

D4.3 FRACTAL AI-Based Algorithms for
energy-efficient and safe temporal resource

allocation
Deliverable Id: D4.3

Deliverable name: FRACTAL AI-Based Algorithms for energy-
efficient and safe temporal resource
allocation

Status: Final
Dissemination level: PUBLIC

Due date of deliverable: 2022-10-31 (M26)
Actual submission date: 2020-10-21

Work package: WP4 “Safety, Security & Low Power
Techniques”

Organization name of lead
contractor for this

deliverable:

SIEG

Authors: Carlos Lua, University of Siegen
Daniel Onwuchekwa, University of Siegen
Pascal Muoka, University of Siegen
Alexander Flick, PLC2
Luca Bertaccini, ETHZ

Reviewers: Artur Kaufmann (BEEA), Alexander Flick (PLC2)

Abstract:
This deliverable aims to report the results and implementations of
T4.2 FRACTAL AI-Based Algorithms for energy-efficient systems
and safe temporal resource allocation. The deliverable reports the
development of the needed support for AI capabilities by PULP and
VERSAL platforms, the AI scheduling components for the space and
temporal allocation of resources and the adaptation provided by a
Hierarchical Metascheduler.

Co-funded by the Horizon 2020 Programme of the European Union
under grant agreement No 877056.

This project has received funding from the ECSEL
Joint Undertaking (JU) under grant agreement
No 877056.

Project FRACTAL

Title Safety, Security & Low Power Techniques

Del. Code D4.3

 Copyright © FRACTAL Project Consortium 2 of 53

Content

1 History ... 4

2 Summary ... 5

3 Introduction .. 6

3.1 Document Organization ... 10

4 High Level Picture ... 11

4.1 Capabilities for AI supported adaptability in PULP 12

4.2 Versal RPU access to AI acceleration ... 12

4.3 AI Scheduling .. 13

5 Capabilities for AI supported adaptability in PULP – WP4T42-01 - ETHZ 14

5.1 Component description ... 14

5.2 Design and implementation ... 14

5.3 Testing and evaluation .. 16

 Use-Case Integration .. 17

6 Versal RPU access to AI acceleration - WP4T42-02 – PLC2 18

6.1 Component description ... 18

6.2 Design and implementation ... 18

6.3 Testing and evaluation .. 20

 Use-Case Integration .. 20

7 AI Scheduling - SIEG .. 21

7.1 Component description ... 21

7.2 Design and implementation ... 21

 Scenario Generator – WP4T42-03 - SIEG 22

 GA-Scheduler – WP4T42-04 - SIEG .. 23

 AI-Based Scheduler – WP4T42-05 - SIEG 24

 Schedule Verifier – WP4T42-06 - SIEG .. 27

7.3 Testing and evaluation .. 28

 Use-Case Integration .. 34

7.4 Research on link prediction .. 35

8 Hierarchical Metascheduler – WP4T42-07 - SIEG .. 39

8.1 Component description ... 39

8.2 Design and Implementation ... 40

Project FRACTAL

Title Safety, Security & Low Power Techniques

Del. Code D4.3

 Copyright © FRACTAL Project Consortium 3 of 53

 Platform Model (PM) ... 40

 Application Model (AM) ... 41

 Context Model (CM) .. 41

 Schedule Model (SM) .. 42

 Multi-schedule Graph (MSG) .. 42

 AI Metascheduling .. 44

8.3 Testing and evaluation .. 45

9 Conclusions ... 50

10 List of figures ... 51

11 List of tables .. 52

12 List of abbreviations.. 53

Project FRACTAL

Title Safety, Security & Low Power Techniques

Del. Code D4.3

 Copyright © FRACTAL Project Consortium 4 of 53

1 History

Version Date Modification reason Modified by

0.1 2022-05-31 First contributions Authors

0.2 2022-07-15

Refine contributions and
outline tests

Authors

1.0 2022-07-31 Draft version SIEGEN

2.0 2022-08-30 Refine text and figures SIEGEN

3.0 2022-10-18
Addressed comments from
the reviewers.

SIEGEN

Project FRACTAL

Title Safety, Security & Low Power Techniques

Del. Code D4.3

 Copyright © FRACTAL Project Consortium 5 of 53

2 Summary
This deliverable aims to report the outcomes of T4.2 on FRACTAL AI-Based
Algorithms for energy-efficient and safe temporal resource allocation. The results of
the implementations carried out in the task are presented according to the
components developed, which reflect the task's objectives.

The work in T4.2 was focused on implementing AI models that can contribute to
energy-efficient systems and the allocation of resources at the node and system level.
The necessary support for AI capabilities by PULP and VERSAL platforms is described
in chapters 5 (ETH) and 6 (PLC2), respectively. The AI scheduling components
developed are described in chapter 7 (SIEG). The task focused on the space and
temporal allocation of resources. This allocation was extended to a hierarchical level
in chapter 8, where adaptation and energy-efficient challenges were tackled.

Project FRACTAL

Title Safety, Security & Low Power Techniques

Del. Code D4.3

 Copyright © FRACTAL Project Consortium 6 of 53

3 Introduction
The goal of WP7 is to develop safety, security and low-power services for individual
FRACTAL nodes. In this document, we will shed light upon AI-based algorithms for
energy-efficient and safe temporal resource allocation for FRACTAL systems
extending the preliminary implementation reported in the previous deliverable D4.1.
The development will include both the node-level (i.e., individual FRACTAL nodes) as
well as the system level (i.e., distributed systems comprised of FRACTAL nodes) in
accordance with the Fractal system architecture depicted in Figure 1. The resource
allocation strategies at both levels seek to increase a system's dependability and
energy efficiency while meeting the scheduling limitations. Besides general-purpose
computational resources and communication networks, AI resources, such as tensor
units, GPUs, and programmable logic, will be supported as the resource allocation
target. Moreover, we are addressing runtime changes within a system by developing
a semi-static time-triggered resource manager which is invoked after any context
events, such as changes within a system at runtime.

Figure 1 Fractal system architecture

This task's strategic objective is to guarantee the FRACTAL system's energy efficiency
and resource allocation. To accomplish this objective, the task was realized by several
building blocks/ components contributing to fulfilling the T4.2 objectives, which are
reusable and could be demodulated by any use case (UC). A brief description of each
component and how they contribute to fulfilling the T4.2 objectives are reported in
Table 1.

Project FRACTAL

Title Safety, Security & Low Power Techniques

Del. Code D4.3

 Copyright © FRACTAL Project Consortium 7 of 53

Table 1 Components brief description and their contribution to fulfilling the T4.2 objectives

Capabilities for AI supported adaptability in PULP

Description The component aims to enhance existing PULP platforms to
support resource allocation in the context of AI workloads.
One of the main applications for PULP-based systems is ML
inference on the edge. Further, computing capabilities for
inference on the edge are continuously being added to the
system (e.g., hardware accelerators, instruction set
architecture extensions). Moreover, new features in the
software stack are investigated to efficiently map a specific
application to the resources available at the hardware level.

Contribution to
achieving the
T4.2 objectives

The component satisfies the objective of the task through:
• Exploring resource allocation optimizations on the
PULP platform.
• Extending computing capabilities for inference on the
edge.

Versal RPU access to AI acceleration

Description Enhance RPU libraries to (1) access APU-based AI as a service
and (2) enable local AI [acceleration] deployment from RPU.

The RPU is running in the context of a time-triggered multicore
architecture and needs to respond under real-time conditions
for proper scheduling. Therefore, the proposed adaptive
scheduling mechanisms rely on ML model inference to decide
on actual adaptation.

The RPU triggers an offloaded (accelerated) AI model in the
Versal AI Engines to respond with low latency inference results.
To coordinate the larger-scale task of setting up the ML model
(loading), the RPU deploys the APU in Versal as a service
provider. This component derives the required setups and
protocols for setting up the model and handshake the
execution.

Contribution to
achieving the
T4.2 objectives

This structure is a platform-level support component that
• Allows ML model deployment on the infrastructure side
of a FRACTAL node (leverage from mission mode AI in
WP5).
• Allows the FRACTAL edge node to compute the schedule
predictors.
• Provides temporal and spatial resource allocation
strategy (if AI-based scheduling is turned on/ off).

Scenario Generator

Description The scenario generator uses the Stanford Network Analysis
Platform (SNAP) to generate multiple scenarios/ graphs, each

Project FRACTAL

Title Safety, Security & Low Power Techniques

Del. Code D4.3

 Copyright © FRACTAL Project Consortium 8 of 53

consisting of a particular scheduling problem. This component
takes as input the characteristics of an initial model.

Although the generated scenarios share some characteristics,
they all differ in the precedent constraints and the numeric
values, making it very unlikely to have repetitive samples. It is
also possible to modify the system's topology by choosing
between different options or designing a unique one. This
topology can be fixed for every sample generated or randomly
assigned.

