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2 Summary 
This deliverable aims to report the outcomes of T4.2 on FRACTAL AI-Based 
Algorithms for energy-efficient and safe temporal resource allocation. The results of 
the implementations carried out in the task are presented according to the 
components developed, which reflect the task's objectives.   
 
The work in T4.2 was focused on implementing AI models that can contribute to 
energy-efficient systems and the allocation of resources at the node and system level. 
The necessary support for AI capabilities by PULP and VERSAL platforms is described 
in chapters 5 (ETH) and 6 (PLC2), respectively. The AI scheduling components 
developed are described in chapter 7 (SIEG). The task focused on the space and 
temporal allocation of resources. This allocation was extended to a hierarchical level 
in chapter 8, where adaptation and energy-efficient challenges were tackled. 
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3 Introduction  
The goal of WP7 is to develop safety, security and low-power services for individual 
FRACTAL nodes. In this document, we will shed light upon AI-based algorithms for 
energy-efficient and safe temporal resource allocation for FRACTAL systems 
extending the preliminary implementation reported in the previous deliverable D4.1. 
The development will include both the node-level (i.e., individual FRACTAL nodes) as 
well as the system level (i.e., distributed systems comprised of FRACTAL nodes) in 
accordance with the Fractal system architecture depicted in Figure 1. The resource 
allocation strategies at both levels seek to increase a system's dependability and 
energy efficiency while meeting the scheduling limitations. Besides general-purpose 
computational resources and communication networks, AI resources, such as tensor 
units, GPUs, and programmable logic, will be supported as the resource allocation 
target. Moreover, we are addressing runtime changes within a system by developing 
a semi-static time-triggered resource manager which is invoked after any context 
events, such as changes within a system at runtime.  

 

Figure 1 Fractal system architecture 

This task's strategic objective is to guarantee the FRACTAL system's energy efficiency 
and resource allocation. To accomplish this objective, the task was realized by several 
building blocks/ components contributing to fulfilling the T4.2 objectives, which are 
reusable and could be demodulated by any use case (UC). A brief description of each 
component and how they contribute to fulfilling the T4.2 objectives are reported in 
Table 1. 
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Table 1 Components brief description and their contribution to fulfilling the T4.2 objectives 

Capabilities for AI supported adaptability in PULP 

Description The component aims to enhance existing PULP platforms to 
support resource allocation in the context of AI workloads.  
One of the main applications for PULP-based systems is ML 
inference on the edge. Further, computing capabilities for 
inference on the edge are continuously being added to the 
system (e.g., hardware accelerators, instruction set 
architecture extensions). Moreover, new features in the 
software stack are investigated to efficiently map a specific 
application to the resources available at the hardware level. 

Contribution to 
achieving the 
T4.2 objectives  

The component satisfies the objective of the task through:  
• Exploring resource allocation optimizations on the 
PULP platform.  
• Extending computing capabilities for inference on the 
edge.  

Versal RPU access to AI acceleration 

Description Enhance RPU libraries to (1) access APU-based AI as a service 
and (2) enable local AI [acceleration] deployment from RPU.  

The RPU is running in the context of a time-triggered multicore 
architecture and needs to respond under real-time conditions 
for proper scheduling. Therefore, the proposed adaptive 
scheduling mechanisms rely on ML model inference to decide 
on actual adaptation.   

The RPU triggers an offloaded (accelerated) AI model in the 
Versal AI Engines to respond with low latency inference results. 
To coordinate the larger-scale task of setting up the ML model 
(loading), the RPU deploys the APU in Versal as a service 
provider. This component derives the required setups and 
protocols for setting up the model and handshake the 
execution. 

Contribution to 
achieving the 
T4.2 objectives 

This structure is a platform-level support component that   
• Allows ML model deployment on the infrastructure side 
of a FRACTAL node (leverage from mission mode AI in 
WP5).  
• Allows the FRACTAL edge node to compute the schedule 
predictors.  
• Provides temporal and spatial resource allocation 
strategy (if AI-based scheduling is turned on/ off). 

Scenario Generator 

Description The scenario generator uses the Stanford Network Analysis 
Platform (SNAP) to generate multiple scenarios/ graphs, each 
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consisting of a particular scheduling problem. This component 
takes as input the characteristics of an initial model.  

Although the generated scenarios share some characteristics, 
they all differ in the precedent constraints and the numeric 
values, making it very unlikely to have repetitive samples. It is 
also possible to modify the system's topology by choosing 
between different options or designing a unique one. This 
topology can be fixed for every sample generated or randomly 
assigned. 

Contribution to 
achieving the 
T4.2 objectives 

The dataset created by this component is sufficiently diverse to 
emulate different scheduling problems caused by context 
events. The AI model will utilize the dataset for the learning 
process, acquiring the adaptation properties that the system 
needs in order to react to any possible event.   

GA-Scheduler 

Description A Genetic Algorithm (GA) was chosen as the scheduling tool 
used for generating the solutions for the training process of the 
machine learning model. The GA receives all the scheduling 
graphs generated by the Scenario Generator (WP4T42-03).  
The chromosomes of the GA are set to optimize the processor 
allocation and the job order. The objective function evaluates 
the makespan to find the best feasible schedule.   

Contribution to 
achieving the 
T4.2 objectives 

Part of the Task 4.2 objectives is to provide spatial and 
temporal resource allocation. For example, some applications 
in real time-triggered systems require schedules to meet 
specific deadlines. The Genetic Algorithm is one of the best 
techniques to find the best solutions for scheduling problems 
by guaranteeing low makespans.   

AI Scheduler Model 

Description An Artificial Neural Network (ANN) model is implemented to 
predict task priorities by learning the behavior of the GA 
Scheduler. The dataset used to train the ANN scheduler 
consists of input features extracted from the scenarios created 
by the Scenario Generator (WP4T42-03) and the outputs, 
which are the time priorities of the jobs obtained from the GA 
solutions (WP4T42-04). The input features are selected to 
capture node characteristics, importance and connection with 
the rest of the nodes in the graph. The output features are 
obtained by applying an algorithm that converts the time 
priorities from the GA schedule into a multi-binary format that 
is used to train the ANN model. This format re-orders the 
priorities by comparing the priority values of every job with 
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each other on a one-to-one basis. The neural networks’ training 
parameters were chosen based on the binary accuracy of the 
predictions, keeping in mind that low accuracy values do not 
necessarily indicate an invalid schedule, as the predictions can 
still lead to alternative solutions with different makespans.   

Contribution to 
achieving the 
T4.2 objectives 

The component satisfies the Task 4.2 objectives by providing 
temporal and spatial resource allocation for a single FRACTAL 
node, enhancing the system's dependability while fulfilling the 
timing constraints. It also contributes by decreasing the run-
time of scheduling with AI predictions.  

