodes Controller) component complete templates
	14.3 Runtime Manager component complete templates
	14.4 Data Ingestion component complete templates
	14.5 Federated Data Collection component complete templates
	14.6 Low End Node component complete templates
	14.7 Hardware-level Edge Controller component complete templates

