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Abstract: 

The goal of WP4 is to develop safety, security, and low-power techniques for 

individual FRACTAL nodes. In T4.1 we investigated low-power services in seven 

components implemented in the FRACTAL project, and this document will report 

the results of this work, extending the preliminary implementations reported in 

D4.1. The development includes both the node level (i.e., individual FRACTAL 

nodes) as well as the system level (i.e., distributed systems comprised of FRACTAL 

nodes) in accordance with the FRACTAL system architecture. 
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2 Summary 

This deliverable aims to report the outcomes of T4.1 on Low-Power services. The 

results of the implementations carried out in the task are presented according to the 

components developed, which reflect the objectives of the task.  

Namely, the work in T4.1 was focused on suitable Data Compression techniques for 

low-power services, specifically the LZW compression techniques, described in 

Section 5 (ROT). Moreover, this Task developed a hierarchical architecture to 

facilitate low-power services for FRACTAL systems with a time-triggered Network-on-

Chip, with the work on the Hierarchical Adaptive Time-triggered Multi-core 

Architecture (HATMA), which will be described in Section 6 (SIEG). In addition, 

energy measurement and energy-efficient computing for low-power services for PULP 

systems have been explored in Section 7 (ETH). The task also investigated low-power 

communication protocols for a wireless network, in the Agreement Protocol in 

Chapter 9 (QUA). Furthermore, RPU based access for Power Services on safety 

focused Versal platforms have been explored in Sections 8 and 10 (PLC2) 

respectively. Finally, following the outcomes of WP3, T4.1 validated the adaptation 

of the LEDEL Library for low-power services in Section 11 (SML). 
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3 Introduction  

The goal of the 4th work package is to develop safety, security, and low-power 

services for individual FRACTAL nodes. In this document, we will shed light upon low-

power services for FRACTAL systems extending their preliminary implementations 

reported in the deliverable D4.1.  The development includes both the node level (i.e., 

individual FRACTAL nodes) as well as the system level (i.e., distributed systems 

comprised of FRACTAL nodes) in accordance with the Fractal system architecture 

depicted in Figure 1. To this aim, we will provide low-power services for multi-core 

chips that use a time-triggered Network-On-Chip (NoC) to interconnect 

heterogeneous types of computing resources such as general-purpose processor 

cores. Moreover, we are developing low-power services for the interconnected 

FRACTAL nodes based on a hierarchical system concept with wire-bound and wireless 

time-triggered off-chip networks. Furthermore, we will extend the low-power services 

realized on FRACTAL nodes to the system level by investigating low-power 

communication protocols for wireless and wired networks. In addition, we will 

investigate new aggregation and compression algorithms to reduce the amount of 

time and data needed to transmit information over a channel. Finally, the validation 

process of LEDEL, the library to implement Machine Learning algorithms as a low-

power service, is detailed in accordance with the results of WP3.  

 

 

Figure 1 Fractal system architecture 

The strategic objective of this task is to guarantee the energy efficiency of the 

FRACTAL system. To achieve this objective, the task was realized by several building 

blocks/components which contribute to fulfill the T4.1 objectives and are reusable 

and could be demodulated by any use case (UC).  
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A brief description of each of the T4.1 components and how they contribute in 

achieving the Task objectives are reported in Table 1. 

Table 1 Brief description of the components and contribution T4.1 objectives 

Data Compression for low-Power Services - WP4T41-01 

Description It is a data compression technique for low-power devices, 

applied at the system level. In particular, it is a software library 

developed in C++ which performs operations of data 

compression and decompression making use of the universal 

lossless data compression algorithm LZW.  

Contribution to 

achieving the 

T4.1 objectives  

This component satisfies the need to investigate compression 

techniques for energy-efficient data compression to reduce the 

amount of data transfer for low-power services. This data 

compression component contributes to improving nodes 

utilization, increasing network lifetime, and improving 

bandwidth efficiency. 

HATMA - WP4T41-02 

Description It is a Hierarchical Adaptive Time-triggered Multi-core 

Architecture used to facilitate services at the different 

hierarchies. It delivers adaptation services in a distributed 

system of multiple nodes and within the nodes. 

Contribution to 

achieving the 

T4.1 objectives 

This component facilitates adaptability features of the FRACTAL 

node through aligned switching of time-triggered schedules in 

response to context events. HATMA delivers low-power 

services by leveraging context events such as dynamic slack 

arising from the execution of application tasks. Techniques 

such as Dynamic Voltage and Frequency Scaling (DVFS) and 

clock and power gating are used to reduce the node's power 

consumption or efficiently utilize the available power during 

periods of dynamic slack.   

Low Power services for PULP systems - WP4T41-03 

Description It aims to enhance existing platforms to increase energy 

efficiency and provide low-power FRACTAL services. 

Specifically, microarchitectural modifications and extensions to 

the RISC-V platform are explored to specialize the architecture 

for a specific application scenario, thus increasing its energy 

efficiency. Additional components can be placed in different 

power domains, which can be powered down during the sleep 

mode of the IoT device. Different power gating granularities 

are investigated. 



 

Project FRACTAL 

Title FRACTAL Low-power services   

Del. Code D4.2   

 

  

 Copyright © FRACTAL Project Consortium 9 of 80 

 

Contribution to 

achieving the 

T4.1 objectives 

The component satisfies the objective of the task by exploring 

fine-grained power gating and increasing the energy-efficiency 

of the platform through microarchitectural modifications and 

specialized architectures 

 

Versal RPU access for Power Services - WP4T41-04 

Description The component enhances the safety-centric Versal platform to 

provide access to power control and monitoring services 

through underlying HW accesses as provided by Versal 

Isolation Design. This service proxy code is running on the real 

time processing units (RPU) in the Versal processing system. 

The mission mode (FRACTAL node) services use this 

component along the provided protocol to retrieve a predefined 

set of control and monitoring features. 

Contribution to 

achieving the 

T4.1 objectives 

This component offers power control and status monitoring for 

the Versal FRACTAL node by setting the power domains, 

Dynamic Voltage and Frequency Scaling (DVFS), and clock 

gating. This provides the Versal-based low-power services and 

so enables the physical node adaptivity for the HATMA services. 

Agreement Protocol for Low-Power Services - WP4T41-05 

Description It is an implementation of the agreement protocol on a wireless 

network on low-power devices. This protocol aims at having 

clock synchronization among all the devices connected in the 

network. 

Contribution to 

achieving the 

T4.1 objectives 

The component fulfills the T4.1 objective of investigation for 

the low-powered wireless communication protocol, it helps in 

providing a method for time-based synchronization on low-

powered devices. The synchronization is based on a PTP-like 

method with low-powered microcontrollers sending 

synchronization messages wirelessly. The implementation was 

achieved using ESP-32 microcontrollers and a communication 

protocol known as ESP-NOW. 

Versal Isolation Design- Functional Safety - WP4T41-06 

Description It aims to enhance the common Versal platform to strictly 

separate functional accesses and services from underlying HW 

access. In particular, in safety augmented designs on the 

Versal platform, the direct access to the infrastructure features 

of given hardware is limited to a non-mission mode compute 

core (RPU). This component exposes the actual internal state 
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to the mission mode (FRACTAL node) services in a way that 

still allows to adhere to safety regulations. In addition, it 

provides monitor services. 

Contribution to 

achieving the 

T4.1 objectives 

This component defines the Versal FRACTAL node power 

control and monitoring accesses that are available to the time-

triggered control instance. In safety-centric platforms, the 

power control and monitoring features defined in this 

component are only accessible through “Versal RPU access for 

Power Services”. 

 

Additionally, several activities have been carried out. In particular,  

• In T4.1, the Data Compression for low-power services (WP4T41-01) has been 

designed and implemented. In addition, the effectiveness of this technique 

has been proven to evaluate this component. 

• HATMA has been designed and implemented in hardware based on an NoC 

multi-core architecture. Runtime adaptation to slack events has been 

demonstrated while balancing a trade-off between adaptability overhead and 

energy saving. 

• An agreement protocol was also developed in T4.1 for low-powered devices 

(WP4T41-05), here a wireless time-based synchronization was achieved with 

multiple microcontrollers. A PTP-like synchronization method was developed, 

which has one master and several slave devices. Additionally, a master 

selection routine was created for this task. This routine program is responsible 

for selecting a master device after the bootup process of all the peer devices. 

In case the master device loses its connection with the network, necessary 

fallback methods were also created to accommodate the selection of a new 

master device. 

• Verification and validation of the LEDEL library have been carried out. They 

show that the LEDEL library can be used to implement neural network 

algorithms, compiled or exported to ONNX files, and then transfer to the 

FRACTAL node. Even more, programs created using PyTorch that define a 

neural network that can be exported to ONNX file can be as well transferred 

into the FRACTAL node, loaded using LEDEL, and perfectly executed. 

• ETH investigated hardware specialization and microarchitectural modifications 

to increase the energy of PULP-based energy efficiency. Furthermore, ETH 

explored fine-grained power gating to minimize the power consumption 

powering off unused hardware units and allowing tuning the hardware 

configuration for specific application scenarios. 