Contribution to
achieving the
T4.2 objectives

The dataset created by this component is sufficiently diverse to
emulate different scheduling problems caused by context
events. The AI model will utilize the dataset for the learning
process, acquiring the adaptation properties that the system
needs in order to react to any possible event.

GA-Scheduler

Description A Genetic Algorithm (GA) was chosen as the scheduling tool
used for generating the solutions for the training process of the
machine learning model. The GA receives all the scheduling
graphs generated by the Scenario Generator (WP4T42-03).
The chromosomes of the GA are set to optimize the processor
allocation and the job order. The objective function evaluates
the makespan to find the best feasible schedule.

Contribution to
achieving the
T4.2 objectives

Part of the Task 4.2 objectives is to provide spatial and
temporal resource allocation. For example, some applications
in real time-triggered systems require schedules to meet
specific deadlines. The Genetic Algorithm is one of the best
techniques to find the best solutions for scheduling problems
by guaranteeing low makespans.

AI Scheduler Model

Description An Artificial Neural Network (ANN) model is implemented to
predict task priorities by learning the behavior of the GA
Scheduler. The dataset used to train the ANN scheduler
consists of input features extracted from the scenarios created
by the Scenario Generator (WP4T42-03) and the outputs,
which are the time priorities of the jobs obtained from the GA
solutions (WP4T42-04). The input features are selected to
capture node characteristics, importance and connection with
the rest of the nodes in the graph. The output features are
obtained by applying an algorithm that converts the time
priorities from the GA schedule into a multi-binary format that
is used to train the ANN model. This format re-orders the
priorities by comparing the priority values of every job with

Project FRACTAL

Title Safety, Security & Low Power Techniques

Del. Code D4.3

 Copyright © FRACTAL Project Consortium 9 of 53

each other on a one-to-one basis. The neural networks’ training
parameters were chosen based on the binary accuracy of the
predictions, keeping in mind that low accuracy values do not
necessarily indicate an invalid schedule, as the predictions can
still lead to alternative solutions with different makespans.

Contribution to
achieving the
T4.2 objectives

The component satisfies the Task 4.2 objectives by providing
temporal and spatial resource allocation for a single FRACTAL
node, enhancing the system's dependability while fulfilling the
timing constraints. It also contributes by decreasing the run-
time of scheduling with AI predictions.

Schedule Verifier

Description The Schedule verifier component is a tool that allows us to
recompute a new schedule using the job priorities learned by
the ANN model (WP4T42-05). Predicting a whole real time-
triggered schedule solution is not a task that an AI model can
do by itself since any slight inaccuracy can lead to an incorrect
schedule and, therefore, to a possible accident. The schedule
verifier detects any possible error and ensures a correct
schedule.

Contribution to
achieving the
T4.2 objectives

The component satisfies the Task 4.2 objectives by providing
the correctness and safety of the resource allocations at
development time.

Hierarchical Metascheduler

Description The Hierarchical Metascheduler iteratively calls a scheduler (GA
metascheduler) to generate modified schedules for each
context event in the context model. The inputs to the
metascheduler are the application model (AM) describing the
computational jobs and communication messages for a given
application. The platform model (PM) describes the system
architecture on which the application is run. The context
models (CM) describe all events relevant to the application and
platform model. 

Contribution to
achieving the
T4.2 objectives

Runtime context events within a system, either at the FRACTAL
node level or in a set of FRACTAL nodes, are adapted for energy
efficiency and fault recovery by optimizing the system resource
allocation (scheduling). The computed schedules allow for
runtime adaptation of the system to context events.

Project FRACTAL

Title Safety, Security & Low Power Techniques

Del. Code D4.3

 Copyright © FRACTAL Project Consortium 10 of 53

3.1 Document Organization
The document's structure is as follows: in Section 4, we present a high-level picture
of the Fractal solutions developed in WP4. Then, in sections 6 and 7, we describe the
components that provide the necessary support to the VERSAL and PULP platforms
in the context of the AI functionalities. Next, sections 8 and 9 are dedicated to AI
scheduling, composed of the AI-based scheduler and the Hierarchical Metascheduler.
The components within this section are designed to deploy time-critical schedules
and provide adaptation at run-time. Finally, in section 9, we draw conclusions and
our future plans.

Project FRACTAL

Title Safety, Security & Low Power Techniques

Del. Code D4.3

 Copyright © FRACTAL Project Consortium 11 of 53

4 High Level Picture

Figure 2 Big picture of the FRACTAL project

The big picture of the project, illustrated in Figure 2, is a holistic representation of
the FRACTAL solution. It provides an answer to the use case requirements, which are
the functional and non-functional needs captured by FRACTAL use cases at the
beginning of the project. Based on these requirements, a set of features has been
established to give a technical notion to the requirements.

The components mentioned above, developed in WP4 made of software or hardware,
participate in fulfilling some of the FRACTAL features. In the following subsections,
we report how each component is integrated into the big picture.

Project FRACTAL

Title Safety, Security & Low Power Techniques

Del. Code D4.3

 Copyright © FRACTAL Project Consortium 12 of 53

4.1 Capabilities for AI supported adaptability in PULP
One of the main applications for PULP-based systems is ML inference on the edge.
This component aims to enhance the resource allocation and computing capabilities
of PULP-based systems in the context of AI workloads, so it is located on the hardware
side of the big picture, as shown in Figure 3. Use cases built upon PULP-based IoT
systems will benefit from the enhanced features, reaching higher energy efficiencies
when running ML inference on the edge.

Figure 3 Capabilities for AI supported adaptability in PULP integrated in the FRACTAL big picture

4.2 Versal RPU access to AI acceleration
Versal RPU, even if used in safety-centric designs, may require access to AI inference
accelerators to enhance context awareness and autonomous planning of the FRACTAL
node. The Xilinx Vitis AI-based inference acceleration approaches for Versal are
typically supported by Linux-based APU applications. This component creates an RPU-
side interface to expose the APU-based AI applications to the RPU application. Figure
4 shows where this component is located in the big picture of the project.

Project FRACTAL

Title Safety, Security & Low Power Techniques

Del. Code D4.3

 Copyright © FRACTAL Project Consortium 13 of 53

Figure 4 Integration of Versal RPU access to AI acceleration in the big picture

4.3 AI Scheduling
The AI scheduling components will be developed at the software level; thus, it could
be regarded as a part of the software in the edge node of the big picture shown in
Figure 5. Specifically, the AI models implemented at runtime will use the ML/Tools
provided by the application and service layer.

Figure 5 Integration of AI Scheduling in the big picture

Project FRACTAL

Title Safety, Security & Low Power Techniques

Del. Code D4.3

 Copyright © FRACTAL Project Consortium 14 of 53

5 Capabilities for AI supported
adaptability in PULP – WP4T42-01 -
ETHZ

5.1 Component description
PULP-based IoT end nodes have been optimized for energy efficiency. One of the
main applications targeted by such devices is ML inference directly on the edge. In
this component, novel microarchitectural modifications, instruction set architecture
(ISA) extensions and specialized hardware accelerators have been implemented to
unleash ML capabilities on PULP-based systems. In addition, the software stack has
been extended to optimize resource allocation.

5.2 Design and implementation
To increase the compute capabilities of PULP-based systems, PULPissimo can be
extended with an acceleration cluster where eight RISC-V cores share a scratchpad
memory, as shown in Figure 6. The accelerator additionally contains a Direct Memory
Access (DMA) engine to efficiently move data from PULPissimo to the accelerator and
vice versa and an event unit for fast wakeup/sleep of the cluster cores.

Figure 6 PULPissimo + Accelerator

The new accelerated PULPissimo system is conceived to work as follows: (i)
PULPissimo can be coupled to sensors and manages the communication with the
outside world, (ii) whenever new data is available for computation, one of the cores
programs the DMA engine to move the data from PULPissimo to the accelerator, (iii)
once the data is in the accelerator memory, the cores are woken up by the event unit
and start computing, (iv) once the computation is completed, the result is moved

Project FRACTAL

Title Safety, Security & Low Power Techniques

Del. Code D4.3

 Copyright © FRACTAL Project Consortium 15 of 53

back from the accelerator to PULPissimo. During normal operation, all these phases
can happen in parallel. For example, as soon as the first set of data is moved to the
accelerator, the cores can start computing while the DMA continues moving the rest
of the inputs. The same can happen towards the end of the computation when the
cores are still calculating, but the first set of results is already available.

The standard 32-bit RISC-V ISA has also been extended to further increase the
performance of the system. Load and store instructions with post increment,
hardware loops, and SIMD dot product instructions have been introduced to reduce
overheads, allowing to spend most of the time and energy on the real computation.
The PULP ISA extension allows for a 10x speedup with respect to vanilla RV32IMC
cores (see Figure 7).