Schedule Verifier 

Description The Schedule verifier component is a tool that allows us to 
recompute a new schedule using the job priorities learned by 
the ANN model (WP4T42-05). Predicting a whole real time-
triggered schedule solution is not a task that an AI model can 
do by itself since any slight inaccuracy can lead to an incorrect 
schedule and, therefore, to a possible accident. The schedule 
verifier detects any possible error and ensures a correct 
schedule.  

Contribution to 
achieving the 
T4.2 objectives 

The component satisfies the Task 4.2 objectives by providing 
the correctness and safety of the resource allocations at 
development time.  

Hierarchical Metascheduler 

Description The Hierarchical Metascheduler iteratively calls a scheduler (GA 
metascheduler) to generate modified schedules for each 
context event in the context model. The inputs to the 
metascheduler are the application model (AM) describing the 
computational jobs and communication messages for a given 
application. The platform model (PM) describes the system 
architecture on which the application is run. The context 
models (CM) describe all events relevant to the application and 
platform model.   

Contribution to 
achieving the 
T4.2 objectives 

Runtime context events within a system, either at the FRACTAL 
node level or in a set of FRACTAL nodes, are adapted for energy 
efficiency and fault recovery by optimizing the system resource 
allocation (scheduling). The computed schedules allow for 
runtime adaptation of the system to context events. 
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3.1 Document Organization 
The document's structure is as follows: in Section 4, we present a high-level picture 
of the Fractal solutions developed in WP4. Then, in sections 6 and 7, we describe the 
components that provide the necessary support to the VERSAL and PULP platforms 
in the context of the AI functionalities. Next, sections 8 and 9 are dedicated to AI 
scheduling, composed of the AI-based scheduler and the Hierarchical Metascheduler. 
The components within this section are designed to deploy time-critical schedules 
and provide adaptation at run-time. Finally, in section 9, we draw conclusions and 
our future plans. 

 



 

Project FRACTAL 

Title Safety, Security & Low Power Techniques   

Del. Code D4.3   

 

  

 Copyright © FRACTAL Project Consortium 11 of 53 

 

4 High Level Picture 

 

Figure 2 Big picture of the FRACTAL project 

The big picture of the project, illustrated in Figure 2, is a holistic representation of 
the FRACTAL solution. It provides an answer to the use case requirements, which are 
the functional and non-functional needs captured by FRACTAL use cases at the 
beginning of the project. Based on these requirements, a set of features has been 
established to give a technical notion to the requirements. 
 
The components mentioned above, developed in WP4 made of software or hardware, 
participate in fulfilling some of the FRACTAL features. In the following subsections, 
we report how each component is integrated into the big picture. 
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4.1 Capabilities for AI supported adaptability in PULP 
One of the main applications for PULP-based systems is ML inference on the edge. 
This component aims to enhance the resource allocation and computing capabilities 
of PULP-based systems in the context of AI workloads, so it is located on the hardware 
side of the big picture, as shown in Figure 3. Use cases built upon PULP-based IoT 
systems will benefit from the enhanced features, reaching higher energy efficiencies 
when running ML inference on the edge. 

 

Figure 3 Capabilities for AI supported adaptability in PULP integrated in the FRACTAL big picture 

4.2 Versal RPU access to AI acceleration 
Versal RPU, even if used in safety-centric designs, may require access to AI inference 
accelerators to enhance context awareness and autonomous planning of the FRACTAL 
node. The Xilinx Vitis AI-based inference acceleration approaches for Versal are 
typically supported by Linux-based APU applications. This component creates an RPU-
side interface to expose the APU-based AI applications to the RPU application. Figure 
4 shows where this component is located in the big picture of the project. 
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Figure 4 Integration of Versal RPU access to AI acceleration in the big picture 

4.3 AI Scheduling 
The AI scheduling components will be developed at the software level; thus, it could 
be regarded as a part of the software in the edge node of the big picture shown in 
Figure 5. Specifically, the AI models implemented at runtime will use the ML/Tools 
provided by the application and service layer.  

 

Figure 5 Integration of AI Scheduling in the big picture 
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5 Capabilities for AI supported 
adaptability in PULP – WP4T42-01 - 
ETHZ 

5.1 Component description 
PULP-based IoT end nodes have been optimized for energy efficiency. One of the 
main applications targeted by such devices is ML inference directly on the edge. In 
this component, novel microarchitectural modifications, instruction set architecture 
(ISA) extensions and specialized hardware accelerators have been implemented to 
unleash ML capabilities on PULP-based systems. In addition, the software stack has 
been extended to optimize resource allocation. 

5.2 Design and implementation 
To increase the compute capabilities of PULP-based systems, PULPissimo can be 
extended with an acceleration cluster where eight RISC-V cores share a scratchpad 
memory, as shown in Figure 6. The accelerator additionally contains a Direct Memory 
Access (DMA) engine to efficiently move data from PULPissimo to the accelerator and 
vice versa and an event unit for fast wakeup/sleep of the cluster cores. 

 

Figure 6 PULPissimo + Accelerator 

The new accelerated PULPissimo system is conceived to work as follows: (i) 
PULPissimo can be coupled to sensors and manages the communication with the 
outside world, (ii) whenever new data is available for computation, one of the cores 
programs the DMA engine to move the data from PULPissimo to the accelerator, (iii) 
once the data is in the accelerator memory, the cores are woken up by the event unit 
and start computing, (iv) once the computation is completed, the result is moved 
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back from the accelerator to PULPissimo. During normal operation, all these phases 
can happen in parallel. For example, as soon as the first set of data is moved to the 
accelerator, the cores can start computing while the DMA continues moving the rest 
of the inputs. The same can happen towards the end of the computation when the 
cores are still calculating, but the first set of results is already available. 

The standard 32-bit RISC-V ISA has also been extended to further increase the 
performance of the system. Load and store instructions with post increment, 
hardware loops, and SIMD dot product instructions have been introduced to reduce 
overheads, allowing to spend most of the time and energy on the real computation. 
The PULP ISA extension allows for a 10x speedup with respect to vanilla RV32IMC 
cores (see Figure 7). 

 

Figure 7 ISA extension for ML inference 

We explored further enhancements by adding a specialized hardware accelerator 
called HWPE (see Figure 8). HWPEs share the scratchpad memory with the cluster 
core, allowing for efficient data sharing, and are software programmed by the cluster 
cores. Such hardware blocks further specialize the architecture, thus increasing its 
energy efficiency for specific workloads. For example, a convolutional accelerator can 
be added to the system to speed up ML inference. 

 

Figure 8 HWPE 

To efficiently exploit the new features and improve the final user experience, a full 
open-source SW stack is provided (see Figure 9). A neural network model can be 
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trained and quantized through the QuantLab tool (https://github.com/pulp-
platform/quantlab), Dory (https://github.com/pulp-platform/dory) is used as a 
deployment framework, taking care of the tiling, optimized libraries are provided to 
exploit the new instructions, and finally, the PULP SDK (https://github.com/pulp-
platform/pulp-sdk) takes care of the low-level software routine to program the 
accelerator. 