• For the Versal based platform the specific controls and monitoring of 

infrastructure features have been validated and checked against requirements 

to demonstrate scalability of a FRACTAL node. This informed the derived 

Versal power service components that have been developed with safety and 

isolation as a particular design constraint. 
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3.1 Document Organization 

The document is organized as follows: in Section 4 we present a high-level picture of 

the Fractal solutions developed in WP4. Then, we report the detailed description, 

design and implementation, and evaluation and testing of data Compression for Low-

Power Services, HATMA, low Power services for PULP systems, Versal RPU access for 

low Power Services, agreement Protocol for Low-Power Services, and Versal Isolation 

Design- Functional Safety, in Sections 5, 6, 7, 8, 9, 10 respectively. Next, we describe 

how the LEDEL library is validated for low-power services in Section 11. Finally, in 

Section 12, we draw the conclusions. 
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4 High-Level Picture 

 

Figure 2 The big picture of the FRACTAL project 
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The big picture of the project, illustrated in Figure 2, is a holistic representation of 

the FRACTAL solution which aims to illustrate the assembly of the components to 

build the FRACTAL node. It provides an answer to the use cases’ requirements, which 

are the functional and non-functional needs captured by FRACTAL use cases at the 

beginning of the project.  Starting from these requirements, a set of features could 

be established to give a technical notion to the requirements. 

Beginning with the platforms' hardware and low-level software layers, one may 

interpret the picture from the bottom up (OS, services, drivers...). The various edge 

application software layers are integrated on top of them. Finally, this node 

communicates with its cloud counterpart that includes for instance learning and 

orchestration. 

In the following subsections we report how each of the T4.1 components mentioned 

in Chapter 3 is integrated into the big picture.  

4.1 Data Compression for low power services 

The Data Compression component has been developed at the software level thus, it 

could be regarded as a part of the software edge of the big picture. Specifically, it 

might be considered as a component of the data preprocessing block highlighted in 

Figure 3 and can be integrated into any component needing data 

compression/decompression functionalities.  

  

Figure 3 The integration of Data Compression component in the big picture 
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4.2 HATMA 

HATMA employs a time-predictable/aware interconnect to provide communication 

services between processing units, I/O, shared memory, and ML accelerators. Traffic 

monitoring and control are supported through time-triggered scheduling of system 

resources. HATMA integrates vertically with the operating system to deliver system 

services and horizontally to other FRACTAL nodes to deliver hierarchical services.  

 

Figure 4 HATMA integration in the FRACTAL big picture 
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4.3 Low Power services for PULP systems 

The component aims at enhancing the low-power services of PULP systems. Fine-

grained power gating has been explored to minimize the power consumption 

powering off unused hardware units and allowing tuning the hardware configuration 

for specific application scenarios. Use cases built upon PULP-based end nodes will 

take advantage of the additional features to build low-power and efficient IoT 

applications, reaching higher battery life. 

 

Figure 5 The integration of low power services for PULP systems in the big picture 
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4.4 Versal RPU access for Power Services 

This component provides means to access dynamic power and frequency scaling 

features on Versal in safety-oriented platform designs. Thus, FRACTAL node-level 

services and software applications from use-cases can query or control power state 

through this access layer. Low power features must utilize this safety access channel 

introduced by this component in order to adhere to isolation defined for a safety-

centric design as in Section 4.6. 

 

Figure 6 The integration of Versal RPU access for low power services in the big picture 
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4.5 Agreement Protocol for Low-Power Services 

For the agreement protocol, we are using FreeRTOS as a component to perform tasks 

for synchronization of the peers. It integrates into the Hardware platform of the big 

picture as shown in Figure 7. The FreeRTOS tasks handle the whole synchronization 

protocol starting from the selection of master among a group of nodes, sending SYNC 

messages, and handling of cases when the peer connection is lost. The nodes are low 

powered microcontrollers (ESP-32). 

  

Figure 7 The integration of agreement protocol in the big picture 
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4.6 Versal Isolation Design- Functional Safety 

To fulfil the requirements for a safety-focused Versal design the basic accessibility of 

the generic platform is restricted as a base for proper functional safety capabilities. 

This component defines a particular policy to support a safety channel that 

encapsulates the device and board infrastructure. The definition of the safety channel 

has been provided in Deliverable D2.2 - 6.3.2.3 Versal Safety Channel Architecture 

and encapsulates the power functionality with a specific RPU core. Resources within 

this safety channel are accessible from the application layer through this RPU power 

control software component as described in Section 4.4. 

 

Figure 8 Location of the Versal isolation features in the big picture 
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5 Data Compression for Low-Power 

Services - WP4T41-01 - ROT  

5.1 LZW compression technique 

As it was stated in the deliverable D4.1, a variety of compression techniques could 

be used in energy-constrained systems in order to minimize the data exchanged 

among nodes and thus reduce the network energy consumption. These techniques 

could be classified based on some parameters such as application type, data quality, 

coding schemes, and data type. In addition, we have provided the state of the art of 

possible data compression algorithms and data aggregation techniques that could be 

used in such networks. Moreover, according to the Use Cases requirements, we have 

set out some specific features which should be taken into careful consideration in 

order to choose a suitable data compression technique. Satisfying these features, it 

was decided to choose the LZW algorithm. The LZW algorithm is a very common 

compression technique that is typically used in text file, TIFF, GIF and optionally in 

PDF. The main features of the algorithm: 

- Lossless algorithm, no information loss during the processing; 

- Excellent compression/decompression speed; 

- Good compression ratio; 

- Dictionary-based operating principle (the algorithm is an evolution of the first 

known dictionary algorithms, LZ77 and LZ78); 

- Ability to compress streaming data without knowing the data before 

compression; 

- Simple implementation, with a potential for very high throughput in hardware 

implementations; 

LZW is the foremost technique for general purpose data compression due to its 

simplicity and versatility. It is the basis of many PC utilities that claim to double the 

capacity of your hard drive. LZW is mainly used in the compression of text and images 

in the most well-known existing formats. Although its diffusion is still rather limited 

compared to algorithms based on LZ77, it is widely used Unix file compression utility 

compress and is used in the GIF image format. 

Its main advantage over other algorithms is that it uses a dictionary that is built up 

as it reads a file or stream of data. 

The working principle of a dictionary algorithm consists in replacing a set of recurring 

symbols with abbreviated symbols in the output data. The idea relies on reoccurring 

patterns to save data space. 

To give an example of an algorithm with a dictionary, we can imagine compressing 

an SMS by replacing the most used words with numbers. For example, using 16bit 

we could have 65535 words in our new compressed dictionary, more than enough to 

compose an SMS with a simple language. The saving of this imaginary algorithm in 
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terms of data would be considerable; in fact, each word could occupy even only 2 

symbols (in computer science each character of text occupies 8bit), with such a 

compression we could get to compose SMS with a much higher number of words. 

compared to a classic SMS. 

As we often have to work with very varied and non-recursive data, finding a good 

algorithm for many cases is no small feat, but it is precisely what LZW guarantees. 

The working of the LZW algorithm for compression is as follows: 

 

Figure 9 LZW compression algorithm 

To better understand the process, let's take for example a word to be compressed 

consisting of 11 characters: ABCABEFGHIL.  

The dictionary is initialized with 256 symbols, an array of strings of single character, 

which also contain each of the single characters of the word mentioned above: A B C 

E F G H I L. 

After the first reading, the input buffer will consist of: A. 

In the second step, the algorithm reads B, and the buffer becomes: AB. 

AB is a symbol not present in the dictionary, at this point the algorithm inserts the 

new symbol AB in the first position available in the dictionary, i.e., position 256 which 

will therefore contain the new symbol. 

Once this symbol has been added, the algorithm will produce an output corresponding 

to the position of the last symbol found, i.e., the value of the position associated with 

character A, precisely: 65.  
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The algorithm proceeds by discarding the symbol sent out from the buffer and 

appending the new byte to be read at the last read, the buffer thus becomes BC. The 

new symbol BC is not present in the dictionary thus the algorithm inserts the new 

symbol BC in position 257, and always returns as output the value of the position of 

the last symbol which is in this stage 66 associated with the symbol B. 

The process continues and the buffer becomes CA which is not present in the 

dictionary too, thus the algorithm outputs the position of the symbol C that is: 67, 

and inserts the new symbol CA in position 258.  

In the next step the buffer becomes AB, AB is a symbol in the dictionary, the 

algorithm does not produce any output and continues with the reading (the 

compression begins).  

The buffer then becomes: ABE which is not present in the dictionary. Therefore, the 

output is 256 (the value of the symbol AB), and the new symbol inserted in the 

dictionary is: ABE with the value 259 and the buffer becomes EF.  

The algorithm proceeds in this way until the incoming data ends. 