Figure 7 ISA extension for ML inference

We explored further enhancements by adding a specialized hardware accelerator
called HWPE (see Figure 8). HWPEs share the scratchpad memory with the cluster
core, allowing for efficient data sharing, and are software programmed by the cluster
cores. Such hardware blocks further specialize the architecture, thus increasing its
energy efficiency for specific workloads. For example, a convolutional accelerator can
be added to the system to speed up ML inference.

Figure 8 HWPE

To efficiently exploit the new features and improve the final user experience, a full
open-source SW stack is provided (see Figure 9). A neural network model can be

Project FRACTAL

Title Safety, Security & Low Power Techniques

Del. Code D4.3

 Copyright © FRACTAL Project Consortium 16 of 53

trained and quantized through the QuantLab tool (https://github.com/pulp-
platform/quantlab), Dory (https://github.com/pulp-platform/dory) is used as a
deployment framework, taking care of the tiling, optimized libraries are provided to
exploit the new instructions, and finally, the PULP SDK (https://github.com/pulp-
platform/pulp-sdk) takes care of the low-level software routine to program the
accelerator.

Figure 9 SW Stack for ML inference

Finally, we investigated ISA extensions for low-precision floating-point computing by
adding dot product instructions that accumulate in a larger format. A SIMD unit
containing such dot product modules has been integrated into a double-precision
FPU, enabling up to 7.2x performance increase when computing on FP8 data and
accumulating on FP16 precision with respect to employing double-precision (see
Figure 10).

Figure 10 Low-Precision FP dot product extension – Performance results

5.3 Testing and evaluation
Multiple architectures based on the PULPissimo platform plus acceleration cluster
have been tested and evaluated on FPGA. Deployment scripts for the Xilinx ZCU102
FPGA are open-source on the PULP GitHub page (https://github.com/pulp-

https://github.com/pulp-platform/quantlab
https://github.com/pulp-platform/quantlab
https://github.com/pulp-platform/dory
https://github.com/pulp-platform/pulp-sdk
https://github.com/pulp-platform/pulp-sdk
https://github.com/pulp-platform/pulp

Project FRACTAL

Title Safety, Security & Low Power Techniques

Del. Code D4.3

 Copyright © FRACTAL Project Consortium 17 of 53

platform/pulp). Partners interested in prototyping their PULP-based use case can use
such scripts to speed up the testing process. Furthermore, multiple chips have been
taped out and tested at ETH.

 Use-Case Integration

A PULP-based architecture will be used in UC3 (Smart meters for everyone), where
a smart meter prototype will be designed. A PULP-based IoT system will be connected
to a camera to take a picture of the display of a mechanical meter, process it to
extract the information displayed by the meter, and finally send the data over the
cellular network. A neural network model will be used to extract the information from
the picture. The ML features provided by PULP will allow for efficient ML inference on
the edge.

https://github.com/pulp-platform/pulp

Project FRACTAL

Title Safety, Security & Low Power Techniques

Del. Code D4.3

 Copyright © FRACTAL Project Consortium 18 of 53

6 Versal RPU access to AI acceleration -
WP4T42-02 – PLC2

6.1 Component description
In FRACTAL nodes based on Versal the safety related hardware isolation is provided
by physical access separation. This is available in the platform designs and provides
two compute domains, the real-time cores (RPUs) and the Linux system that typically
runs on the A72 ARM cores (APU). In such node setups the infrastructure service and
scheduling part runs on the RPU domain while microservice middleware and
applications run on the Linux level.

With the context-aware and autonomous scheduling as derived in WP4 the RPU
domain will require AI model support to feed decisions on system state changes and
more. In the Versal ecosystem AI inference applications are accelerated by the Deep
Learning Processing Unit (DPU) and are typically supported by a runtime layer on
Linux to setup the model processing and flow control. For larger AI models the DPU
processing may involve interleaved CPU computation.

This supporting layer is not readily available for RPU and the CPU computations would
not map efficiently to RPU as well. This component therefore enables the RPU side to
utilize the APU as a service to access AI inference accelerators.

The RPU application in the safety domain is enabled to setup an AI target through
the APU and trigger inference runs afterwards and retrieve results. RPU gets even
access to the node orchestration level to support model exchange through the
FRACTAL system level.

The corresponding component in the APU system level is the Versal Model
Deployment Layer (WP3T34-03).

6.2 Design and implementation
The block level of the component is displayed in Figure 11. The split between the RPU
and APU domains also shows the separation between the safety channel and the rest
of the node design.

Project FRACTAL

Title Safety, Security & Low Power Techniques

Del. Code D4.3

 Copyright © FRACTAL Project Consortium 19 of 53

Figure 11 RPU Access to APU AI Inference Application

The communication between RPU and APU is established through the OpenAMP
framework. To achieve a potentially certifiable node the feature set of this framework
must be restricted.

The RPU and APU application layer exchange messages on a protocol that allows an
extensible instruction list, which to date holds the minimally required commands:

• SETUP: Load a DPU based model
• RUN: Single execution of an inference run
• RUN_RPTI: Continuous inference execution
• STOP: Stop a continuous execution
• RETRIEVE_RESULTS: Retrieve results

The AI inference is either triggered by the command level or by hardware access that
bypasses the overhead of the communication loop. This secondary trigger path
requires specific support in hardware setups that needs to be made available during
the UC integration of the component.

Project FRACTAL

Title Safety, Security & Low Power Techniques

Del. Code D4.3

 Copyright © FRACTAL Project Consortium 20 of 53

6.3 Testing and evaluation
The setup is tested and based on the Versal FRACTAL reference platform (WP3) that
is enhanced by the additional components WP3T34-03 Versal Model deployment
layer, WP4T41-06 Versal Isolation Design to build an augmented platform that needs
to use the cross-domain communication as described here.

This augmented platform comprises a standalone FRACTAL node that is used to load
and trigger a Yolov3 model on the APU by pushing the commands from the RPU code
side. This model comes with well understood accuracy but the main focus on
assessing this APU proxy method is to optimize for the worst-case latency.

The limit of this for a given model needs to satisfy the real-time condition of the RPU
side processing. The Versal device implementation can generate fast inference frame
rates with repeatable latency depending on the actual model, while the overhead for
the communication will contribute a dynamic latency on top that needs to be
evaluated along the integration with specific UC requirements.

 Use-Case Integration

The augmented setup shall be added to the Versal based FRACTAL node in UC8. In
that context the system level connections can be tested to retrieve AI models
dynamically.

Project FRACTAL

Title Safety, Security & Low Power Techniques

Del. Code D4.3

 Copyright © FRACTAL Project Consortium 21 of 53

7 AI Scheduling - SIEG

7.1 Component description
In safety-critical applications, essential properties of time-triggered systems must be
preserved. These exhibited properties include avoidance of resource contention
without dynamic resource arbitration, implicit synchronization, guaranteeing of
timing constraints, implicit flow control, and fault containment [SIEG-AI1]. Scheduling
in time-triggered systems is traditionally carried out offline. The scheduling strategies
for time-triggered systems include mathematical techniques, heuristics, and
neighborhood search. Adaptation in time-triggered systems is motivated by the need
to provide energy-efficient operation, fault recovery, and adaptation to any change
in the system.

We address a safe and adaptive artificial intelligence (AI) quasi-static scheduling
approach for time-triggered scheduling problems. The priority of jobs is predicted
using an AI-based model trained offline. With recent technological advancements
toward deploying AI accelerators in hardware, AI models can easily be deployed. At
runtime, adaptation can be triggered upon a context event, such as processing
element failures. The adaptation is attained by accurately predicting the job priority,
which is then used to perform an online computation of a new schedule.

7.2 Design and implementation
A complete description of the AI scheduling implementation and their components is
described in [SIEG-AI2]. Four components are developed for implementing AI
scheduling in a FRACTAL node, as shown in Figure 12: Scenario Generator, GA-
Scheduler, AI-Based Scheduler and Schedule Verifier/ Reconstructor. The scenario
generator is responsible for generating diverse application models, which are then
fed into the GA scheduler to obtain schedules associated with each given platform
and application model. The priorities are extracted from the schedules and used with
the corresponding application and platform model outputs from the scenario
generator to create a dataset. This dataset is then used to train a machine learning
model.