 

Figure 9 SW Stack for ML inference 

Finally, we investigated ISA extensions for low-precision floating-point computing by 
adding dot product instructions that accumulate in a larger format. A SIMD unit 
containing such dot product modules has been integrated into a double-precision 
FPU, enabling up to 7.2x performance increase when computing on FP8 data and 
accumulating on FP16 precision with respect to employing double-precision (see 
Figure 10). 

 

Figure 10 Low-Precision FP dot product extension – Performance results 

 

5.3 Testing and evaluation 
Multiple architectures based on the PULPissimo platform plus acceleration cluster 
have been tested and evaluated on FPGA. Deployment scripts for the Xilinx ZCU102 
FPGA are open-source on the PULP GitHub page (https://github.com/pulp-

https://github.com/pulp-platform/quantlab
https://github.com/pulp-platform/quantlab
https://github.com/pulp-platform/dory
https://github.com/pulp-platform/pulp-sdk
https://github.com/pulp-platform/pulp-sdk
https://github.com/pulp-platform/pulp
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platform/pulp). Partners interested in prototyping their PULP-based use case can use 
such scripts to speed up the testing process. Furthermore, multiple chips have been 
taped out and tested at ETH.  

 Use-Case Integration 

A PULP-based architecture will be used in UC3 (Smart meters for everyone), where 
a smart meter prototype will be designed. A PULP-based IoT system will be connected 
to a camera to take a picture of the display of a mechanical meter, process it to 
extract the information displayed by the meter, and finally send the data over the 
cellular network. A neural network model will be used to extract the information from 
the picture. The ML features provided by PULP will allow for efficient ML inference on 
the edge. 

 

https://github.com/pulp-platform/pulp
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6 Versal RPU access to AI acceleration - 
WP4T42-02 – PLC2  

6.1 Component description 
In FRACTAL nodes based on Versal the safety related hardware isolation is provided 
by physical access separation. This is available in the platform designs and provides 
two compute domains, the real-time cores (RPUs) and the Linux system that typically 
runs on the A72 ARM cores (APU). In such node setups the infrastructure service and 
scheduling part runs on the RPU domain while microservice middleware and 
applications run on the Linux level. 

With the context-aware and autonomous scheduling as derived in WP4 the RPU 
domain will require AI model support to feed decisions on system state changes and 
more. In the Versal ecosystem AI inference applications are accelerated by the Deep 
Learning Processing Unit (DPU) and are typically supported by a runtime layer on 
Linux to setup the model processing and flow control. For larger AI models the DPU 
processing may involve interleaved CPU computation.  

This supporting layer is not readily available for RPU and the CPU computations would 
not map efficiently to RPU as well. This component therefore enables the RPU side to 
utilize the APU as a service to access AI inference accelerators. 

The RPU application in the safety domain is enabled to setup an AI target through 
the APU and trigger inference runs afterwards and retrieve results. RPU gets even 
access to the node orchestration level to support model exchange through the 
FRACTAL system level. 

The corresponding component in the APU system level is the Versal Model 
Deployment Layer (WP3T34-03). 

6.2 Design and implementation 
The block level of the component is displayed in Figure 11. The split between the RPU 
and APU domains also shows the separation between the safety channel and the rest 
of the node design. 
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Figure 11 RPU Access to APU AI Inference Application 

The communication between RPU and APU is established through the OpenAMP 
framework. To achieve a potentially certifiable node the feature set of this framework 
must be restricted.  

The RPU and APU application layer exchange messages on a protocol that allows an 
extensible instruction list, which to date holds the minimally required commands: 

• SETUP:    Load a DPU based model 
• RUN:     Single execution of an inference run 
• RUN_RPTI:    Continuous inference execution 
• STOP:    Stop a continuous execution 
• RETRIEVE_RESULTS:  Retrieve results 

  

The AI inference is either triggered by the command level or by hardware access that 
bypasses the overhead of the communication loop. This secondary trigger path 
requires specific support in hardware setups that needs to be made available during 
the UC integration of the component. 
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6.3 Testing and evaluation 
The setup is tested and based on the Versal FRACTAL reference platform (WP3) that 
is enhanced by the additional components WP3T34-03 Versal Model deployment 
layer, WP4T41-06 Versal Isolation Design to build an augmented platform that needs 
to use the cross-domain communication as described here. 

This augmented platform comprises a standalone FRACTAL node that is used to load 
and trigger a Yolov3 model on the APU by pushing the commands from the RPU code 
side. This model comes with well understood accuracy but the main focus on 
assessing this APU proxy method is to optimize for the worst-case latency.  

The limit of this for a given model needs to satisfy the real-time condition of the RPU 
side processing. The Versal device implementation can generate fast inference frame 
rates with repeatable latency depending on the actual model, while the overhead for 
the communication will contribute a dynamic latency on top that needs to be 
evaluated along the integration with specific UC requirements.  

 Use-Case Integration 

The augmented setup shall be added to the Versal based FRACTAL node in UC8. In 
that context the system level connections can be tested to retrieve AI models 
dynamically. 

 



 

Project FRACTAL 

Title Safety, Security & Low Power Techniques   

Del. Code D4.3   

 

  

 Copyright © FRACTAL Project Consortium 21 of 53 

 

7 AI Scheduling - SIEG 

7.1 Component description  
In safety-critical applications, essential properties of time-triggered systems must be 
preserved. These exhibited properties include avoidance of resource contention 
without dynamic resource arbitration, implicit synchronization, guaranteeing of 
timing constraints, implicit flow control, and fault containment [SIEG-AI1]. Scheduling 
in time-triggered systems is traditionally carried out offline. The scheduling strategies 
for time-triggered systems include mathematical techniques, heuristics, and 
neighborhood search. Adaptation in time-triggered systems is motivated by the need 
to provide energy-efficient operation, fault recovery, and adaptation to any change 
in the system. 

We address a safe and adaptive artificial intelligence (AI) quasi-static scheduling 
approach for time-triggered scheduling problems. The priority of jobs is predicted 
using an AI-based model trained offline. With recent technological advancements 
toward deploying AI accelerators in hardware, AI models can easily be deployed. At 
runtime, adaptation can be triggered upon a context event, such as processing 
element failures. The adaptation is attained by accurately predicting the job priority, 
which is then used to perform an online computation of a new schedule. 