Decompression proceeds in a very similar way to compression, so the algorithm of 

decompression can be expressed as in Figure 10: 

 

Figure 10 LZW decompression algorithm 
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Although the LZW algorithm is quite simple to understand from logical point of view, 

its implementation brings up considerable technical difficulties from practical point of 

view: 

1) The use of memory must be optimized within the code where the system must 

store a very large dictionary in a small space. 

2) The search for symbols in the dictionary must be optimized to reduce data 

processing time. 

3) Symbols must be written in a format with variable bit-size depending on the 

size of the dictionary during the compression phase to maximize the benefits 

of the algorithm. 

4) Since the size of memory is limited, it is necessary to limit the size of the 

dictionary. 

5) The dictionary must be reset when it becomes full or the compression ratio 

becomes inconvenient since during compression with this method the 

compression ratio tends to degrade very easily depending on the portion of 

data to be compressed. 

With an eye toward achieving the main objective of the T4.1 to ensure the energy 

efficiency of the FRACTAL system, we proposed some possible solutions of the 

aforementioned challenges such as: 

1) To limit the space occupied by the dictionary, you can keep in memory only a 

list of pairs of variables for each symbol of the dictionary. In other words, a 

prefix/last character pair, while the code in the dictionary will be nothing more 

than the index of the array used. In particular, it can be seen that each new 

symbol to be inserted in the dictionary is nothing more than an old symbol in 

the dictionary with one last extra character. It is, therefore, sufficient to 

memorize the value of the old symbol and the character that forms the new 

symbol instead of memorizing the whole new symbol which could be as long 

as the dictionary itself. For instance, by applying this technique on the first 

memorization step of the previous example, the insertion of the symbol AB in 

the dictionary becomes prefix 65-character B, array index 256. 

2) With the aim of solving the problems of the search times of the symbols in 

the dictionary, a Hash algorithm is used in many implementations of LZW. 

Although this algorithm is more efficient than other data structures and it 

provides constant time for searching, it has some disadvantages. Specifically, 

using the Hash algorithm can have a considerable cost. It demands a 

necessary increase in the memory to be dedicated to saving the dictionary. 

Therefore, a large portion of the memory will be wasted to the detriment of 

the maximum compression capabilities.  

 

An optimal solution has been analyzed which consisted in making the most of 

the hypothesized structure to store the dictionary. In particular, we 

considered that each prefix-character element of our structure is used to form 

other symbols of the prefix/character + second character type, and the 

maximum number of derived symbols will never be higher than 255 due to 
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the operating principles of the algorithm. Then, we can add an array of 255 

pointers for each prefix-character pair which point to the pairs derived from 

the source ones. The index of these pointers will be used with the second 

character. Despite the significant improvement this solution will lead to, where 

the cost of research with this structure would always be equal to 1, it involves 

excessive use of memory. One way to solve this drawback is to reduce the 

pointer arrays in order to create linked lists. Faster processing times are going 

to be required in UC6, where the analysis reported here is going to be 

implemented and integrated. 

 

3) With the purpose of maximizing the effectiveness of this compression 

algorithm, the output values should be stored using only the needed space. 

This means that, for example, when a symbol with a position 256 is added to 

the dictionary which has a maximum size of 16 bits, the written value must 

occupy only 9 bits of the memory rather than 16 bits, as long as it does not 

need more bits for storage. In addition, the bit size has to grow dynamically 

according to the momentary size of the dictionary. This one will be solved and 

developed in another European project.  

 

4) In order to limit the size of the memory, we defined the size of the dictionary.  

The best method used in this case is to give a limit to the dictionary based on 

a bit-size of the code-word. By doing so, there will be no wasted information 

in the compressed output. This means that if, for example, we use code-word 

of 14 bits, the maximum number of symbols in the dictionary will be 

 

214 − 1 = 16383 𝑠𝑦𝑚𝑏𝑜𝑙𝑠 

 

5) Since the compression ratio using the LZW algorithm tends to decline easily 

depending on the percentage of data to be compressed, the dictionary must 

be reset to prevent compression from degrading once the dictionary is full. In 

order to do so, we propose two methods which might be implemented in the 

next period. We are going to report this improvement on the related UC 

deliverable. These methods are: 

a) The first one is based on resetting the dictionary to return to the initial 

situation in which we have, for example, 255 symbols. In addition, one 

way to indicate to the decompression process that the dictionary starting 

from the special symbol has been reset is to reverse that symbol in the 

dictionary.  

b) The second technique is more refined. It focuses on the continuous 

analysis of the compression rate and resetting it every time the 

dictionary degrades.  

In the following subsections, we report the implementation of LZW data compression, 

perform a set of practices and processes in order to validate our component, and 

determine if our component meets the project KPI metrics. Additionally, we address 

the use case which utilizes our component and how it is integrated into that use case. 
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5.2 Design and implementation 

The data compression component was designed to be split into two subcomponents: 

Compression and Decompression which both have a single entry-point for their 

respective action to be performed on the file taken as input. 

The following flowchart, Figure 11, explains the data flow of the Compression 

subcomponent library which takes as input path, name, and extension of the file to 

be compressed.  It will read the original file and perform LZW compression to give as 

output a file on the same path, with the same name, and extension “.lzw”. 
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Figure 11 The flow chart of the compression process 

The flowchart in Figure 12 explains the data flow of the Decompression 

subcomponent library, which takes the same input as the Compression 

subcomponent (the file extension must be the same as the output file, since the input 

file is supposed to always be a previously compressed file, hence with the extension 

“.lzw”.) 

 

Figure 12 The flow chart of the decompression process 
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The component was implemented as a software library, developed in C++, as a 

wrapper and extension of an open-source LZW C++ implementation. [9] 

5.3 Testing and evaluation 

The Data Compression component can be evaluated in several ways. Considering the 

different types of parameters, it is possible to define a series of tests that measure 

or calculate these parameters, through which it is, therefore, possible to provide 

evidence of the effectiveness of the component. 

Data compression ratio, also known as compression power, is a measurement 

of the relative reduction in the size of data representation produced by a data 

compression algorithm. It is typically expressed as the division of uncompressed size 

by compressed size. 

𝐶𝑅 =
𝑈𝑆

𝐶𝑆
 

where CR is the Compression Ratio, US the Uncompressed Size of input file and CS 

the Compressed Size of output file. This formulation applies equally for compression, 

where the uncompressed size is that of the original; and for decompression, where 

the uncompressed size is that of the reproduction.  

Another measurement of size reduction is Space Saving, which is defined as the 

reduction in size relative to the uncompressed size: 

𝑆𝑆 = 1 −
𝐶𝑆

𝑈𝑆
 

where SS is the Space Saving, CS is the Compressed Size the of output file, and US 

is the Uncompressed Size of the input file. This measurement provides a percentage 

value of the space saved with the compression process. 

The third parameter to evaluate our component is the time for the compression and 

decompression processes, which is an important indicator of the efficiency of the 

algorithm. 

The Lab tests were conducted on a Windows 10 computer with both compression and 

decompression algorithms compiled as a library. 

During the lab tests, we focused on the saved space and the time needed for both 

compression and decompression.  

Due to the fact that Data Compression component is going to be integrated in Use 

Case 6, tests have been conducted using sample files provided by the use case. This 

set of sample files is composed of images in JPEG format and audio in WAV format, 

and the tests have been performed using 14 different audio files. For further details 

about integration refer to section 5.3.1. 



 

Project FRACTAL 

Title FRACTAL Low-power services   

Del. Code D4.2   

 

  

 Copyright © FRACTAL Project Consortium 27 of 80 

 

All the files that were used during the tests were successfully compressed apart from 

3 cases. In the first one, the file size was the same as the original, and in the other 

two the size was greater than the original. However, it was expected that some files 

could not be compressed by one compression algorithm because no lossless 

compression technique can efficiently compress all types of data/messages. [10] 

Given the limits of lossless data compression algorithms, we have reported the results 

of the successful tests performed to estimate the value of Space Saving in Table 2. 

The average compression and decompression times was, on the other hand, 

estimated among all the results of the tests. 

As we notice from table below, the algorithm meets the KPIs identified during the 

requirements identification phase.  

Table 2 KPI and metric of component WP4T41-01 

KPI description Means of assurance Expected 

 

Measured/ 

Achieved 

ACCURACY 
Saved space 

Lab test > 10% 12% 

RESPONSE TIME 

Compression 

Lab test < 3s 2.3 s 

RESPONSE TIME 

Decompression 

Lab test < 3s 2.6 s 

 

The next steps will be to perform improvement to meet the specific requirements of 

UC6 (Intelligent Totem) and for integration and field tests. 

 Integration into UC6  

The Data Compression component is going to be integrated into UC6, which is 

expected to use to reduce the amount of the data transferred between nodes. In 

particular, the Data Compression is used when the Load Balancer component is 

triggered, meaning the current node is overloaded and needs to distribute workloads. 