Project FRACTAL

Title Safety, Security & Low Power Techniques

Del. Code D4.3

 Copyright © FRACTAL Project Consortium 22 of 53

Figure 12 AI scheduling components

 Scenario Generator – WP4T42-03 - SIEG

The scenario generator, shown in Figure 12, is composed of the Stanford Network
Analysis Platform (SNAP). SNAP is a general-purpose network analysis and graph
mining library inspired by the work in [SIEG-AI3], which is used in this work to
generate multiple scenarios. It makes use of a network theory (or graph theory)
based approach for developing functions that can be used in the analysis and
manipulation of large networks. The library takes the inputs from an initial model
specifying parameters such as the number of jobs, number of platform model
participants (switches and cores), and the in-degree and out-degree of each job to
create a graph for the application and the platform model, as shown in Figure 13.
Each scheduling problem, represented by the mentioned graphs, is expressed using
JavaScript Object Notation (JSON) files to make data processing easier. The
information contained inside the files upholds the division between the platform or
physical model, which specifies the hardware topology in which the system runs, and
the application or logical model, which contains data regarding the pre-constraints of
the schedule.

Figure 13 Application and Platform model

Project FRACTAL

Title Safety, Security & Low Power Techniques

Del. Code D4.3

 Copyright © FRACTAL Project Consortium 23 of 53

We required this component to generate synthetic data for the model since we did
not have any real-world data that we could use for that purpose. The initial
parameters of the synthetic data can be modified to make it look closer to an actual
application. For example, it allows changing the system's topology to bus, mesh, or
manually creating a predefine topology. Depending on the application, parameters
like jobs' execution time and the messages' size can be modified. Also, the predefined
constraints can be adjusted by limiting the number of out and in degrees of freedom
a job will have. The intention is that it can be used by different applications depending
on the actual use case in which the synthetic data is needed.

 GA-Scheduler – WP4T42-04 - SIEG

The scheduler block takes the output platform and application models from the
scenario generator and finds a feasible schedule for each example. The scheduling
problem is a well-defined optimization problem that can be tackled with different
approaches such as mathematical techniques, scheduling heuristics, metaheuristics
and neighborhood search. In this work, the genetic algorithm (GA), a metaheuristics
method, is used to compute the schedules for each example. Nevertheless, other
scheduling approaches, such as list scheduling and Ant Colony Optimization (ACO),
can be utilized in the scheduler block. In this work, the chromosomes of the GA are
set to optimize the processor allocation and the job order. The objective function
evaluates the makespan to find the best feasible schedule. The output schedule is
obtained from the GA, but only the job priority is fed into the machine learning
algorithm.

Three sections form each genome inside the genetic algorithm (see Figure 14):

• Allocation cells: The allocation cells indicate the end system in which a task
will be executed. The selection inside these cells is restricted to the available
end systems that are able to execute that particular task.

• Priority cells: The priority cells indicate the order in which the tasks are
executed. In conjunction with the application model's pre-constraints, these
cells determine the schedule sequence.

• Routing cells: The routing cells select one of the available paths each
message will take to go from one end system to another. The number of
available paths can differ depending on the platform model.

Figure 14 Genome cells

Project FRACTAL

Title Safety, Security & Low Power Techniques

Del. Code D4.3

 Copyright © FRACTAL Project Consortium 24 of 53

The optimal GA's behavior varies depending on the model's complexity and size. The
best performance is obtained by adjusting the following parameters:

• Population
• Generations
• Crossover
• Mutation
• Replacement population

The GA's output contains the job execution sequence as well as the end systems to
which they are allocated. The output also includes the job starting time, messages
injection time, and the route the messages must take. All this information is captured
in JSON files.

• Since the time it takes for the GA to compute one schedule is high, a whole
dataset must be executed in parallel. Depending on the server where the GA
will run, it is possible to adjust the parallelization parameters to the server's
capabilities, ensuring optimal utilization of the available resources.

 AI-Based Scheduler – WP4T42-05 - SIEG

Due to safety considerations, we focused on learning only the priorities of the jobs.
Relying on a machine learning algorithm to directly predict schedules for a safety-
critical application is not certifiable. Machine learning models are generalized
approximation models, and time-triggered applications require an exact schedule in
the event of online schedule adaptation. Therefore, the priorities are predicted, and
a schedule verification algorithm is enabled to ensure that only correct schedules are
generated from the prediction. There is no restriction on the machine learning
algorithm to be deployed in this block. However, a feed-forward artificial neural
network (ANN) is used in this work to learn the priorities of the tasks. The ANN learns
the scheduler, which is subsequently used to predict job priorities, after which the
“schedule verifier” component is deployed to obtain a schedule for the application.

Input Features

Inputs and outputs are saved in files in JSON format to simplify the management of
data. The application and platform models are included in the input files; this
information is extracted and kept in tables to compute relevant features later.
According to the directed acyclic graph, the extracted features shown in Table 2
attempt to describe the job's attributes and relationships with its neighbors.

Project FRACTAL

Title Safety, Security & Low Power Techniques

Del. Code D4.3

 Copyright © FRACTAL Project Consortium 25 of 53

Table 2 Job features

Output Features

Only the job priorities are collected from the scheduling solutions so that the machine
learning model can use them as targets. However, the priorities must be transformed
first because the model anticipates binary labels. These labels are obtained by
comparing the job priority values with each other on a one-to-one basis, resulting in
a vector of size n*(n-1)/2, where n is the total number of jobs. Figure 15 shows this
transformation into a scheduling problem with ten jobs.

Figure 15 Job priorities transformation

S2P algorithm (see Figure 16) shows the process of converting the priorities from the
GA schedule into a multi-binary format that is used to train the ANN scheduler. This
format reorders the priorities in a way that directly compares each job's priority to
the others on a one-to-one basis.

Project FRACTAL

Title Safety, Security & Low Power Techniques

Del. Code D4.3

 Copyright © FRACTAL Project Consortium 26 of 53

Figure 16 S2P algorithm

An Artificial Neural Network is chosen as the machine learning model to predict the
job priorities, which requires predicting multiple mutually non-exclusive classes/
labels. The implemented ANN is composed of three layers:

• Input Layer: The number of nodes in this layer is dictated by the number of
jobs and features extracted.

• Hidden Layer: The number of nodes in the hidden layer varies according to
the size of the scheduling problems. It can go from 100 to 1000 nodes.

• Output Layer: The number of nodes in this layer is determined by the formula:

n*(n-1)/2,

where n is the total number of jobs.

For the activation function, we are using ReLU (Rectifier Linear Unit) after the input
layer and the Sigmoid function before the output nodes. Since we deal with multi-
label classification, we need to compute the loss from all the labels as a whole. The
Binary Cross-Entropy Loss (BCE) function is usually employed for binary labels, but
since our data is not balanced, we have to use a modified version of the BCE called
′weighted balanced cross entropy′. This function adjusts the BCE by adding
weighting. The weights are determined dynamically for every batch by identifying
how many positive and negative classes are present and modifying them accordingly.
The learning rate of the ANN is 0.001. The number of learning epochs is set to 300.
The ANN architecture is shown in Figure 17.

Project FRACTAL

Title Safety, Security & Low Power Techniques

Del. Code D4.3

 Copyright © FRACTAL Project Consortium 27 of 53

Figure 17 ANN architecture

 Schedule Verifier – WP4T42-06 - SIEG

The ANN does not provide an entire schedule; instead, the output predictions purely
indicate the importance of each job at the moment of the allocation. Since the
schedules are generated for safety-critical systems, they must always be correct. The
schedules are validated and reconstructed by using the predicted values. In the
allocation step, the end systems in which the jobs are executed are selected based
on the earliest start time. After obtaining the ANN predictions and inserting them in
the schedule reconstructor, we can visualize the complete schedules (see Figure 18),
extract the average makespan and compare it with the Genetic Algorithm and other
scheduling techniques. This time we chose List Scheduling as one of the fastest
methods to compare computation times.

Figure 18 Schedule visualization

The schedule verifier must solve possible collisions between messages. Figure 19, for
instance, depicts a scenario in which three messages are transmitted simultaneously.
The verifier's task is to detect the collisions and adjust the messages by delaying
them depending on the job priorities.

Project FRACTAL

Title Safety, Security & Low Power Techniques

Del. Code D4.3

 Copyright © FRACTAL Project Consortium 28 of 53

Figure 19 Message collision

7.3 Testing and evaluation
The deployment components are available on the FRACTAL GitHub page
(https://github.com/project-fractal/WP4). Partners interested in utilizing them can
download them and follow the README files before testing.

The background of this experiment is the use of AI algorithms in time-triggered
systems to produce schedules when the system changes. Deploying AI algorithms in
hardware can significantly improve efficiency and latency. Xilinx’s Vitis AI is available
to translate such AI models to specific IP (DPU) hardware accelerators to help
researchers to quickly perform inference with these highly evolved algorithms,
minimizing time and cost. The model deployed in this work was an Artificial Neural
Network, the framework was Tensorflow2, and the Keras model was imported.

Since the training process is done offline, the only part that requires deployment is
the network structure and the weights tuned during the training process. After the
training process, it is necessary to save the model in the Hierarchical Data Format
(HDF) or H5 file. The general H5 file includes the structure and weights of the neural
network. In the subsequent deployment process, the H5 file will be used as the input
file for quantitative processing.