7.2 Design and implementation 
A complete description of the AI scheduling implementation and their components is 
described in [SIEG-AI2]. Four components are developed for implementing AI 
scheduling in a FRACTAL node, as shown in Figure 12: Scenario Generator, GA-
Scheduler, AI-Based Scheduler and Schedule Verifier/ Reconstructor. The scenario 
generator is responsible for generating diverse application models, which are then 
fed into the GA scheduler to obtain schedules associated with each given platform 
and application model. The priorities are extracted from the schedules and used with 
the corresponding application and platform model outputs from the scenario 
generator to create a dataset. This dataset is then used to train a machine learning 
model. 
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Figure 12 AI scheduling components 

 Scenario Generator – WP4T42-03 - SIEG 

The scenario generator, shown in Figure 12, is composed of the Stanford Network 
Analysis Platform (SNAP). SNAP is a general-purpose network analysis and graph 
mining library inspired by the work in [SIEG-AI3], which is used in this work to 
generate multiple scenarios. It makes use of a network theory (or graph theory) 
based approach for developing functions that can be used in the analysis and 
manipulation of large networks. The library takes the inputs from an initial model 
specifying parameters such as the number of jobs, number of platform model 
participants (switches and cores), and the in-degree and out-degree of each job to 
create a graph for the application and the platform model, as shown in Figure 13. 
Each scheduling problem, represented by the mentioned graphs, is expressed using 
JavaScript Object Notation (JSON) files to make data processing easier. The 
information contained inside the files upholds the division between the platform or 
physical model, which specifies the hardware topology in which the system runs, and 
the application or logical model, which contains data regarding the pre-constraints of 
the schedule. 

         

Figure 13 Application and Platform model 
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We required this component to generate synthetic data for the model since we did 
not have any real-world data that we could use for that purpose. The initial 
parameters of the synthetic data can be modified to make it look closer to an actual 
application. For example, it allows changing the system's topology to bus, mesh, or 
manually creating a predefine topology. Depending on the application, parameters 
like jobs' execution time and the messages' size can be modified. Also, the predefined 
constraints can be adjusted by limiting the number of out and in degrees of freedom 
a job will have. The intention is that it can be used by different applications depending 
on the actual use case in which the synthetic data is needed. 

 GA-Scheduler – WP4T42-04 - SIEG 

The scheduler block takes the output platform and application models from the 
scenario generator and finds a feasible schedule for each example. The scheduling 
problem is a well-defined optimization problem that can be tackled with different 
approaches such as mathematical techniques, scheduling heuristics, metaheuristics 
and neighborhood search. In this work, the genetic algorithm (GA), a metaheuristics 
method, is used to compute the schedules for each example. Nevertheless, other 
scheduling approaches, such as list scheduling and Ant Colony Optimization (ACO), 
can be utilized in the scheduler block. In this work, the chromosomes of the GA are 
set to optimize the processor allocation and the job order. The objective function 
evaluates the makespan to find the best feasible schedule. The output schedule is 
obtained from the GA, but only the job priority is fed into the machine learning 
algorithm. 

Three sections form each genome inside the genetic algorithm (see Figure 14):  
 

• Allocation cells: The allocation cells indicate the end system in which a task 
will be executed. The selection inside these cells is restricted to the available 
end systems that are able to execute that particular task. 

• Priority cells: The priority cells indicate the order in which the tasks are 
executed. In conjunction with the application model's pre-constraints, these 
cells determine the schedule sequence.  

• Routing cells: The routing cells select one of the available paths each 
message will take to go from one end system to another. The number of 
available paths can differ depending on the platform model. 

 

Figure 14 Genome cells 
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The optimal GA's behavior varies depending on the model's complexity and size. The 
best performance is obtained by adjusting the following parameters:  
 

• Population 
• Generations 
• Crossover 
• Mutation 
• Replacement population 

 
The GA's output contains the job execution sequence as well as the end systems to 
which they are allocated. The output also includes the job starting time, messages 
injection time, and the route the messages must take. All this information is captured 
in JSON files. 
 

• Since the time it takes for the GA to compute one schedule is high, a whole 
dataset must be executed in parallel. Depending on the server where the GA 
will run, it is possible to adjust the parallelization parameters to the server's 
capabilities, ensuring optimal utilization of the available resources. 

 AI-Based Scheduler – WP4T42-05 - SIEG 

Due to safety considerations, we focused on learning only the priorities of the jobs. 
Relying on a machine learning algorithm to directly predict schedules for a safety-
critical application is not certifiable. Machine learning models are generalized 
approximation models, and time-triggered applications require an exact schedule in 
the event of online schedule adaptation. Therefore, the priorities are predicted, and 
a schedule verification algorithm is enabled to ensure that only correct schedules are 
generated from the prediction. There is no restriction on the machine learning 
algorithm to be deployed in this block. However, a feed-forward artificial neural 
network (ANN) is used in this work to learn the priorities of the tasks. The ANN learns 
the scheduler, which is subsequently used to predict job priorities, after which the 
“schedule verifier” component is deployed to obtain a schedule for the application. 

Input Features 

Inputs and outputs are saved in files in JSON format to simplify the management of 
data. The application and platform models are included in the input files; this 
information is extracted and kept in tables to compute relevant features later. 
According to the directed acyclic graph, the extracted features shown in Table 2 
attempt to describe the job's attributes and relationships with its neighbors. 
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Table 2 Job features 

 

Output Features 

Only the job priorities are collected from the scheduling solutions so that the machine 
learning model can use them as targets. However, the priorities must be transformed 
first because the model anticipates binary labels. These labels are obtained by 
comparing the job priority values with each other on a one-to-one basis, resulting in 
a vector of size n*(n-1)/2, where n is the total number of jobs. Figure 15 shows this 
transformation into a scheduling problem with ten jobs. 

 

 

Figure 15 Job priorities transformation 

S2P algorithm (see Figure 16) shows the process of converting the priorities from the 
GA schedule into a multi-binary format that is used to train the ANN scheduler. This 
format reorders the priorities in a way that directly compares each job's priority to 
the others on a one-to-one basis. 
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Figure 16 S2P algorithm 

An Artificial Neural Network is chosen as the machine learning model to predict the 
job priorities, which requires predicting multiple mutually non-exclusive classes/ 
labels. The implemented ANN is composed of three layers: 

• Input Layer: The number of nodes in this layer is dictated by the number of 
jobs and features extracted.  

• Hidden Layer: The number of nodes in the hidden layer varies according to 
the size of the scheduling problems. It can go from 100 to 1000 nodes. 

• Output Layer: The number of nodes in this layer is determined by the formula: 

n*(n-1)/2, 

where n is the total number of jobs. 

For the activation function, we are using ReLU (Rectifier Linear Unit) after the input 
layer and the Sigmoid function before the output nodes. Since we deal with multi-
label classification, we need to compute the loss from all the labels as a whole. The 
Binary Cross-Entropy Loss (BCE) function is usually employed for binary labels, but 
since our data is not balanced, we have to use a modified version of the BCE called 
′weighted balanced cross entropy′. This function adjusts the BCE by adding 
weighting. The weights are determined dynamically for every batch by identifying 
how many positive and negative classes are present and modifying them accordingly. 
The learning rate of the ANN is 0.001. The number of learning epochs is set to 300. 
The ANN architecture is shown in Figure 17. 
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Figure 17 ANN architecture 

 Schedule Verifier – WP4T42-06 - SIEG 

The ANN does not provide an entire schedule; instead, the output predictions purely 
indicate the importance of each job at the moment of the allocation. Since the 
schedules are generated for safety-critical systems, they must always be correct. The 
schedules are validated and reconstructed by using the predicted values. In the 
allocation step, the end systems in which the jobs are executed are selected based 
on the earliest start time. After obtaining the ANN predictions and inserting them in 
the schedule reconstructor, we can visualize the complete schedules (see Figure 18), 
extract the average makespan and compare it with the Genetic Algorithm and other 
scheduling techniques. This time we chose List Scheduling as one of the fastest 
methods to compare computation times. 