As we mentioned, the component could be utilized to compress/decompress various 

media types. Referring to D8.1 - Specification of Industrial validation Use Cases, the 

first proposed way of integration was to use our component in the 

compression/decompression of the images taken by the node camera. However, the 

images provided by the node have JPEG format, which is not suitable for the LZW 

algorithm. Furthermore, JPEG is a method of compression for digital images, so using 

the LZW compression on a .jpeg image does not produce an admissible result. These 

images could be sent to other nodes while all the UC6 requirements are fulfilled 

among which is the time constraint.  
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However, using it with the type of image captured by the node’s camera in UC6, will 

do a reverse job and expand the output file. Therefore, we decided to use the 

compression technique to compress the audio files captured by the node’s 

microphone. In fact, the tests reported in section 5.3 have been conducted using 

sample audio files. 
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6 Hierarchical Adaptive Time-triggered 

Multi-core Architecture (HATMA) - 

WP4T41-02 - SIEG 

The Hierarchical Adaptive Time-triggered Multi-core Architecture (HATMA), as 

introduced in D4.1, delivers services through adaptation on two levels, the system 

and node levels. The system-level encompasses nodes interconnected through a 

time-triggered off-chip communication network. Access to the network is provided 

via a gateway, which encrypts and decodes messages before injecting them into the 

network to their intended destination. On the other hand, the node level encompasses 

processing elements and a time-triggered network-on-chip to facilitate message 

exchanges within the node. Each processing element within a node is interfaced with 

a network interface which injects messages from the processing element into the 

respective network. 

As illustrated in Figure 13, each processing element includes computational cores for 

application services, an adaptation logic, and a network interface for accessing the 

adaptive communication network and the network-on-chip. In the case of the 

gateway core, the network interface is used to access the off-chip communication 

network. 

 

Figure 13 Hierarchical Adaptive Time-triggered Multi-core Architecture (HATMA) 

A consistent state of all resources facilitates hierarchical adaptation in HATMA at 

periodic points in a scheduled period. The time-triggered schedules maintain such 

consistency. Adaptation is then achieved at the different hierarchies by an aligned 

switching of schedules in response to context events such as dynamic slack for low 

power and energy management services. 

6.1 HATMA Subcomponents 

The adaptation logic of HATMA manages and coordinates adaptation services in a 

distributed manner and comprises the context monitor, context agreement unit and 

schedule dispatcher. Therefore, hierarchical adaptation is synchronized across all 

adaptation logics at the respective hierarchy. The establishment of a consistent 

system state is taken in a distributed manner by all context agreement units. The 
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adaptation logic establishes a global view of the system state. A global system state 

is realized through observation, reporting, broadcast, distribution and agreement of 

local contexts. Therefore, the selection and dispatch of the following schedules for 

hierarchical adaptation are possible based on the agreed contexts as described in 

Figure 14: 

 

Figure 14 HATMA Adaptation Logic Process 

Context monitor (CM): The CM observes the state of its local system resource and 

generates local context information. Such local context can be the status of an 

application being executed on a core. The local resource is periodically observed for 

each scenario based on the precomputed adaptation schedule. The precomputed 

adaptation schedule for the periodic sampling of the local resource is synchronized 

to the system schedule to enable a potential schedule change without detriment to 

the system. 

Context Agreement Unit (CAU): Through the Hierarchical Interactive Consistency 

Protocol (HICP), the CAUs establish a globally consistent context vector (system 

state) by collecting and agreeing on the local contexts reported by all CMs at the 

respective hierarchy. 

a. All CAUs initiate a synchronized context distribution phase based on a 

precomputed adaptation schedule. Through the HICP, the local context is 

distributed in a double-ring topology through the adaptation communication 

network. Local context is sent to and collected from the next neighbors in the 

network and concatenated to produce a global context vector. 

b. At the end of the distribution phase, all resources possess identical system 

information. At this point, HICP converges, and the CAUs agree on the system 

state. The agreed context vector is the globally consistent context vector 

representing the system status at all resources. The schedule dispatcher uses 

the globally consistent context vector to determine the next schedule and 

perform an aligned switching of schedules at runtime. 

Schedule Dispatcher: The precomputed multi-schedule graph is stored in this unit. 

The next dispatched schedule is chosen based on the globally consistent context 

vector from the CAU mapped to the edges in the multi-schedule graph. Based on the 

system state, adaptation is achieved by choosing the next schedule and dispatching 

it for an aligned reconfiguration of the respective hierarchy of the system. At the start 
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of the adaptation window, the CMs are triggered, and an instance of the HICP is 

initiated. At the end of the window, the schedule dispatcher performs an aligned 

schedule change in adaptation to the agreed observed contexts. 

 Hierarchical Interactive Consistency Protocol (HICP) 

The context event to be monitored influences the timing of instances of the HICP at 

the various hierarchies. Context events are differentiated based on their urgency. 

The urgency of a context event indicates a period when adaptation to the event can 

yield a benefit before it loses its value for adaptation. For example, urgent slack 

events require fast switching at the core and node levels to trigger low power and 

energy management services. On the other hand, adaptation at the system level is 

much slower given the number of resources and the communication cost of the off-

chip communication. 

Furthermore, adaptation generally introduces overhead. Thus, the system level's 

adaptation frequency has a coarser granularity to balance the increased overhead. 

Slowly changing events such as the available power in battery-operated devices or 

events critical to overall system reliability are prioritized at the system level given 

the adaptation window and the constraints of adaptation overhead. 

6.2 Design and implementation 

HATMA is instantiated in hardware using the Xilinx Vivado design suite and Vitis 

toolchain for synthetic slack scenarios to validate the HATMA low power service. A 

multi-core architecture consisting of a Zynq processing system and 3 Microblaze 

cores, the adaptation logic and the Adaptive Time-Triggered Network-on-Chip 

(ATTNoC) described in deliverable D4.1 was instantiated on a Xilinx Zynq UltraScale+ 

MPSoC ZCU102 FPGA board.  

The adaptation logic for HATMA is key to the timely and consistent reporting, 

agreement and adaptation of HATMA to context events. During each adaptation 

period, local resources are observed, and local context is reported. Then, through the 

HICP, observed local contexts are broadcast to neighboring resources and an agreed 

system state at the respective hierarchy is established. The agreed system state 

allows for an aligned hierarchical adaptation to the observed events. Therefore, 

adaptation at the node level is consistent with the global system state. 

 Context Monitor (CM) 

The CM is triggered to monitor and report the status of its local resource, for example, 

dynamic slack of the jobs of an application service running on a core. The CM can be 

realized in hardware and software and is designed to poll and report local context 

information.  

Synchronous events are predictable, and CMs can be scheduled to observe such 

events. On the other hand, asynchronous events are random and are therefore 

observed through periodic monitoring of system resources. In either case, there is a 

polling delay between the occurrence of a context and its reporting. Therefore, a 
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time-triggered adaptation of system resources is scheduled periodically, where the 

granularity is a trade-off between a reduced polling delay and adaptation overhead. 

A CM implemented in hardware using a finite state machine is described in Figure 15. 

The time-triggered machine reacts to an external trigger and a reset. It starts in the 

initial state where no context is observed, and its reported context is initialized to 

null. When triggered, it transitions to the encode state. It monitors and records the 

local resource state based on observable information (dynamic slack) and the context 

time (timestamp). When the observed local context is encoded into a 32-bit bitstring, 

it transitions to the output state when the encoded context bitstring is driven at the 

output. At the output state, the machine transitions back to the initial state when 

reset or to the encode state when the CM is triggered. The machine remains in the 

output state when no trigger or reset is present. 

 

Figure 15 Context Monitor Implemented in Hardware using a Finite State Machine 

In each case, triggers are generated based on the precomputed adaptation schedule. 

Such operation of the machine allows for a periodic observation and reporting of 

context events in multiple instances. The outputs produced by this machine are the 

encoded local context and outEnable to indicate the availability of the observed 

context. 

 Context Agreement Unit (CAU) 

The CAU manages instances of the HICP when reported local contexts are broadcast 

to neighbors in a dedicated double-ring half-duplex network topology. Each instance 

of the HICP across multiple CAUs is synchronized to realize an aligned convergence 

of the HICP. On the convergence of HICP, each CAU possesses an identical global 

view of the system state, which is the basis for hierarchical adaptation. 

The CAUs are triggered periodically within adaptation windows in the system 

schedule. For example, in one instance of the HICP, the local context provided by 
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CMs is frozen in time and agreed upon by all CAUs. The following instance of the HICP 

is used to agree on the next set of reported events, as illustrated in Figure 16. Each 

received local context is saved to the local register and relayed to the next neighbour 

until the local context gets to the initial broadcaster when the instance of the HICP is 

converged. 

 

Figure 16 Periodic Adaptation to Context Events 

A CAU implemented in hardware using a finite state machine is described in Figure 

17. In the figure, the machine reacts to a trigger and a reset. It starts in the initial 

state where its local registers are initialized and its output disabled. Each received 

context bitstring is assigned a unique slot in the local registers based on its CAU ID. 