Figure 20 H5 file generation

Alexander Flick
specific

Project FRACTAL

Title Safety, Security & Low Power Techniques

Del. Code D4.3

 Copyright © FRACTAL Project Consortium 29 of 53

The following python statements are written in the ANN_model.py file to generate
and save the model.

The H5 file generated by the code above can be imported into the netron.app website
to visualize the full structure of the model in a clear way (see Figure 21).

Figure 21 ANN layer structure

The following steps explain the deployment process of the ANN model on the VCK190
ES1 board.

Project FRACTAL

Title Safety, Security & Low Power Techniques

Del. Code D4.3

 Copyright © FRACTAL Project Consortium 30 of 53

AI model compilation:

1. Installing a Board Image.
• Download the SD card system image files from the following links:

https://www.xilinx.com/member/forms/download/design-license-
xef.html?filename=xilinxvck190-dpu-v2020.2-v1.4.0.img.gz

Note: The version of the board image should be 2020.2 and the image is only for
VCK190 ES1 board.

• Use Etcher software to burn the image file onto the SD card.

2. Download the Vitis AI library
• Run Linux command:

$git clone --recurse-submodules https://github.com/Xilinx/Vitis-AI/tree/1.4

Or download directly from https://github.com/Xilinx/Vitis-AI/tree/1.4

• Go to the Vitis AI folder (workplace) under the download file path

$cd Vitis-AI

In this experiment, Vitis-AI-v1.4 is the library used. But the latest version is Vitis-
AI2.0. The Vitis-AI-v1.4 version is selected, because the FPGA used in the experiment
is the VCK190 ES1 board. The Pre-image provided by Xilinx for the VCK190 ES1 board
is xilinx-vck190-dpuv2020.2-v1.4.0.img.v1.4.0 and corresponds to the 1.4.0 version
of Vitis-AI. If another version is selected an error will occur.

3. Docker needs to be downloaded for the compilation process. Docker is a working
environment specially configured by Xilinx for users, which can be considered as
a virtual machine. After downloading the Docker container, follow the instructions
below to download the latest Docker, which runs on the CPU.

• Pull Vitis AI Image

$docker pull xilinx/vitis-ai-cpu:1.4.916

• Launch the Docker Image:

$./docker_run.sh xilinx/vitis-ai-cpu:1.4.916

• Activate framework tensorflow2:

$conda activate vitis-ai-tensorflow2

Project FRACTAL

Title Safety, Security & Low Power Techniques

Del. Code D4.3

 Copyright © FRACTAL Project Consortium 31 of 53

4. The compilation starts and the xmodel file is be generated. Before compiling, it is
necessary to organize the data and quantize the model. Run "bash -x compile.sh"
to compile the quantized model. The compile.sh file includes the following:

The input ARCH is the hardware structure. The VCK190 ES1 board is used in this
experiment, and the DPU is DPUCVDX8G. The input Model is the model trained on
the host and the quantized h5-file is the weight and bias file of the neural network.
After the execution of the script file the FRACTAL.xmodel is generated. This file
contains hardware information and frame structure.

Figure 22 Compilation process of AI models

Quantization process: The parameters of a general neural network are 32-bit floating
point numbers. However, deploying deep learning models on edge devices requires
consideration of device storage space, memory size, operating power consumption,
latency, and other issues. The AI quantizer can reduce computational complexity
without compromising prediction accuracy by converting 32-bit floating-point weights

Project FRACTAL

Title Safety, Security & Low Power Techniques

Del. Code D4.3

 Copyright © FRACTAL Project Consortium 32 of 53

and activation functions to fixed-point such as INT8. Fixed-point network models
require less memory bandwidth and are, therefore, faster and more power-efficient
than floating-point network models. The disadvantage is that there will be a loss of
precision, but it is generally within an acceptable range. If the actual accuracy is not
good, fine-tuning within the quantization tool flow can improve accuracy.

5. Docker exit. The compiled FRACTAL.xmodel needs to be copied to the /root/home
path of the SD card.

AI application

After the quantified fractal models and the data to be processed are ready, they need
an application to invoke them and make the predictions. This application is called AI
application.

The figure below depicts the process:

Figure 23 AI application

The most important block above is the intermediate one that involves the execution
of the ANN model by the DPU (DPUCVDX8G). The FRACTAL.xmodel file already
integrates the ANN model, the VCK190 board and the corresponding DPUCVDX8G
information.

If a layer cannot be quantized, such as the softmax layer, the developer needs to
add an extra piece of code after the DPU running model section to make it run on the
CPU. In addition to the DPU processing model, there is an algorithm for pre-and post-
processing. The preprocessing function is to normalize the data and input it to the
DPU; Post-processing can be used as a test to check the accuracy of DPU inference.

Since the python program is used in this experiment, the developer can directly use
the python app_mt.py command on the arm core of VCK190 to compile the AI
application. If it is a C program, it can be cross-compiled on an x86 system first and
then put the generated executable file on the SD card and run it directly.

The input data should also be placed in the /root/home path of the SD card (the
specific location should be coordinated with the executable file).

Project FRACTAL

Title Safety, Security & Low Power Techniques

Del. Code D4.3

 Copyright © FRACTAL Project Consortium 33 of 53

Start board

Board setup is quick and easy, the figure below shows the instructions and
diagrams for setup. Both SW11 and SW1 are [4:1]0001.

Figure 24 SD Launch

VCK190 ES1 board’s DPU Pre-image download link:
https://www.xilinx.com/member/forms/download/design-license-
xef.html?filename=xilinxvck190-dpu-v2020.2-v1.4.0.img.gz

Testing

We conducted three classes of experiments for our evaluation. The three classes
include experiments using the list scheduler, ANN-based scheduler, and GA-based
scheduler. For each class, the 4000 scheduling problems from the testing data
consisting of 10, 40, 70, and 100 jobs are evaluated. Figure 25 displays a plot of the
makespans against the number of jobs for each experiment class. It can be seen that
the schedules computed by the GA-based approach have better makespans
compared to the list scheduler and the ANN model. Figure 25 also shows that the list
scheduler has lower makespans than the ANN-based approach for a job size of 10
and 40. However, as the number of jobs increases, the ANN produces makespans
lower than the list scheduler, as seen in the case of 70 and 100 jobs. In real time-
triggered systems, we can expect a higher number of jobs, which will increase the
gap of the makespans between the list scheduling and the ANN-based approach.

Project FRACTAL

Title Safety, Security & Low Power Techniques

Del. Code D4.3

 Copyright © FRACTAL Project Consortium 34 of 53

Figure 25 Makespan comparison

The implication of the contribution is the applicability of the ANN-based approach for
dynamic reconfiguration of safety criticality application in response to context events.
A GA-based scheduler is not desirable for real-time systems with stringent
computational time requirements. In Figure 26, we show the computational times for
each of the evaluations carried out. The computation time of the GA-based approach
is much more than that of the list scheduler and the ANN-based scheduler. It can be
seen that the computation time of the GA-based approach is much more than that of
the ANN-based scheduler.

Figure 26 Computation time comparison

 Use-Case Integration

AI scheduling will be used in UC8 (Autonomous warehouse shuttles), where a
FRACTAL concept will be implemented as an automated storage and retrieval solution
to increase adaptability and reliability. The handling, storage and retrieval of
warehouse goods by automated shuttles will be optimized using the components
developed in the current work package by adapting the components to the use case.

Project FRACTAL

Title Safety, Security & Low Power Techniques

Del. Code D4.3

 Copyright © FRACTAL Project Consortium 35 of 53

In addition, an AI scheduler will organize and analyze the generated data sets
optimally to improve warehouse throughput.

7.4 Research on link prediction
Alternative approaches with the potential to solve the time-triggered scheduling
problems have been addressed. Link prediction using GNNs is one approach that
caught our attention but is still in its early stages.

Link prediction objective is to predict whether an edge exists between two particular
edge nodes in a graph/ network. It has many applications, such as network
reconstruction [SIEG-AI4], recommender systems [SIEG-AI5], and spam mail
detection [SIEG-AI6].

We took as reference the work carried out in [SIEG-AI7]. In this paper, M. Zhang and
Y. Chen proposed a link prediction framework called "SEAL" to simultaneous learn
from local enclosing subgraphs, embeddings and attributes based on graph neural
networks. Furthermore, they demonstrated the framework's potential in link
prediction problems by comparing it to other heuristics and network embedding
algorithms.

Original implementation extracts local enclosing subgraphs around links from a big
graph as input, and outputs how probable it is that the connections exist. A GNN
network is trained over the enclosing subgraphs around the missing links. In the
training process, there must be a differentiation between links, treating the edges in
the graph as positive samples and non-existent edges as negative samples.