 

Figure 18 Schedule visualization 

The schedule verifier must solve possible collisions between messages. Figure 19, for 
instance, depicts a scenario in which three messages are transmitted simultaneously. 
The verifier's task is to detect the collisions and adjust the messages by delaying 
them depending on the job priorities. 
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Figure 19 Message collision 

7.3 Testing and evaluation 
The deployment components are available on the FRACTAL GitHub page 
(https://github.com/project-fractal/WP4). Partners interested in utilizing them can 
download them and follow the README files before testing.  

The background of this experiment is the use of AI algorithms in time-triggered 
systems to produce schedules when the system changes. Deploying AI algorithms in 
hardware can significantly improve efficiency and latency. Xilinx’s Vitis AI is available 
to translate such AI models to specific IP (DPU) hardware accelerators to help 
researchers to quickly perform inference with these highly evolved algorithms, 
minimizing time and cost. The model deployed in this work was an Artificial Neural 
Network, the framework was Tensorflow2, and the Keras model was imported. 

Since the training process is done offline, the only part that requires deployment is 
the network structure and the weights tuned during the training process. After the 
training process, it is necessary to save the model in the Hierarchical Data Format 
(HDF) or H5 file. The general H5 file includes the structure and weights of the neural 
network. In the subsequent deployment process, the H5 file will be used as the input 
file for quantitative processing.  

 

Figure 20 H5 file generation 

Alexander Flick
specific
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The following python statements are written in the ANN_model.py file to generate 
and save the model. 

 

The H5 file generated by the code above can be imported into the netron.app website 
to visualize the full structure of the model in a clear way (see Figure 21). 

 

Figure 21 ANN layer structure 

The following steps explain the deployment process of the ANN model on the VCK190 
ES1 board. 
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AI model compilation: 

1. Installing a Board Image.  
• Download the SD card system image files from the following links: 

https://www.xilinx.com/member/forms/download/design-license-
xef.html?filename=xilinxvck190-dpu-v2020.2-v1.4.0.img.gz  

Note: The version of the board image should be 2020.2 and the image is only for 
VCK190 ES1 board.  

• Use Etcher software to burn the image file onto the SD card.  

 

2. Download the Vitis AI library  
• Run Linux command: 

$git clone --recurse-submodules https://github.com/Xilinx/Vitis-AI/tree/1.4  

Or download directly from https://github.com/Xilinx/Vitis-AI/tree/1.4   

• Go to the Vitis AI folder (workplace) under the download file path  

$cd Vitis-AI  

In this experiment, Vitis-AI-v1.4 is the library used. But the latest version is Vitis-
AI2.0. The Vitis-AI-v1.4 version is selected, because the FPGA used in the experiment 
is the VCK190 ES1 board. The Pre-image provided by Xilinx for the VCK190 ES1 board 
is xilinx-vck190-dpuv2020.2-v1.4.0.img.v1.4.0 and corresponds to the 1.4.0 version 
of Vitis-AI. If another version is selected an error will occur. 

 

3. Docker needs to be downloaded for the compilation process. Docker is a working 
environment specially configured by Xilinx for users, which can be considered as 
a virtual machine. After downloading the Docker container, follow the instructions 
below to download the latest Docker, which runs on the CPU.  
 

• Pull Vitis AI Image 

$docker pull xilinx/vitis-ai-cpu:1.4.916 

• Launch the Docker Image:   

$./docker_run.sh xilinx/vitis-ai-cpu:1.4.916  

• Activate framework tensorflow2:  

$conda activate vitis-ai-tensorflow2 
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4. The compilation starts and the xmodel file is be generated. Before compiling, it is 
necessary to organize the data and quantize the model. Run "bash -x compile.sh" 
to compile the quantized model. The compile.sh file includes the following: 

 

The input ARCH is the hardware structure. The VCK190 ES1 board is used in this 
experiment, and the DPU is DPUCVDX8G. The input Model is the model trained on 
the host and the quantized h5-file is the weight and bias file of the neural network. 
After the execution of the script file the FRACTAL.xmodel is generated. This file 
contains hardware information and frame structure.  

 

Figure 22 Compilation process of AI models 

Quantization process: The parameters of a general neural network are 32-bit floating 
point numbers. However, deploying deep learning models on edge devices requires 
consideration of device storage space, memory size, operating power consumption, 
latency, and other issues. The AI quantizer can reduce computational complexity 
without compromising prediction accuracy by converting 32-bit floating-point weights 
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and activation functions to fixed-point such as INT8. Fixed-point network models 
require less memory bandwidth and are, therefore, faster and more power-efficient 
than floating-point network models. The disadvantage is that there will be a loss of 
precision, but it is generally within an acceptable range. If the actual accuracy is not 
good, fine-tuning within the quantization tool flow can improve accuracy. 

5. Docker exit. The compiled FRACTAL.xmodel needs to be copied to the /root/home 
path of the SD card.  
 

AI application 

After the quantified fractal models and the data to be processed are ready, they need 
an application to invoke them and make the predictions. This application is called AI 
application. 

The figure below depicts the process: 

 

Figure 23 AI application 

The most important block above is the intermediate one that involves the execution 
of the ANN model by the DPU (DPUCVDX8G). The FRACTAL.xmodel file already 
integrates the ANN model, the VCK190 board and the corresponding DPUCVDX8G 
information.  

If a layer cannot be quantized, such as the softmax layer, the developer needs to 
add an extra piece of code after the DPU running model section to make it run on the 
CPU. In addition to the DPU processing model, there is an algorithm for pre-and post-
processing. The preprocessing function is to normalize the data and input it to the 
DPU; Post-processing can be used as a test to check the accuracy of DPU inference.  

Since the python program is used in this experiment, the developer can directly use 
the python app_mt.py command on the arm core of VCK190 to compile the AI 
application. If it is a C program, it can be cross-compiled on an x86 system first and 
then put the generated executable file on the SD card and run it directly. 

The input data should also be placed in the /root/home path of the SD card (the 
specific location should be coordinated with the executable file). 
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Start board 

Board setup is quick and easy, the figure below shows the instructions and 
diagrams for setup. Both SW11 and SW1 are [4:1]0001. 