When a trigger is present, it transitions to the poll state, where context events 

reported by CMs are saved in two registers and held as input context. In this state, 

the CAU's local ID is also the CAU ID of origin for the input context. 
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Figure 17 Context Agreement Unit Implemented in Hardware using a Finite State Machine 

When the context event is collected and saved, the machine transitions to the write 

state, where the input contexts are written to the two output ports. The CAU ID of 

origin and an indication of the context availability are also driven as outputs. At the 

end of the writing process, the machine transitions to the read state, where inputs 

from neighbors in the double-ring are read synchronously from the input ports. These 

contexts from neighbors are saved to the local register and held as input contexts. 

The CAU ID of the context origin of the received contexts is also stored in this state. 

The machine then transitions to the check state, where the received CAU IDs are 

checked against the local CAU ID. If any of the received CAU IDs match the local CAU 

ID, the machine transitions to the converge state and terminates the HICP. The 

machine returns to the write state and drives the respective inputs to the output 

ports if the CAU IDs do not match the local CAU ID. The machine maintains the write-

read-check loop synchronously across all CAUs in the network until it transitions to 

the converge state, as shown in Figure 17 (Green circle). When in the converge state, 

the machine transitions back to the initial state when reset input is present or to the 

poll state when a trigger is present. The machine remains in the converge state when 

no trigger or reset is present.  

Triggers for the CAUs are based on the current schedule and are synchronized across 

all CAUs. The aligned and periodic triggers for the CMs and CAUs allow for parallel 

instances or periods of adaptation based on Figure 16. For example, an instance of 

adaptation can be in the distribution phase, and the next instance of adaptation can 

begin with the reporting phase. In each instance, the outputs produced by the CAUs 

are the agreed context bitstrings and the trigger signal for schedule change. 
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6.3 Testing and evaluation 

The timely adaptation to context events at runtime is desired to increase the 

efficiency of HATMA's adaptation. In addition, adaptation through HATMA should also 

result in energy savings for low-power applications. Therefore, the evaluation of 

HATMA's adaptation for low-power is based on four key metrics: polling delay, time 

to convergence, overhead and energy saving. 

Polling Delay: HATMA's adaptation is time-triggered and executed based on a 

precomputed adaptation schedule. This periodic execution introduces a delay 

between the occurrence of a context event and when the adaptation logic reports 

such context event, referred to as the polling delay 𝛿. Runtime events are generally 

asynchronous due to the unpredictability of their occurrence. To minimize the polling 

delay, we introduce a timing granularity 𝜏 of adaptation where the system is sampled 

periodically between 100 and 500µs. This range of granularity ensures that all 

scheduled tasks are sampled at least once for the occurrence of a slack event relevant 

for adaptation for energy saving. This range also ensures that sufficient time is 

available to adapt the system schedule. We also simulate a schedule of 20 and 100 

tasks with hard deadlines and worst-case execution times (WCET) in the range of 

700 - 1000µs on the architecture. 

On average, 70% of application tasks are completed in 50% of their WCET [1] where 

the maximum polling delay is such that: 

𝛿max = 𝜏, 

where the timing granularity of adaptation is applied globally to the system schedule. 

A 100µs timing granularity represents a frequent sampling of the system every 

100µs. The more frequent the system is sampled, the lower the polling delay and the 

faster HATMA adapts to observed events. For example, HATMA exploits the early 

completion of tasks (slack events) to apply Dynamic Voltage and Frequency Scaling 

(DVFS) and Power/Clock gating techniques to save energy. Therefore, the system is 

frequently sampled for highly volatile events such as slack, in which energy saving 

decreases as the polling delay increases. 

Time to convergence: To evaluate the performance of the HICP, we set up a VHDL 

testbench in which four adaptation units are interconnected in a double-ring topology. 

A global time base is implemented to synchronize the adaptation units, ensuring each 

component has a common notion of the system time. A time-triggered (TT) scheduler 

is implemented to provide the triggers for monitoring and agreement every 30 clock 

cycles. The granularity of triggers is set sufficiently large to allow each instance of 

the HICP to converge. A finer timing granularity could lead to an incomplete execution 

of the HICP. In this case, all adaptation units do not possess an agreed context event 

necessary for an aligned schedule switch. We show the time of convergence of HICP, 

which is the time difference between the trigger for agreement and the convergence 

of the protocol. 
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Figure 18 shows a 100MHz clock, the triggers from the TT scheduler and context 

events reported by each context monitor in the adaptation units. The context events 

are simulated to evaluate the time to convergence of the HICP. We observe that all 

context agreement units report the same context event after convergence of the 

HICP instance. All CAUs start in the initial_state where the time to convergence and 

reporting of the detected context event is ≈230ns (23 clock cycles). The time to 

convergence is also observed in the second instance of the HICP, where all CAUs 

agree upon the context event reported by Context Monitor 2. 

 

Figure 18 Convergence Time of HICP 

The time to convergence of the HICP represents a minimum inter-adaptation time for 

a given hierarchical architecture. When computing a schedule for adaptation, the 

minimum inter-adaptation time is considered. It is the finest granularity for HATMA 

adaptation. 

Overhead: The system is periodically sampled to minimize the polling delay. This 

frequent sampling of the system results in a communication overhead for adaptation 

due to the broadcasts of reported context events to all adaptation units in the system. 

We evaluate the communication overhead for adaptation due to multiple instances of 

the HICP with timing granularities in the range of 100 - 500µs. Each broadcast of a 

context event is represented as a message from one CAU to the next. The total 

number of messages broadcasted for multiple instances of HICP is such that: 

𝐶𝑜𝑣 = 2𝑛2 ∗ 𝑛𝑆𝑎𝑚𝑝 
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where n is the number of monitored hardware resources and nSamp is the number 

of instances of the HICP for a time-triggered application. Cov represents the total 

communication overhead of adaptation for scheduled applications. We further 

observe the polling delay as a trade-off between the communication overhead and 

the timing granularity for adaptation. 

Energy Saving: the goal of hierarchical adaptation in HATMA for low-power is to 

dynamically reduce the system's energy consumption when executing a given 

application without detriment to system performance. We evaluate the energy-saving 

capability of HATMA as the runtime percentage decrease idle time in applications 

execution time compared with the base schedule computed offline. Furthermore, 

HATMA exploits the system idle times to facilitate power/clock gating, reducing 

energy consumption. We show the reduction in energy consumption of a synthetic 

application with 20 tasks and messages and the communication overhead of 

adaptation due to the timing granularity of HICP in the range of 100 - 500µs. 

In Figure 19, a key point ≈180µs highlights an optimal point for energy consumption 

and communication overhead. A shift to the right of this point, although resulting in 

lower communication overhead, leads to reduced energy saving and vice versa for a 

change to the left. In scheduling HATMA's adaptation, a trade-off is made between 

the adaptation overhead and energy-saving constraints of the application. 

 

Figure 19 Energy Saving and Communication Overhead for Synthetic Application 
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Table 3 KPI and metric of component WP4T41-02 

KPI description Means of assurance Expected  

 

Measured/ 

Achieved 

Adaptation to predefined scenarios Simulation <1ms 900µS 

Adaptation for energy saving Simulation >5% 6% 

 

 

 Integration in UC8 

A hierarchical automated warehouse shuttle system, UC8, is implemented as a 

SWARM intelligent system, utilizing the adaptability service of HATMA to improve 

dependability. HATMA ensures the FRACTAL node-based shuttle system adapts to 

new tasks and failures in the system, ensuring tasks are completed even in crash 

scenarios (e.g., failure of a shuttle, failure of a lift, failure of a track). HATMA also 

facilitates adaptation to avoid obstacles by adjusting routing paths and enabling 

strategies to clear them if possible. 
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7 Low-Power Services for PULP Systems - 

WP4T41-03 - ETH 

7.1 Component description  

PULP (Parallel Ultra-Low-Power) is an open-source computing platform targeting IoT 

applications. To cope with the tight power constraints that small battery-powered IoT 

devices need to meet, the PULP architecture is designed around low-power 

operations. Further low-power services have been developed at ETH to meet the 

requirements as defined by the UCs. 

 

Figure 20 PULPissimo SoC Schematic 

7.2 Design and implementation 

PULPissimo, introduced in deliverable D2.1, provides a full microcontroller 

architecture containing a single RISC-V core, a low-latency multi-bank scratchpad 

memory, a set of peripherals, and a direct memory access (DMA) engine taking care 

of autonomous I/O, advanced data pre-processing, and external interrupts.  

The main three phases of the workloads faced by an IoT device are sensing, 

processing, and transmission. As the transmission phase requires more power than 

processing data on such a low-power microcontroller, the goal of PULP-based systems 

is to maximize the processing performed on the edge to minimize the time spent in 

transmission. To increase the energy efficiency of the overall system and achieve 
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higher performance, various paths have been investigated: (i) coupling PULPissimo 

with a multicore compute cluster, (ii) extending PULPissimo with domain-specific 

hardware accelerators, or (iii) enhancing PULPissimo’s RISC-V core with instruction 

set architecture extensions.  