In this work, we modelled the scheduling solution provided by the GA as a
heterogeneous graph (see Figure 27), by combining the application and the platform
models. This graph consists of three different node sets, one for the jobs, the other
for the processors, and the third represents the routers/ switches. Directed and
undirected edges satisfy specific constraints based on the type of nodes they connect.

Project FRACTAL

Title Safety, Security & Low Power Techniques

Del. Code D4.3

 Copyright © FRACTAL Project Consortium 36 of 53

Figure 27 Scheduling solution modeled as a heterogeneous graph

The undirected dotted lines join each job with a processor, meaning this job will be
executed there. For example, job four should run on end system five based on the
scheduling solution. The heterogeneous graphs are used as input to our GNN link
prediction model. The objective after training the model is to see how effective the
model is in predicting partially or the totality of the undirected edges between the
tasks and the end systems.

The dataset for this experiment consists of 40,000 heterogeneous graphs
representing the scheduling solutions obtained from the GA algorithm for each of the
10-job and 40-job application models. For model training, 39,000 heterogeneous
graphs were used whereas the remaining 1000 are used to evaluate the model
performance.

The predicted results are compared with the original deleted value to get the accuracy
of the prediction of the model. The accuracy is shown in the following tables.

Table 3 10-Job Dataset results

Project FRACTAL

Title Safety, Security & Low Power Techniques

Del. Code D4.3

 Copyright © FRACTAL Project Consortium 37 of 53

Table 4 40-Job Dataset results

Table 5 Prediction accuracies

We can observe from the results above that the prediction accuracy is much lower
than the training accuracy but more consistent with the testing accuracy due to a
certain degree of overfitting in the training process. However, the testing accuracy
can more accurately reflect the results of the model operation. The more edges
masked during the training process, the less accurate the final prediction result will
be. The highest recorded prediction accuracy was 0.41.

Several factors contributed to the obtained results, but there is clear potential in the
link prediction approach applied to scheduling time-triggered systems. Future tests
and research will determine the possibility of applying this alternative method with a
specific use case of the FRACTAL project.

[SIEG-AI1] Obermaisser, R., Ahmadian, H., Maleki, A., Bebawy, Y., Lenz, A., & Sorkhpour, B.
(2019). Adaptive time-triggered multi-core architecture. Designs, 3(1), 7.

[SIEG-AI2] Lua, C., Onwuchekwa, D., & Obermaisser, R. (2022, June). AI-Based Scheduling for
Adaptive Time-Triggered Networks. In 2022 11th Mediterranean Conference on Embedded
Computing (MECO) (pp. 1-7). IEEE.

[SIEG-AI3] Leskovec, J., & Sosič, R. (2016). Snap: A general-purpose network analysis and
graph-mining library. ACM Transactions on Intelligent Systems and Technology (TIST), 8(1), 1-
20.

[SIEG-AI4] Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for
recommender systems. Computer, 42(8), 30-37.

Project FRACTAL

Title Safety, Security & Low Power Techniques

Del. Code D4.3

 Copyright © FRACTAL Project Consortium 38 of 53

[SIEG-AI5] Nickel, M., Murphy, K., Tresp, V., & Gabrilovich, E. (2015). A review of relational
machine learning for knowledge graphs. Proceedings of the IEEE, 104(1), 11-33.

[SIEG-AI6] Oyetunde, T., Zhang, M., Chen, Y., Tang, Y., & Lo, C. (2017). BoostGAPFILL:
improving the fidelity of metabolic network reconstructions through integrated constraint and
pattern-based methods. Bioinformatics, 33(4), 608-611.

[SIEG-AI7] Zhang, M., & Chen, Y. (2018). Link prediction based on graph neural
networks. Advances in neural information processing systems, 31.

Project FRACTAL

Title Safety, Security & Low Power Techniques

Del. Code D4.3

 Copyright © FRACTAL Project Consortium 39 of 53

8 Hierarchical Metascheduler – WP4T42-
07 - SIEG

8.1 Component description
Time-triggered systems require a schedule to avoid resource contention, error
propagation, and deadline misses when executing a system application. While
scheduling time-triggered systems allow for temporal predictability, adaptation to
runtime events is challenging since scheduling decisions are decided offline, and the
static schedule is deployed online. A static schedule defines such global allocations
of the start times of tasks, execution time and resource allocation of tasks. Similarly,
the communication traffic of the system is described, such as the injection time of
messages into the network-on-chip (NoC) and its routing information.

Battery-operated devices could benefit from runtime context events such as a
dynamic slack in task execution where the task is completed before its scheduled
worst-case execution time (WCET). The system's dependability must be maintained
where a crash event leads to hardware resources not being accessible. Task
reallocation could be motivated by changing application priorities or thermal
management, in which high-intensity tasks are moved to cooler cores to prevent
system overheating. For each scenario, context-specific adaptation is accomplished
by switching the system schedule to an aligned schedule adapted to the context to
avoid system failure brought on by a schedule change.

The Hierarchical Metascheduler (HM) introduced in D4.1 and presented in [SIEG-HM1]
is an offline tool to compute a Multi-schedule Graph (MSG) for hierarchical time-
triggered systems. The MSG facilitates adaptation at runtime through traversing the
graph from one node to the next. It is also a directed acyclic graph where each node
in the graph is a system schedule, and each directed edge is the occurrence of a
context event during the execution of the schedule.

In addition, an optimization algorithm is implemented to manage the MSG size as the
number of context events increases. In computing schedules adapted for slack
events, for instance, a re-convergence horizon assures that the new schedule may
only deviate from its predecessor during a time window in which slack events result
in energy savings. Furthermore, the re-convergence horizon permits paths re-
convergence in the MSG, reducing the number of generated schedules.

The generated MSG suffers from state explosion issues where the MSG's size
increases exponentially, rendering it unusable in online mode. Our proposed model
uses the MSG generated by the metascheduler to train different AI models that will
be deployed at runtime. The models explored are Graph Neural Network (GNN) based
model, Artificial Neural Network, Encoder/Decoder Neural Network and Random
Forest Classifier. The metascheduler generates an MSG at design time, which is then
used to train the AI models to predict the temporal priorities of the following schedule.

Project FRACTAL

Title Safety, Security & Low Power Techniques

Del. Code D4.3

 Copyright © FRACTAL Project Consortium 40 of 53

8.2 Design and Implementation
The HM requires an application (AM), platform (PM), and context model (CM) to
generate the MSG. A new schedule is computed for every combination of context
events in the context model, resulting in a tree of schedules linked by those events,
referred to as the multi-schedule graph (MSG). An adapted schedule, described by
the schedule model (SM), is a synchronised computation and communication
schedule for each context event.

 Platform Model (PM)

The PM describes the computational and communication resources on which a system
application is executed. The PM represents the runtime hardware architecture of the
FRACTAL node consisting of processing elements (PEs) for the execution of
application tasks. Communication resources facilitate data communication between
application tasks from one PE to the next. The PM also describes hardware
communication resources such as gateways to enable communication between
nodes, a set of routers which make up the time-triggered (TT) network-on-chip
(TTNoC) and network switches representing the TT off-chip communication network.
The bi-directional physical links interconnecting the various components of the PM
further contribute to describing the hardware architecture, such as in the topology of
the TTNoC, which is a 2D mesh. Each PE accesses the TTNoC through a local router.
Messages between nodes are communicated through the TT off-chip communication
network, where gateways within each node provide a bridge between the on-chip
communication network (TTNoC) and the TT off-chip communication network, as
illustrated in Figure 28.

Figure 28 Hierarchical Platform Model

Each communication resource in the PM is modelled with a constant delay factor that
adds to the message hop time over the resource. In addition, each link has a link
speed and bandwidth, contributing to the message routing rate between
communication resources.

Project FRACTAL

Title Safety, Security & Low Power Techniques

Del. Code D4.3

 Copyright © FRACTAL Project Consortium 41 of 53

 Application Model (AM)

Similar to the PM, the application model (AM) describes the application to be executed
on the platform comprising tasks and messages. As illustrated in Figure 29, a directed
message from one task to another indicates dependencies between tasks such that
successor tasks are performed after parent tasks. In addition, the AM describes the
characteristics of tasks pertinent to the TT system, such as the worst-case execution
time (WCET) of tasks, representing the computational cost of executing the task on
a PE. Tasks are also modelled with deadlines, a property of TT applications indicating
when a task must be completed. Tasks can also be constrained to a node, such as in
the case of data collection tasks constrained to sensor nodes. Finally, each message
in the AM is characterised by a source (sender task), destination (receiver task) and
message size.

Figure 29 Application Model (AM)

 Context Model (CM)

The context model (CM) describes all context events adaptable to at runtime by the
platform. At runtime, where a task is completed earlier than its WCET, a slack event
is described in the CM, which is the difference between the WCET and runtime
execution time. A failure event in the CM describes a hardware resource permanently
unavailable to execute a system service. For example, a PE crash or a broken link in
the communication resource. A thermal event in the CM describes a scenario where
the temperature threshold of a resource has been exceeded.