 

Figure 24 SD Launch 

VCK190 ES1 board’s DPU Pre-image download link: 
https://www.xilinx.com/member/forms/download/design-license-
xef.html?filename=xilinxvck190-dpu-v2020.2-v1.4.0.img.gz  

 

Testing 

We conducted three classes of experiments for our evaluation. The three classes 
include experiments using the list scheduler, ANN-based scheduler, and GA-based 
scheduler. For each class, the 4000 scheduling problems from the testing data 
consisting of 10, 40, 70, and 100 jobs are evaluated. Figure 25 displays a plot of the 
makespans against the number of jobs for each experiment class. It can be seen that 
the schedules computed by the GA-based approach have better makespans 
compared to the list scheduler and the ANN model. Figure 25 also shows that the list 
scheduler has lower makespans than the ANN-based approach for a job size of 10 
and 40. However, as the number of jobs increases, the ANN produces makespans 
lower than the list scheduler, as seen in the case of 70 and 100 jobs. In real time-
triggered systems, we can expect a higher number of jobs, which will increase the 
gap of the makespans between the list scheduling and the ANN-based approach. 
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Figure 25 Makespan comparison 

The implication of the contribution is the applicability of the ANN-based approach for 
dynamic reconfiguration of safety criticality application in response to context events. 
A GA-based scheduler is not desirable for real-time systems with stringent 
computational time requirements. In Figure 26, we show the computational times for 
each of the evaluations carried out. The computation time of the GA-based approach 
is much more than that of the list scheduler and the ANN-based scheduler. It can be 
seen that the computation time of the GA-based approach is much more than that of 
the ANN-based scheduler. 

 

Figure 26 Computation time comparison 

 Use-Case Integration 

AI scheduling will be used in UC8 (Autonomous warehouse shuttles), where a 
FRACTAL concept will be implemented as an automated storage and retrieval solution 
to increase adaptability and reliability. The handling, storage and retrieval of 
warehouse goods by automated shuttles will be optimized using the components 
developed in the current work package by adapting the components to the use case. 
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In addition, an AI scheduler will organize and analyze the generated data sets 
optimally to improve warehouse throughput. 

7.4 Research on link prediction 
Alternative approaches with the potential to solve the time-triggered scheduling 
problems have been addressed. Link prediction using GNNs is one approach that 
caught our attention but is still in its early stages. 

Link prediction objective is to predict whether an edge exists between two particular 
edge nodes in a graph/ network. It has many applications, such as network 
reconstruction [SIEG-AI4], recommender systems [SIEG-AI5], and spam mail 
detection [SIEG-AI6]. 

We took as reference the work carried out in [SIEG-AI7]. In this paper, M. Zhang and 
Y. Chen proposed a link prediction framework called "SEAL" to simultaneous learn 
from local enclosing subgraphs, embeddings and attributes based on graph neural 
networks. Furthermore, they demonstrated the framework's potential in link 
prediction problems by comparing it to other heuristics and network embedding 
algorithms.   

Original implementation extracts local enclosing subgraphs around links from a big 
graph as input, and outputs how probable it is that the connections exist. A GNN 
network is trained over the enclosing subgraphs around the missing links. In the 
training process, there must be a differentiation between links, treating the edges in 
the graph as positive samples and non-existent edges as negative samples. 

In this work, we modelled the scheduling solution provided by the GA as a 
heterogeneous graph (see Figure 27), by combining the application and the platform 
models. This graph consists of three different node sets, one for the jobs, the other 
for the processors, and the third represents the routers/ switches. Directed and 
undirected edges satisfy specific constraints based on the type of nodes they connect. 
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Figure 27 Scheduling solution modeled as a heterogeneous graph 

The undirected dotted lines join each job with a processor, meaning this job will be 
executed there. For example, job four should run on end system five based on the 
scheduling solution. The heterogeneous graphs are used as input to our GNN link 
prediction model. The objective after training the model is to see how effective the 
model is in predicting partially or the totality of the undirected edges between the 
tasks and the end systems.  

The dataset for this experiment consists of 40,000 heterogeneous graphs 
representing the scheduling solutions obtained from the GA algorithm for each of the 
10-job and 40-job application models. For model training, 39,000 heterogeneous 
graphs were used whereas the remaining 1000 are used to evaluate the model 
performance. 

The predicted results are compared with the original deleted value to get the accuracy 
of the prediction of the model. The accuracy is shown in the following tables. 

Table 3 10-Job Dataset results 
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Table 4 40-Job Dataset results 

 

Table 5 Prediction accuracies 

 

We can observe from the results above that the prediction accuracy is much lower 
than the training accuracy but more consistent with the testing accuracy due to a 
certain degree of overfitting in the training process. However, the testing accuracy 
can more accurately reflect the results of the model operation. The more edges 
masked during the training process, the less accurate the final prediction result will 
be. The highest recorded prediction accuracy was 0.41.  

Several factors contributed to the obtained results, but there is clear potential in the 
link prediction approach applied to scheduling time-triggered systems. Future tests 
and research will determine the possibility of applying this alternative method with a 
specific use case of the FRACTAL project.  
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8 Hierarchical Metascheduler – WP4T42-
07 - SIEG 

8.1 Component description  
Time-triggered systems require a schedule to avoid resource contention, error 
propagation, and deadline misses when executing a system application. While 
scheduling time-triggered systems allow for temporal predictability, adaptation to 
runtime events is challenging since scheduling decisions are decided offline, and the 
static schedule is deployed online. A static schedule defines such global allocations 
of the start times of tasks, execution time and resource allocation of tasks. Similarly, 
the communication traffic of the system is described, such as the injection time of 
messages into the network-on-chip (NoC) and its routing information.  

Battery-operated devices could benefit from runtime context events such as a 
dynamic slack in task execution where the task is completed before its scheduled 
worst-case execution time (WCET). The system's dependability must be maintained 
where a crash event leads to hardware resources not being accessible. Task 
reallocation could be motivated by changing application priorities or thermal 
management, in which high-intensity tasks are moved to cooler cores to prevent 
system overheating. For each scenario, context-specific adaptation is accomplished 
by switching the system schedule to an aligned schedule adapted to the context to 
avoid system failure brought on by a schedule change. 

The Hierarchical Metascheduler (HM) introduced in D4.1 and presented in [SIEG-HM1] 
is an offline tool to compute a Multi-schedule Graph (MSG) for hierarchical time-
triggered systems. The MSG facilitates adaptation at runtime through traversing the 
graph from one node to the next. It is also a directed acyclic graph where each node 
in the graph is a system schedule, and each directed edge is the occurrence of a 
context event during the execution of the schedule.  

In addition, an optimization algorithm is implemented to manage the MSG size as the 
number of context events increases. In computing schedules adapted for slack 
events, for instance, a re-convergence horizon assures that the new schedule may 
only deviate from its predecessor during a time window in which slack events result 
in energy savings. Furthermore, the re-convergence horizon permits paths re-
convergence in the MSG, reducing the number of generated schedules. 