To minimize the power consumption of the IoT device, additional components 

introduced to increase the energy efficiency of the system can be placed in different 

power domains, which can be powered down during sleep mode. We targeted power 

budgets typical of microcontroller systems (<100mW), and explored fine-grain clock 

and power-gating techniques that can be employed to fine-tune the architecture 

configuration to specific application phases following a sub-10ns power-up sequence. 

7.3 Testing and evaluation 

We prototyped PULPissimo-based platforms on FPGA to evaluate the benefits of the 

extensions and customization. Deployment scripts for various FPGA platforms 

(Digilent Genesys2, Xilinx VCU108, Xilinx ZCU102, ZedBoard, ...) are open-source 

on the PULPissimo GitHub page (https://github.com/pulp-platform/pulpissimo). 

Partners interested in prototyping their PULPissimo-based use case can use such 

scripts to speed up the testing process. Furthermore, we taped out and tested 

Echoes, a low-power PULPissimo-based chip enhanced with a domain-specific 

hardware accelerator. 

 

Figure 21 Echoes Chip - A Low-Power PULPissimo-based Chip 

 Integration into UC3 

A PULP-based architecture will be used in UC3 (Smart meters for everyone), where 

a smart meter prototype will be designed. A PULP-based IoT system will be connected 

to a camera to take a picture of the display of a mechanical meter, process it to 

extract the information displayed by the meter, and finally send the data over the 

https://github.com/pulp-platform/pulpissimo
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cellular network. The low-power features provided by PULP will allow achieving a long 

battery life. 

Table 4 KPI and metric of component WP4T41-03 

KPI description Means of 
assurance 

Expected  

 

Measured/ 

Achieved 

Power reduction through clock and 
power gating 

Lab results > 35% 42% reduction in the 
idle power 

 

Additional power reduction introduced 
by fine-grain power gating with respect 
to clock-gating-only 

Lab results > 10% 12.7% additional 
reduction in the idle 
power 
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8 Versal RPU Access for Power Services - 

WP4T41-04 – PLC2 

8.1 Component description  

As described in Section 10.1 the isolated Versal ACAP platform as designed would 

block access to the device infrastructure to protect core functionality from any access 

fault or attack. To still enable system state changes on purpose some access 

mechanism has to be provided.  

To accomplish this, this component creates an RPU project that exposes a defined 

subset of Versal / VCK190 power and observability features through an interface. The 

communication interface between APU and RPU subsystems is selected as OpenAMP.  

This component shall provide means that the application running on APU can request 

support for power settings, local power and temperature monitoring data from RPU 

node via an OpenAMP channel. RPU shall handle the requests in a safety focused 

manner as this RPU core is the target of a safety zone in the certifiable platform 

version. RPU image shall be included in the main boot image and shall be loaded via 

PMC to comply with safety regulations. 

8.2 Design and implementation 

This work package will provide a system with APU cores running SMP Linux OS 

(PetaLinux) and RPU running FreeRTOS.   

RPU application has two main roles which are handling OpenAMP communication and 

interfacing with hardware through PMC. In OpenAMP communication, RPU plays the 

slave role which is receiving messages from APU and reacts by checking the 

command embedded in the message protocol. In RPU application development, Vitis 

Unified Software Platform 2021.2 tool has been used as the software development 

kit.  

APU core is running PetaLinux which is supporting OpenAMP. The device-tree and 

Linux Kernel configuration of the PetaLinux project has been adapted properly to 

support OpenAMP and the RPMsg channel between RPU and APU. This channel 

between APU and RPU supports maximum 512 bytes message including header and 

payload. Therefore, the messages defined in the protocol cannot be larger than this 

limit. 

In Figure 22, the message protocol is described. The message protocol between APU 

and RPU shall have three components which are data, the size of the data and the 

command. The command is a definition of the request from APU to RPU. Data is the 

result of the action performed on the RPU for a specific command. 
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Figure 22 PLC2 OpenAMP payload struct 

In Figure 23, the command types for the message protocol are defined. This 

enumerator can be further extended with the new commands required. 

 

Figure 23 PLC2 OpenAMP command list 

8.3 Testing and evaluation 

System level functional testing can be performed in this platform related component. 

It shall contain following steps to proof the functionality. For testing purposes, the 

device-tree supports RemoteProc which enables developers to update RPU images at 

run-time to enhance the development cycle. RemoteProc support will be disabled in 

the final design and RPU image shall be inside the main boot image as it is described 

in the component description. 

• APU shall load executable on RPU core via RemoteProc, 

• RPU application shall initialize OpenAMP and wait for message, 

• APU shall initialize OpenAMP and send a message for reading local voltage or 

temperature, 

• RPU shall receive and parse the message, read the corresponding sensor data 

and send back as payload via RPMsg channel, 

• APU shall display the message on the standard output. 

Table 5 KPI and metric of component WP4T41-04 

KPI description Means of 
assurance 

Expected  

 

Measured/ 

Achieved 

Versal based node 
infrastructure 
monitoring 

Development Kit 
testcases 

 

Retrieve local 
temperatures and current 
and voltage values 

Achieved 

Versal based node 
infrastructure control 

Development Kit 
testcases 

 

Control and scale power 
consumption 

Achieved, with 
restrictions due to 
dev kit. 
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9 Agreement Protocol for Low-Power 

Services – WP4T41-05 - QUA 

9.1 Component description  

In the deliverable D4.1 the principles of the Agreement Protocol were explained. The 

main objective for this protocol is to have a clock synchronization among all the 

devices connected in the network achieved wirelessly. This clock synchronization 

would lead to all the devices in the network, having the same clock reading/value. 

Which would be essential in case of measurement of sensor data (e.g. acceleration, 

gyroscope) or keeping devices in a configuration in sync with the other devices in the 

network. 

This synchronization is performed by selecting a master which will share its clock with 

all the devices in the network. The master device in this case is a low power 

microcontroller. The process of selecting a master starts when all the devices share 

a specific value, in this case their clock value. Once all devices have agreed on a 

value, the device with a specified value will be selected as master, and start the 

synchronization from the slaves in the network.  

The Agreement Protocol must detect and correct when slaves or even a master with 

a faulty clock is in the network. If a faulty clock of a slave is detected, the master will 

restart the procedure to synchronize the faulty slave clock. In case the master is lost 

or present a faulty clock, the selection of a new master will be initiated. 

One of the biggest challenges to implement an Agreement Protocol is the latency. 

The greater the latency a greater difference between the master and the slave will 

be present. In the case for wireless communications, latency is affected to even more 

with factors such as interference distance and signal strength. Even though with 

these challenges, a wireless communication provides such a greater benefit which is 

the mobility of a device or setting a system where cabling might be difficult to route. 

To this advantage, add a low power device and the capability to obtain data or control 

systems, provides a versatility that can simplify multiple engineering fields. 

9.2 Design and implementation 

For the implementation of the Agreement Protocol on a wireless network the ESP32-

WROOM microcontroller from Espressif was selected. This microcontroller can be 

programmed in C or C++, it also counts with a two-core processor that can be 

individually controlled, enabling this microcontroller to run FreeRTOS. It can also 

provide Wi-Fi, Bluetooth and Bluetooth Low Energy (BLE) for wireless connectivity. 

These two key features allow us to use Espressif wireless communication ESP-NOW. 

This protocol is based on the Data Link layer providing a low latency connection with 

the devices connected to this network.  
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The availability of having a multicore processor and FreeRTOS implies that it is 

possible to control the wireless communications while performing additional 

processes without interference between tasks. To communicate the devices among 

them, they require only the MAC address of the ESP32 peers that be in the network. 

This enables a direct communication between devices. 

 Master selection 

To select the master of the network each device will start their boot-up sequence and 

will record that boot-time using their internal clock. Once the boot-up sequence is 

finalized, each device on the network will broadcast their boot-up time with their MAC 

address. For this a structure is defined as shown in Figure 24. 

 

Figure 24 QUA Data structure for synchronization 

To address the Y2K38 problem and to have an accurate time value 64-bit Integer is 

used. We can get the system time from the ESP32 microcontroller using the function 

gettimeofday(). We can also set the system time using the function settimeofday() 

as shown in Figure 25. These functions were used to get and set time in the peer 

ESP32. 

 

Figure 25 QUA gettimeofday() command to obtain the clock value of an ESP32 in values of microseconds 

While receiving the boot-times and MAC addresses of the peers in the network, each 

device will create a list for all the devices that will be present in the network. Once 

compared and verified the lowest boot time from all the devices the master is 

selected. With a master defined, the process of synchronizing the clocks of the slaves 

is started. 

 Synchronization of slaves 

Once the master is selected from the group of nodes (ESP-32 microcontrollers), it 

will start sending SNYC messages to the peers. The synchronization protocol is based 
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on a PTP-like synchronization method. The master would send a SYNC message 

requesting the peer/slave to start syncing the internal clock. This is followed up by a 

FOLLLOW_UP message from the master. Then the peer would send a 

DELAY_REQUEST message, the master would reply to this message by 

DELAY_RESPONCE message. This interaction is visualized in Figure 26. The 

peer/slave would now adjust its own clock by calculating the offset in time and then 

adjusting its own clock with the offset. This whole synchronization method is repeated 

regularly to course correct the slave if the clock has moved more than the maximum 

offset (MAX_OFFSET). The payload used for the message is shown in Figure 24. 