Project FRACTAL

Title Safety, Security & Low Power Techniques

Del. Code D4.3

 Copyright © FRACTAL Project Consortium 42 of 53

 Schedule Model (SM)

The schedule model (SM) is a temporal and spatial mapping of the AM to the PM.
Each application task in the AM is mapped to a PE in the PM (spatial allocation) at
guaranteed timeslots (temporal allocation) for the execution of the application.
Messages in the AM are also mapped on a source-to-destination path through the
TTNoC and TT off-chip communication network (spatial allocation), as illustrated in
Figure 30. For each message, an injection time is specified to avoid resource
contention and collisions in routing (temporal allocation). Routing messages in the
SM also ensures that precedence constraints between sender and receiver are
preserved.

Figure 30 Schedule Model (SM)

Each SM is validated against some conditions to prevent runtime system failure due
to the deployment of schedules containing errors. Conditions checked against each
SM include:

• for all jobs in the AM, there is a corresponding temporal and spatial allocation
to the PM

• for all jobs allocated to any PE in the PM, there are no temporal overlaps in
the guaranteed allocation slot

• for all messages in the AM, there is a corresponding temporal and spatial
allocation to the PM

• for all message allocations, injection times of messages are after the finish
times of sender tasks

• all constrained tasks are allocated after the arrival of a preceding message
• for all communication resources in the PM, there are no temporal collisions in

the routing of messages

 Multi-schedule Graph (MSG)

The Hierarchical Metascheduler (HM) generates an MSG for every CM. The creation
of the MSG is described in Figure 31. Each event in the CM is applied to the AM or
PM, and a new schedule is created, representing an event-specific adaptation of the
system application. Each new schedule is added to the MSG.

Project FRACTAL

Title Safety, Security & Low Power Techniques

Del. Code D4.3

 Copyright © FRACTAL Project Consortium 43 of 53

Figure 31 GA-based metascheduler algorithm

A link between two schedules is defined by a context event signifying a transition
from a current schedule to an adapted schedule, as illustrated in Figure 32. The MSG
is a graph of schedules and events used by the FRACTAL node at runtime for
adaptation to runtime events by switching the current system schedule from one
node to the next in the MSG.

Project FRACTAL

Title Safety, Security & Low Power Techniques

Del. Code D4.3

 Copyright © FRACTAL Project Consortium 44 of 53

Figure 32 Multi-schedule Graph (MSG)

 AI Metascheduling

After the generation of the MSG described in the previous chapter, an AI model needs
to be developed. The AI Metascheduling extracts the data from the MSG at design
time for the training process to subsequently make the predictions at runtime.

AI Metacheduling consists of two sections:

• AI Model: The fundamental idea of an AI model is to capture the structure of
a scheduling graph, the relation of a schedule with another schedule as the
result of a context event. The AI model is trained to predict the output
temporal priorities. After the temporal priorities of the valid schedule are
generated, they are sent to the reconstruction Model.

• Reconstruction and Safety check: This component takes predicted
temporal priorities and performs a schedule reconstruction. In addition, it
performs safety checks to make sure precedence constraints are not violated.
The predicted temporal priorities decide the order in which the tasks are
allocated. The spatial allocation is done based on the communication costs
and the earliest start time of the jobs. Finally, a second safety check is
performed to avoid message collisions.

Figure 33 shows the flow diagram of the Hierarchical Metascheduler by dividing the
implementation into design time and runtime.

Project FRACTAL

Title Safety, Security & Low Power Techniques

Del. Code D4.3

 Copyright © FRACTAL Project Consortium 45 of 53

Figure 33 Hierarchical Metascheduler implementation diagram

8.3 Testing and evaluation
The deployment component is available on the FRACTAL GitHub page
(https://github.com/project-fractal/WP4). Partners interested in utilizing them can
download them and follow the README files before testing.

The Genetic Algorithm (GA) metascheduler was used to generate the samples for an
application model containing the tasks and context events. The AI models evaluated
were RFC, ANN, E/D NN and GNN. A more extended explanation of the development
of these models can be found in [SIEG-HM2] and [SIEG-HM3].

In [SIEG-HM2] there were investigated the performance of RFC, ANN and E/D NN. An
application model was created for five different job sizes: 15 jobs, 20 jobs, 30 jobs,
40 jobs and 60 jobs, all of them with diverse input feature sizes. The metascheduler
was deployed using one platform model. The TensorFlow library is used to implement
the ANN and the E/D NN. The Sequential class is used to create a fully connected
(dense) ANN. Three hidden layers are configured with 35, 18, and 10 neurons for the
first, second, and third layer, respectively. Based on the outcomes of numerous trials,
these neuron sizes and the number of layers were chosen. The input and output sizes

Project FRACTAL

Title Safety, Security & Low Power Techniques

Del. Code D4.3

 Copyright © FRACTAL Project Consortium 46 of 53

are based on the number of features of each dataset, as explained above. A learning
rate of 0.001 is configured, and the batch size is set to 128. For the E/D NN, an
encoding dimension of 64 is selected as optimal after multiple trials.

The Scikit-Learn (Sklearn) python library is used for the Random Forest Classifier
model, with a maximum depth of 10, a minimum sample leaf of 5, a max feature of
150, and 50 trees. These parameters were attained using the “GridSearchCV” class.

Table 6 Detailed performance evaluation of the models (RFC, ANN and E/D NN)

Model # Jobs Input
feature size

Output
feature size

Accuracy

Random
Forest
Classifier

15
20
30
40
60

339
513
609
873
1233

180
300
690
1320
3120

95.33%
80.39%
77.25%
82.34%
60.94%

Artificial
Neural
Network

15
20
30
40
60

339
513
609
873
1233

180
300
690
1320
3120

86.86%
85.94%
83.60%
81.23%
81.05%

Encoder/Deco
der Neural
Network

15
20
30
40
60

339
513
609
873
1233

180
300
690
1320
3120

98.39%
96.36%
94.84%
92.47%
87.67%

Table 6 shows the model accuracies against the number of jobs. E/D NN is seen to
perform better than RFC and ANN. The highest accuracy was attained across all job
sizes. Nevertheless, accuracy declines as the number of jobs increases. The
decreasing accuracy is due to the fixed model structure and the increasing complexity
model.

Similarly, the accuracy of the ANN model also reduces with the increasing number of
jobs. The decrease in accuracy is not as much as both E/D NN and RFC. The
decreasing accuracy for ANN ranges from 86.86% to 81.05%. In contrast, the
decreasing accuracy for E/D NN ranges from 98.39% to 87.67% and RFC from
95.33% to 60.94%. The RFC performed more than the ANN for small job sizes but is
the most unstable model with varying job sizes. For this reason, it can be drawn that
the RFC does not provide a desirable generalized model for the metascheduling
application when the model structure is fixed.

GNN

[SIEG-HM3] deployed a Graph Neural Network to learn the multi schedules from the
metascheduling algorithm required for adaptation. Py-Torch geometric library was

Project FRACTAL

Title Safety, Security & Low Power Techniques

Del. Code D4.3

 Copyright © FRACTAL Project Consortium 47 of 53

used to perform classification on the MSG’s irregular data structure and train a
continuous kernel-based convolutional operator GNN based model. The model utilizes
different Multi-Layer Perceptrons (MLPs) that contains 2 layers for edge features, and
4 layers for node features, having a total of 192,957 adjustable weights. Schedules
generated from the GNN model were compared to the schedules from the GA
metascheduler to determine the quality of schedules produced in terms of makespan.
In addition, we compared our approach to schedules generated by the List scheduling
(LS) technique. The LS uses the bottom level to determine task temporal priorities
while the GNN based scheduler uses priorities learned from the GA. The schedules
are categorized according to the number of tasks that occurred after the context
event time in each schedule of the MSG.

Figure 34 represents a schedule example in which a context event occurred during
task id 4. In this example, we considered as the context event a slack of 50%. Tasks
that started before the event occurrence remain the same. However, to take
advantage of the slack event, we invoke the metascheduler to recompute a new
schedule on the remaining tasks to adapt to the scenario. By so doing, we get a
better makespan which can then be utilized for energy saving.

Figure 34 Schedule reconfiguration due a slack event

Each sample in the generated 16,384 samples is categorized according to the number
of modifiable tasks. And each category is tested separately on all the metascheduling
algorithms.

Throughout the training process, the accuracy of the GNN inference model training
operation is calculated by validating 10% of the training dataset for each epoch. The
results show a training accuracy of 97% at the end of training at 180 epochs. In

Project FRACTAL

Title Safety, Security & Low Power Techniques

Del. Code D4.3

 Copyright © FRACTAL Project Consortium 48 of 53

addition, 20% of the entire dataset was used for accuracy validation testing, an
accuracy of 76% was obtained.