The generated MSG suffers from state explosion issues where the MSG's size 
increases exponentially, rendering it unusable in online mode. Our proposed model 
uses the MSG generated by the metascheduler to train different AI models that will 
be deployed at runtime. The models explored are Graph Neural Network (GNN) based 
model, Artificial Neural Network, Encoder/Decoder Neural Network and Random 
Forest Classifier. The metascheduler generates an MSG at design time, which is then 
used to train the AI models to predict the temporal priorities of the following schedule. 
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8.2 Design and Implementation 
The HM requires an application (AM), platform (PM), and context model (CM) to 
generate the MSG. A new schedule is computed for every combination of context 
events in the context model, resulting in a tree of schedules linked by those events, 
referred to as the multi-schedule graph (MSG). An adapted schedule, described by 
the schedule model (SM), is a synchronised computation and communication 
schedule for each context event.  

 Platform Model (PM) 

The PM describes the computational and communication resources on which a system 
application is executed. The PM represents the runtime hardware architecture of the 
FRACTAL node consisting of processing elements (PEs) for the execution of 
application tasks. Communication resources facilitate data communication between 
application tasks from one PE to the next. The PM also describes hardware 
communication resources such as gateways to enable communication between 
nodes, a set of routers which make up the time-triggered (TT) network-on-chip 
(TTNoC) and network switches representing the TT off-chip communication network. 
The bi-directional physical links interconnecting the various components of the PM 
further contribute to describing the hardware architecture, such as in the topology of 
the TTNoC, which is a 2D mesh. Each PE accesses the TTNoC through a local router. 
Messages between nodes are communicated through the TT off-chip communication 
network, where gateways within each node provide a bridge between the on-chip 
communication network (TTNoC) and the TT off-chip communication network, as 
illustrated in Figure 28. 

 

Figure 28 Hierarchical Platform Model 

Each communication resource in the PM is modelled with a constant delay factor that 
adds to the message hop time over the resource. In addition, each link has a link 
speed and bandwidth, contributing to the message routing rate between 
communication resources. 
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 Application Model (AM) 

Similar to the PM, the application model (AM) describes the application to be executed 
on the platform comprising tasks and messages. As illustrated in Figure 29, a directed 
message from one task to another indicates dependencies between tasks such that 
successor tasks are performed after parent tasks. In addition, the AM describes the 
characteristics of tasks pertinent to the TT system, such as the worst-case execution 
time (WCET) of tasks, representing the computational cost of executing the task on 
a PE. Tasks are also modelled with deadlines, a property of TT applications indicating 
when a task must be completed. Tasks can also be constrained to a node, such as in 
the case of data collection tasks constrained to sensor nodes. Finally, each message 
in the AM is characterised by a source (sender task), destination (receiver task) and 
message size. 

 

Figure 29 Application Model (AM) 

 Context Model (CM) 

The context model (CM) describes all context events adaptable to at runtime by the 
platform. At runtime, where a task is completed earlier than its WCET, a slack event 
is described in the CM, which is the difference between the WCET and runtime 
execution time. A failure event in the CM describes a hardware resource permanently 
unavailable to execute a system service. For example, a PE crash or a broken link in 
the communication resource. A thermal event in the CM describes a scenario where 
the temperature threshold of a resource has been exceeded. 
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 Schedule Model (SM) 

The schedule model (SM) is a temporal and spatial mapping of the AM to the PM. 
Each application task in the AM is mapped to a PE in the PM (spatial allocation) at 
guaranteed timeslots (temporal allocation) for the execution of the application. 
Messages in the AM are also mapped on a source-to-destination path through the 
TTNoC and TT off-chip communication network (spatial allocation), as illustrated in 
Figure 30. For each message, an injection time is specified to avoid resource 
contention and collisions in routing (temporal allocation). Routing messages in the 
SM also ensures that precedence constraints between sender and receiver are 
preserved. 

 

Figure 30 Schedule Model (SM) 

Each SM is validated against some conditions to prevent runtime system failure due 
to the deployment of schedules containing errors. Conditions checked against each 
SM include: 

• for all jobs in the AM, there is a corresponding temporal and spatial allocation 
to the PM 

• for all jobs allocated to any PE in the PM, there are no temporal overlaps in 
the guaranteed allocation slot 

• for all messages in the AM, there is a corresponding temporal and spatial 
allocation to the PM 

• for all message allocations, injection times of messages are after the finish 
times of sender tasks 

• all constrained tasks are allocated after the arrival of a preceding message 
• for all communication resources in the PM, there are no temporal collisions in 

the routing of messages 

 Multi-schedule Graph (MSG) 

The Hierarchical Metascheduler (HM) generates an MSG for every CM. The creation 
of the MSG is described in Figure 31. Each event in the CM is applied to the AM or 
PM, and a new schedule is created, representing an event-specific adaptation of the 
system application. Each new schedule is added to the MSG.  
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Figure 31 GA-based metascheduler algorithm 

A link between two schedules is defined by a context event signifying a transition 
from a current schedule to an adapted schedule, as illustrated in Figure 32. The MSG 
is a graph of schedules and events used by the FRACTAL node at runtime for 
adaptation to runtime events by switching the current system schedule from one 
node to the next in the MSG. 
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Figure 32 Multi-schedule Graph (MSG) 

 AI Metascheduling 

After the generation of the MSG described in the previous chapter, an AI model needs 
to be developed. The AI Metascheduling extracts the data from the MSG at design 
time for the training process to subsequently make the predictions at runtime.    
 
AI Metacheduling consists of two sections: 
 

• AI Model: The fundamental idea of an AI model is to capture the structure of 
a scheduling graph, the relation of a schedule with another schedule as the 
result of a context event. The AI model is trained to predict the output 
temporal priorities. After the temporal priorities of the valid schedule are 
generated, they are sent to the reconstruction Model.  

• Reconstruction and Safety check: This component takes predicted 
temporal priorities and performs a schedule reconstruction. In addition, it 
performs safety checks to make sure precedence constraints are not violated. 
The predicted temporal priorities decide the order in which the tasks are 
allocated. The spatial allocation is done based on the communication costs 
and the earliest start time of the jobs. Finally, a second safety check is 
performed to avoid message collisions.  
 

Figure 33 shows the flow diagram of the Hierarchical Metascheduler by dividing the 
implementation into design time and runtime. 
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Figure 33 Hierarchical Metascheduler implementation diagram 

8.3 Testing and evaluation 
The deployment component is available on the FRACTAL GitHub page 
(https://github.com/project-fractal/WP4). Partners interested in utilizing them can 
download them and follow the README files before testing.  

The Genetic Algorithm (GA) metascheduler was used to generate the samples for an 
application model containing the tasks and context events. The AI models evaluated 
were RFC, ANN, E/D NN and GNN. A more extended explanation of the development 
of these models can be found in [SIEG-HM2] and [SIEG-HM3]. 