 

 

Figure 26 QUA message interaction between master and slaves 

9.3 Testing and evaluation 

Agreement protocol for low-powered devices provides a method to synchronize the 

clocks of all the peers with a master device in a network. Since the system clock 

(software timer) is updated internally with each SYNC message, not the RTC (Real 

Time Clock), it becomes hard to test the time offset externally. This led us to create 

a test bench to observe the offset time using two different approaches, one using a 

GPIO (General Purpose Input Output) pin and the other using messages to calculate 

the offset time in a salve. 

GPIO Triggering 

In this method we wanted to create an external response which is cyclic in nature. 

The GPIO trigger would happen every second (or millisecond) on the master and peer 

device. If the clocks are synchronized among the peers, the trigger event would occur 
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at the same time for each of the devices. Later with the help of an oscilloscope we 

can measure the offset time externally among the peers and the master. 

  

Figure 27 An example of clock synchronization on GPIO 

Since the POSIX function settimeofday() was used to update the clock value, it was 

only updated on the software level instead of the RTC clock. Due to this we cannot 

observe the changes in clock values in peer and master, as the GPIO trigger works 

with the clock value (delay) from FreeRTOS, which in turn depends on the RTC clock 

of the hardware. Due to this, the offset time were not observed for the software 

timers.  

Figure 27 shows a demonstration of expected behavior with GPIO signals from a 

master (red) and a slave (blue). If the clocks were synchronized, both the signal 

would either overlap or be close to each other. Since it is difficult to observe the 

software timing externally, Figure 27 shows the internal clock behavior instead. 

Offset estimation with messages 

Another approach which was used to evaluate the offset time was calculation of offset 

value in a peer device. Since we are sending our clock value with each message, it is 

easy to save the time values locally and use them later to calculate the offset value 

for a peer. The formula is used to calculate the offset time of a peer with the master’s 

clock. The lower the value for the offset time the closer it is with the master’s clock. 

𝑑𝑒𝑙𝑎𝑦  =
((𝑠𝑦𝑛𝑐𝑇𝑖𝑚𝑒 − 𝑓𝑜𝑙𝑙𝑜𝑤𝑢𝑝𝑇𝑖𝑚𝑒)  −  (𝑑𝑒𝑙𝑎𝑦𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑇𝑖𝑚𝑒 − 𝑑𝑒𝑙𝑎𝑦𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑇𝑖𝑚𝑒))

2
 

 𝑜𝑓𝑓𝑠𝑒𝑡 = (𝑠𝑦𝑛𝑐𝑇𝑖𝑚𝑒 − 𝑓𝑜𝑙𝑙𝑜𝑤𝑢𝑝𝑇𝑖𝑚𝑒) − 𝑑𝑒𝑙𝑎𝑦 

We can monitor this value to observe for changes, if the offset time has increased for 

the peer, we would update the clock of the peer to accommodate it for the new offset 
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value. Our goal was to have the clock offset value of the peer be under 100 µs.  With 

this method we can track the timings of peers easily. 

Table 6 KPI and metric of component WP4T41-05 

KPI description Means of 
assurance 

Expected  

 

Measured/ 

Achieved 

Synchronization Achieved: 
The value of 

synchronization between 
the clocks of peers and 

master 

Lab test Having the clock 
of the peer be in 
sync all the time 

with a value 
lower than 100 

µs. 

The clocks drifted in value 
after the subsequent 

message. It adjusts itself 
when the clock drift 

increases more than 100 µs 

Number of peers: The 
maximum number of peers 
that could be connected to 

the network 

Lab test The network 
allows a total 
number of 20 
peers for one 

master 

Performance of the 
synchronization drops after 

4 peers with one master 

Clock drift per hour: 
Number of times the clock 
drifted in one hour, when 
the SYNC message is being 

sent every minute 

Lab test Drift should be 
15 times in one 

hour   

It was observed that our 
method produced a clock 

drift of more than 100µs 20 
times in an hour 
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10 Versal Isolation Design- Functional 

Safety - WP4T41-06 - PLC2 

10.1 Component description  

The basic description of the platform reference design for Versal based FRACTAL 

nodes as described in deliverable D4.1 shall be used in a commercial / industrial 

environment. In some scenarios with safety concerns access separation needs to be 

put in place to comply to the definitions of deliverable D2.2. This component details 

the design choices in the hardware setup of the Versal ACAP device in the VCK190 

development kit to achieve such basic isolation design. With subsequent maturity of 

the Versal development eco system the supplier AMD-Xilinx will publish formally 

tested and thus certifiable design setups. At the time of this report such official 

releases are not available. The current state of this component reflects the 

understanding of the approach that will become available in due time but some detail 

changes may apply. 

To allow controlled access to the data and controls available in the isolation-based 

platform, a proxy setup is required to accompany this component. This is established 

by the WP4T41-04 RPU component, that is exposing the internals of the safety 

channel features as defined in this component. 

10.2 Design and implementation 

As commonly used for various AMD-Xilinx device technologies, the basic hardware 

setup of Versal Designs is created in Vivado. Specific separation settings are 

configured in the specifications of the hard- IP block CIPS and are given here. 

Hardware Block Design and Settings 

The overall setup of the hardened IP of the Versal ACAP devices allows for protection 

units to control and filter the transactions hitting a specified address slice. Depending 

on the target wrapped by these units, there is a difference in control granularity 

supported by these units. A more block granular set of units typically connects to 

memory Xilinx Memory Protection Units (XPMU) whereas a finer control is exerted for 

peripherals with the Xilinx Peripheral Protection Units (XPPU). For this component the 

following protection units are applied and setup to split between APU and RPU 

transactions. 
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Figure 28 Location of protection units in Versal CIPS 

The protection units are set to block transactions from APU side for the respective 

address blocks while allowing RPU side accesses to propagate. To allow this there are 

multiple registers that need to be configured appropriately and finally arrive at a 

separated address map. This configuration is defined as a base scenario but minor 

adaption to the specific requirements of the use cases will be visited. 

On top for Versal ACAP based safety centric designs the isolation of address blocks 

through the network on chip (NoC) typically need to be considered. Within the 

generation of this component this has been visited to create a suitable mapping of 

NoC paths as exclusive or defined by a grouping of lanes. Final choice was to skip 

this from the isolation setup as for the use cases under consideration the NoC based 

components are not safety related. 
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Using these units with configurations according to the desired isolation properties 

yields an address map that reflects the separation as seen here. 

Table 7 CIPS isolation address map and peripherals based on XPPU and XPM 

APU Subsystem Configured 
 Base Address 

Size SW = Secure world 
NSW = non-secure world 

Access 

A72     NSW   

OCM 0xFFFF_0000 64 KB NSW R/W 

DDR_LOW 0x0000_0000 32 MB NSW R/W 

DDR_LOW 0x6000_0000 1 MB NSW R/W 

UART0   NSW R/W 

GPIO   NSW R/W 

SWDT0   NSW R/W 

TTC0   NW R/W 

RPU Subsystem Configured 
 Base Address 

Size SW = Secure world 
NSW = non-secure world 

Access 

RPU     SW   

OCM 0xFFFC_0000 192 KB SW R/W 

OCM 0xFFFF_0000 64 KB SW R/W 

DDR_LOW 0x4000_0000 16 MB SW R/W 

DDR_LOW 0x6000_0000 1 MB SW R/W 

GPIO     SW R/W 

I2C1     SW R/W 

UART1     SW R/W 

 

Software Platform 

To allow the binding of the hardware setup into the application layer on APUs is 

carried out by deploying ARM Trustzone technology, so that the APU and its memory 

and peripherals are TZ non-secure while the RPU and PMU along with their dedicated 

memory and peripherals are TZ secure. This component is supported by correct setup 

of the software platform that is set up to drive this hardware setup. 

With this platforming place, a minimum executable can be delivered on the bare 

metal as well as on the Linux domain to run and prove the effectiveness of this 

hardware definition. 
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10.3 Testing and evaluation 

The implementation with the low-profile applications provides a bootable PDI file to 

ensure the ramp of the multiprocessor system in the defined isolated setup. The core 

access to the low-level infrastructure is blocked from APU / application level and the 

functionality can be reached only through the indirection through the PMC. A proper 

testcase would follow through: 

• Show access is possible to the low-level services and peripherals from APU 

and RPU in a non-isolation-based platform, i.e., before the platform 

availability. 

• Show access is only available for the respective component that is allowed 

access through the separation setup, prove blocked access otherwise 

• Identify that in the final setup the delivery version will not allow APU access 

to the PMC level. 

Table 8 KPI and metric of component WP4T41-06 

KPI description Means of 
assurance 

Expected  

 

Measured/ 

Achieved 

Consistently block access to 
predefined components 

Development 
board tests 

PMC functions cannot 
be reached from APU 

Achieved 

 

 Integration into UC8 

Current plan is to ramp UC8 application-level software on the overall Fractal Versal 

Reference Design for safety related systems, specifically on the APUs. All 

environmental awareness is provided through the RPU proxy into the isolated 

domain. 