Figure 35 shows the output results for the makespans for each schedule generated
by the GA, GNN and LS.

Figure 35 Makespan comparison

Throughout the dataset, each schedule in the MSG is given a label that would define
the number of modifiable tasks in the schedule. This is determined by the occurrence
time of the context event itself. Schedules with the same labels are grouped together
and compared with different meta-scheduling algorithms. The results show that when
the scheduling problem is simple with less than ten modifiable tasks, all meta-
scheduling algorithms perform almost the same, and the GNN performs the worst
with an average ranging from 10 to 20-time units' difference from the GA and LS.
However, when the complexity of the scheduling problem is increased with a more
significant number of tasks, the quality of makespan for the list scheduling falls
behind GNN and GA techniques. The results show that in terms of makespan quality,
the GA ranks first, followed by the GNN at rank 2, and finally, the LS. GA is unsuitable
for hard real-time systems due to its unpredictable high timing and computational
requirement. On the other hand, the LS is desirable for hard real-time applications
due to its computational speed compared to the GA. Nevertheless, since the
makespan quality is nowhere compared to the GA, the proposed GNN technique
provides a way to utilize the benefits of the GA in application with stringent timing
requirements.

Project FRACTAL

Title Safety, Security & Low Power Techniques

Del. Code D4.3

 Copyright © FRACTAL Project Consortium 49 of 53

The Vitis AI of the Versal board cannot support the structure of GNN models;
however, the ANN model was implemented as a substitute, proven to have good
results.

[SIEG-HM1] Muoka, P., Onwuchekwa, D., & Obermaisser, R. (2021). Adaptive Scheduling for
Time-Triggered Network-on-Chip-Based Multi-Core Architecture Using Genetic
Algorithm. Electronics, 11(1), 49.

[SIEG-HM2] Onwuchekwa, D., Dasandhi, M., Alshaer, S., & Obermaisser, R. (2022). Artificial
Intelligence-Based Meta-Scheduling for Adaptive Time-Triggered Networks. In 2022 27th
International Conference on Emerging Technologies and Factory Automation (ETFA), IEEE.

[SIEG-HM3] Alshaer, S., Lua, C., Muoka, P., Onwuchekwa, D., & Obermaisser, R. (2022). Graph
Neural Networks Based Meta-scheduling in Adaptive Time-Triggered Networks [Unpublished
manuscript]. Department of Embedded Systems, University of Siegen.

Project FRACTAL

Title Safety, Security & Low Power Techniques

Del. Code D4.3

 Copyright © FRACTAL Project Consortium 50 of 53

9 Conclusions
The preliminary implementations of the AI-based algorithms for safe and efficient
temporal resource allocation that were presented in the previous deliverable D4.1
have been developed in this document. In addition, several building blocks and
components have been developed to assist in accomplishing the T4.2 objectives and
might be demodulated or used by any Use Case. Specifically, these are capabilities
for AI supported adaptability in PULP, Versal RPU access to AI acceleration, and AI
scheduling components. The design, implementation, testing, and evaluation of these
components have been described in detail.

Project FRACTAL

Title Safety, Security & Low Power Techniques

Del. Code D4.3

 Copyright © FRACTAL Project Consortium 51 of 53

10 List of figures
Figure 1 Fractal system architecture .. 6
Figure 2 Big picture of the FRACTAL project ... 11
Figure 3 Capabilities for AI supported adaptability in PULP integrated in the FRACTAL
big picture ... 12
Figure 4 Integration of Versal RPU access to AI acceleration in the big picture 13
Figure 5 Integration of AI Scheduling in the big picture 13
Figure 6 PULPissimo + Accelerator .. 14
Figure 7 ISA extension for ML inference ... 15
Figure 8 HWPE ... 15
Figure 9 SW Stack for ML inference ... 16
Figure 10 Low-Precision FP dot product extension – Performance results 16
Figure 11 RPU Access to APU AI Inference Application 19
Figure 12 AI scheduling components ... 22
Figure 13 Application and Platform model .. 22
Figure 14 Genome cells ... 23
Figure 15 Job priorities transformation .. 25
Figure 16 S2P algorithm .. 26
Figure 17 ANN architecture .. 27
Figure 18 Schedule visualization ... 27
Figure 19 Message collision .. 28
Figure 20 H5 file generation ... 28
Figure 21 ANN layer structure .. 29
Figure 22 Compilation process of AI models ... 31
Figure 23 AI application ... 32
Figure 24 SD Launch ... 33
Figure 25 Makespan comparison ... 34
Figure 26 Computation time comparison .. 34
Figure 27 Scheduling solution modeled as a heterogeneous graph 36
Figure 28 Hierarchical Platform Model ... 40
Figure 29 Application Model (AM).. 41
Figure 30 Schedule Model (SM) .. 42
Figure 31 GA-based metascheduler algorithm .. 43
Figure 32 Multi-schedule Graph (MSG) .. 44
Figure 33 Hierarchical Metascheduler implementation diagram 45
Figure 34 Schedule reconfiguration due a slack event 47
Figure 35 Makespan comparison ... 48

Project FRACTAL

Title Safety, Security & Low Power Techniques

Del. Code D4.3

 Copyright © FRACTAL Project Consortium 52 of 53

11 List of tables
Table 1 Components brief description and their contribution to fulfilling the T4.2
objectives ... 7
Table 2 Job features .. 25
Table 3 10-Job Dataset results ... 36
Table 4 40-Job Dataset results ... 37
Table 5 Prediction accuracies ... 37
Table 6 Detailed performance evaluation of the models (RFC, ANN and E/D NN) ... 46
Table 7 List of abbreviations .. 53

Project FRACTAL

Title Safety, Security & Low Power Techniques

Del. Code D4.3

 Copyright © FRACTAL Project Consortium 53 of 53

12 List of abbreviations
Table 7 List of abbreviations

Acronym Title
ACO Ant Colony Optimization
AI Artificial Intelligence
AM Application Model
API Application Programming Interface
APU Accelerated Processing Unit
BCE Binary Cross-Entropy
CM Context Model

DMA Direct Memory Access
DPU Deep Learning Processing Unit
EDP Energy-Delay Product
GA Genetic Algorithm

GNN Graph Neural Network
GPU Graphics Processing Unit
HDF Hierarchical Data Format
HM Hierarchical Metascheduler
HW Hardware
IoT Internet of Things
ISA Instruction Set Architecture

JSON JavaScript Object Notation
LS List Scheduling
ML Machine Learning
MLP Multi-layer Perceptron
MMU Memory Management Unit
MSG Multi-schedule Graph
NoC Network on Chip
PE Processing Element
PM Platform Model

PULP Parallel Ultra Low Power
QoS Quality of Service
ReLU Rectifier Linear Unit
RPU Real time Processing Unit
SNAP Stanford Network Analysis Platform
SoC System on Chip
SW Software
TT Time-triggered

TTNoC Time-triggered Network on Chip
UC Use Case

WCET Worst Case Execution Time

	1 History
	2 Summary
	3 Introduction
	3.1 Document Organization

	4 High Level Picture
	4.1 Capabilities for AI supported adaptability in PULP
	4.2 Versal RPU access to AI acceleration
	4.3 AI Scheduling

	5 Capabilities for AI supported adaptability in PULP – WP4T42-01 - ETHZ
	5.1 Component description
	5.2 Design and implementation
	5.3 Testing and evaluation
	5.3.1 Use-Case Integration

	6 Versal RPU access to AI acceleration - WP4T42-02 – PLC2
	6.1 Component description
	6.2 Design and implementation
	6.3 Testing and evaluation
	6.3.1 Use-Case Integration

	7 AI Scheduling - SIEG
	7.1 Component description
	7.2 Design and implementation
	7.2.1 Scenario Generator – WP4T42-03 - SIEG
	7.2.2 GA-Scheduler – WP4T42-04 - SIEG
	7.2.3 AI-Based Scheduler – WP4T42-05 - SIEG
	7.2.4 Schedule Verifier – WP4T42-06 - SIEG

	7.3 Testing and evaluation
	7.3.1 Use-Case Integration

	7.4 Research on link prediction

	8 Hierarchical Metascheduler – WP4T42-07 - SIEG
	8.1 Component description
	8.2 Design and Implementation
	8.2.1 Platform Model (PM)
	8.2.2 Application Model (AM)
	8.2.3 Context Model (CM)
	8.2.4 Schedule Model (SM)
	8.2.5 Multi-schedule Graph (MSG)
	8.2.6 AI Metascheduling

	8.3 Testing and evaluation

	9 Conclusions
	10 List of figures
	11 List of tables
	12 List of abbreviations