In [SIEG-HM2] there were investigated the performance of RFC, ANN and E/D NN. An 
application model was created for five different job sizes: 15 jobs, 20 jobs, 30 jobs, 
40 jobs and 60 jobs, all of them with diverse input feature sizes. The metascheduler 
was deployed using one platform model. The TensorFlow library is used to implement 
the ANN and the E/D NN. The Sequential class is used to create a fully connected 
(dense) ANN. Three hidden layers are configured with 35, 18, and 10 neurons for the 
first, second, and third layer, respectively. Based on the outcomes of numerous trials, 
these neuron sizes and the number of layers were chosen. The input and output sizes 
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are based on the number of features of each dataset, as explained above. A learning 
rate of 0.001 is configured, and the batch size is set to 128. For the E/D NN, an 
encoding dimension of 64 is selected as optimal after multiple trials. 

The Scikit-Learn (Sklearn) python library is used for the Random Forest Classifier 
model, with a maximum depth of 10, a minimum sample leaf of 5, a max feature of 
150, and 50 trees. These parameters were attained using the “GridSearchCV” class. 

Table 6 Detailed performance evaluation of the models (RFC, ANN and E/D NN) 

Model # Jobs Input 
feature size 

Output 
feature size 

Accuracy 

Random 
Forest 
Classifier 

15 
20 
30 
40 
60 

339 
513 
609 
873 
1233 

180 
300 
690 
1320 
3120 

95.33% 
80.39% 
77.25% 
82.34% 
60.94% 

Artificial 
Neural 
Network 

15 
20 
30 
40 
60 

339 
513 
609 
873 
1233 

180 
300 
690 
1320 
3120 

86.86% 
85.94% 
83.60% 
81.23% 
81.05% 

Encoder/Deco
der Neural 
Network 

15 
20 
30 
40 
60 

339 
513 
609 
873 
1233 

180 
300 
690 
1320 
3120 

98.39% 
96.36% 
94.84% 
92.47% 
87.67% 

 

Table 6 shows the model accuracies against the number of jobs. E/D NN is seen to 
perform better than RFC and ANN. The highest accuracy was attained across all job 
sizes. Nevertheless, accuracy declines as the number of jobs increases. The 
decreasing accuracy is due to the fixed model structure and the increasing complexity 
model. 

Similarly, the accuracy of the ANN model also reduces with the increasing number of 
jobs. The decrease in accuracy is not as much as both E/D NN and RFC. The 
decreasing accuracy for ANN ranges from 86.86% to 81.05%. In contrast, the 
decreasing accuracy for E/D NN ranges from 98.39% to 87.67% and RFC from 
95.33% to 60.94%. The RFC performed more than the ANN for small job sizes but is 
the most unstable model with varying job sizes. For this reason, it can be drawn that 
the RFC does not provide a desirable generalized model for the metascheduling 
application when the model structure is fixed. 

GNN 

[SIEG-HM3] deployed a Graph Neural Network to learn the multi schedules from the 
metascheduling algorithm required for adaptation. Py-Torch geometric library was 
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used to perform classification on the MSG’s irregular data structure and train a 
continuous kernel-based convolutional operator GNN based model. The model utilizes 
different Multi-Layer Perceptrons (MLPs) that contains 2 layers for edge features, and 
4 layers for node features, having a total of 192,957 adjustable weights. Schedules 
generated from the GNN model were compared to the schedules from the GA 
metascheduler to determine the quality of schedules produced in terms of makespan. 
In addition, we compared our approach to schedules generated by the List scheduling 
(LS) technique. The LS uses the bottom level to determine task temporal priorities 
while the GNN based scheduler uses priorities learned from the GA. The schedules 
are categorized according to the number of tasks that occurred after the context 
event time in each schedule of the MSG.  

Figure 34 represents a schedule example in which a context event occurred during 
task id 4. In this example, we considered as the context event a slack of 50%. Tasks 
that started before the event occurrence remain the same. However, to take 
advantage of the slack event, we invoke the metascheduler to recompute a new 
schedule on the remaining tasks to adapt to the scenario. By so doing, we get a 
better makespan which can then be utilized for energy saving. 

  

Figure 34 Schedule reconfiguration due a slack event 

Each sample in the generated 16,384 samples is categorized according to the number 
of modifiable tasks. And each category is tested separately on all the metascheduling 
algorithms. 

Throughout the training process, the accuracy of the GNN inference model training 
operation is calculated by validating 10% of the training dataset for each epoch. The 
results show a training accuracy of 97% at the end of training at 180 epochs. In 
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addition, 20% of the entire dataset was used for accuracy validation testing, an 
accuracy of 76% was obtained. 

Figure 35 shows the output results for the makespans for each schedule generated 
by the GA, GNN and LS. 

 

 

Figure 35 Makespan comparison 

Throughout the dataset, each schedule in the MSG is given a label that would define 
the number of modifiable tasks in the schedule. This is determined by the occurrence 
time of the context event itself. Schedules with the same labels are grouped together 
and compared with different meta-scheduling algorithms. The results show that when 
the scheduling problem is simple with less than ten modifiable tasks, all meta-
scheduling algorithms perform almost the same, and the GNN performs the worst 
with an average ranging from 10 to 20-time units' difference from the GA and LS. 
However, when the complexity of the scheduling problem is increased with a more 
significant number of tasks, the quality of makespan for the list scheduling falls 
behind GNN and GA techniques. The results show that in terms of makespan quality, 
the GA ranks first, followed by the GNN at rank 2, and finally, the LS. GA is unsuitable 
for hard real-time systems due to its unpredictable high timing and computational 
requirement. On the other hand, the LS is desirable for hard real-time applications 
due to its computational speed compared to the GA. Nevertheless, since the 
makespan quality is nowhere compared to the GA, the proposed GNN technique 
provides a way to utilize the benefits of the GA in application with stringent timing 
requirements. 
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The Vitis AI of the Versal board cannot support the structure of GNN models; 
however, the ANN model was implemented as a substitute, proven to have good 
results. 
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International Conference on Emerging Technologies and Factory Automation (ETFA), IEEE. 

[SIEG-HM3] Alshaer, S., Lua, C., Muoka, P., Onwuchekwa, D., & Obermaisser, R. (2022). Graph 
Neural Networks Based Meta-scheduling in Adaptive Time-Triggered Networks [Unpublished 
manuscript]. Department of Embedded Systems, University of Siegen. 
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9 Conclusions 
The preliminary implementations of the AI-based algorithms for safe and efficient 
temporal resource allocation that were presented in the previous deliverable D4.1 
have been developed in this document. In addition, several building blocks and 
components have been developed to assist in accomplishing the T4.2 objectives and 
might be demodulated or used by any Use Case. Specifically, these are capabilities 
for AI supported adaptability in PULP, Versal RPU access to AI acceleration, and AI 
scheduling components. The design, implementation, testing, and evaluation of these 
components have been described in detail. 
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MLP Multi-layer Perceptron 
MMU Memory Management Unit 
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QoS Quality of Service 
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