The dynamic scheduling of the UC8 Fractal nodes is also deploying this 

communication path to even control the local power level if the schedule planning 

requires. 
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11 Validation of LEDEL library for low-

Power Services - SML 

11.1 Introduction 

This is the documentation of the demonstration on the use of the EDDL library and 

the execution of code which use said library in RISC-V systems, more precisely, in 

an emulation of a NOEL-V hardware system. Following the instructions here, one 

should be able to compile C++ code using the functions of the EDDL library, with the 

only dependency being the installation in your local machine of Docker and a Docker 

Image. 

We have explained how we have approached the creation, infrastructure and first 

simple example of the LEDEL in deliverable D3.6 that belongs to WP3.  A very similar 

procedure will be followed in this document with different examples. First, In the first 

docker container the EDDL library and all the tools needed to compile and run C and 

C++ code have already been installed. The idea of this container is that it can be 

perceived as the FRACTAL node since we will work with it in a similar manner. 

 

Figure 29 Docker diagram 

In Figure 29 diagram of the docker container is presented. The docker containers 

enclose a Debian Linux Machine where the EDDL is installed. Next to it, we can find 

the QEMU emulation RISC-V SIEMENS/ISAR [2]76, which emulates a Linux SO 

running in an emulated NOELV RISC-V based machine HW.  

All the documentation, files, containers and examples are uploaded to the repository 

of the FRACTAL project [3]. 

One entry of the repository is the manual of the use of the LEDEL and, as well, two 

demonstration videos.  
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The tests and examples used to validate the use of LEDEL as a low power service in 

a FRACTAL node are organized as follows. First, we explain how to compile and 

generate an ONNX file with the description of the machine learning algorithm 

topology, inside and outside of the FRACTAL node. Second, the ONNX generated in 

the previous step is imported inside the FRACTAL node and the process of inference 

is shown. Third, a couple of neural network training algorithm implemented using 

PyTorch and TensorFlow that create other ONNX files that are loaded inside the node 

for the inference process. Fourth example is the cross-compilation process of the first 

program. Finally, a use case from the Deep Health project with a reduced dataset is 

executed.  

All the examples are executed using the first docker container, while the cross-

compiled example has an own docker container with its required system 

configuration. 

11.2 EDDL code compilation process 

To start with the testing process, we focus on the first case, a simple neural network 

that uses the CIFAR10 dataset [4]. 

To be complete and thorough with the tests, we have compiled the same program 

out of the FRACTAL node, to show that the mechanism used to load ONNX files works, 

and also inside the node, to prove that the LEDEL works properly. 

For the demonstration of this process, we have included some code examples inside 

the docker container that shows the training of a convolutional network over the 

Cifar10 dataset. The same example will be used in the second part of this section to 

show the complete compilation process. 

The CIFAR-10 dataset consists of 60000 32x32 color images in 10 classes, so the 

trained neural network needs to classify each image as one of the 10 possible classes, 

these classes being ‘airplane’, ‘truck’, ‘cat’, ‘horse', 'automobile’, ‘dog’, ‘deer’, ‘bird’, 

‘frog’ and ‘ship’. 

Code compilation for training and ONNX file creation 

We are going to start by compiling a simple program. To this aim, only two files are 

required and need to be placed in the same folder of choice: a program with a main 

function implemented in C++ and using the EDDL [Figure 30 and Figure 31, and a 

CMakeLists.txt file with instructions to link the EDDL library and configure the 

executable that will be generated [Figure 32]:  
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Figure 30 C++ program using EDDL, part 1 
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Figure 31 C++ program using EDDL, part 2 
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Figure 32 Configuration file for CMAKE 

To compile the program, simply execute these commands within the same directory 

where the two files are placed. To make things neater, it is recommended to create 

a folder where the compiled files will be created and saved, and then, follow with the 

compilation command. For instance: 

 

Figure 33 Recommended instructions 

In the directory named ‘build’ we find the compiled file, which can be directly 

executed and the training process of the network will automatically start, 

“./cifar10_eddl_train”. In Figure 34 we can see the results of command for the 

program “./cifar10_eddl_train”: 
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Figure 34 Training trace and results for CIFAR10 example.  

Once the training process is finished, we can find the ONNX file in the same ‘build’ 

folder. This ONNX file contains the network architecture and the trained weights. 

From here, we can import the ONNX file to the FRACTAL node. This process will be 

depicted in the following section.  

Example with RISC-V 

In order to complete the demonstration of the full functionality of the LEDEL we have 

prepared another example that shows its behavior inside the FRACTAL node. For the 

purpose of this task, we have used the same code as in the previous example and its 

training execution can be seen in Figure 35.  
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Figure 35 Cifar-10 training execution 

Loading ONNX and inference process in the FRACTAL node 

Up to this point, if the steps have been followed, we have created an ONNX file that 

includes not only the topology of the neural network, but the weights of the training 

process as well. We are ready for the next step. 

Now is the moment to import the ONNX file into the RISC-V machine or FRACTAL 

node to proceed with the process of inference. We point out that the process this 

time is a lot slower due to the emulation process.  A similar situation might happen 

with real NOEL-V/RISC-V hardware due to its low computing power. From this, it is 

easy to understand why the training process is smarter to be executed in the cloud 

or in a designated hardware more powerful, to create the ONNX file and then load it 

into the FRACTAL node. Thus, it is more efficient and interesting to perform only the 

inference part of the machine learning process by using the strategy of importing the 

ONNX format file to place the neural network and/or the weights. The node can send 

afterwards the data collected or created back to the cloud if needed. 
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Consequently, we can understand that the training phase is a lot heavier in terms of 

computational time and resources and, actually, it does not need to be executed in 

the FRACTAL node. 

Coming back to the first example of the previous section, now we proceed to import 

the ONNX file, that includes the network architecture and its trained weights. It is 

indicated in the program with the function indicated by figure 36. Consider that other 

languages and frameworks use a similar function with the same objective. 

 

Figure 36 Function used to create ONNX file in a program that uses LEDEL 

Besides the ONNX file, we need to compile a new code for the inference of the trained 

network. This code will simply load the test part of the dataset, load the net from the 

ONNX file and start the evaluation of the network, printing the results in the console. 

The code we have used can be observed in Figure 37: 
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Figure 37 Inference code 

In contrast to the training code shown in Figure 30 and Figure 31 we can see that in 

the inference code there is no need to define the network layers one by one, since 

they are already loaded from the ONNX. We still need to build the model with the 

EDDL function ‘build’, to assign an optimizer, a loss function and metrics. Another 

important difference with the training code is that in the ‘build’ function of the 
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inference code we need to specify explicitly that the weight initialization of the model 

is disable. Otherwise, the loaded weights from the ONNX file will be overwritten by 

random values and the result from the training code will be lost. To disable the weight 

initialization simply pass the value False to the parameter init_weights of the build 

function (Figure 38) [5]. 

 

Figure 38 Details of build function 

The method to compile the code is identical to the one followed for the training code. 

Along with the code file shown in Figure 39 we will need a CMakeLists.txt file for the 

CMake compilation: 

 

Figure 39 CMakeLists.txt file for compilation 

Remember to place the inference code and the CMakeLists.txt files in the same folder 

of your choice and then execute the following commands within the folder created 

earlier for this task (like in Figure 33). 

Like in the training compilation, this will generate an executable file named 

‘cifar10_eddl_inference’ this time and inside the ‘build’ folder that can be found in 

the directory containing the code a CMakeLists.txt files we have just compiled. 

Executing right away the generated file will return an error, shown in Figure 40. 
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Figure 40 Error 

This error is caused because the executable is trying to load the file 

"cifar10_eddl_net.onnx" but can’t find it. To correct this simply transfer the ONNX 

file generated by the training code to the same folder where the executable for the 

inference code has been generated. Executing the program again will show the result 

of Figure 41, where we can see that the same model defined during the training code 

has been loaded and the metrics reach in training are kept. 

 

Figure 41 Inference process output 

Importing ONNX file generated by PyTorch and TensorFlow 

Not only ONNX files generated by EDDL code can be imported by the EDDL functions. 

Since ONNX is a standard format, any ONNX file, regarding of its method of 

generation, can be loaded as network by the EDDL/LEDEL. As an example of this 
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behavior, we have implemented a counter-part to the training code of Figure 30 and 

Figure 31, using PyTorch [6] [Figure 42 and Figure 43]. 

 

Figure 42 Cifar-10 training code using PyTorch, part 1 
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Figure 43 Cifar-10 training code using PyTorch, part 2 

Using this code, we build a model with the same layers as in the first example, but 

using PyTorch framework. The model is then train with the CIFAR10 dataset, and the 

architecture and weights of the network are saved to ONNX. The output of this code 

while training is the following shown in Figure 44. 

 

Figure 44 Training trace using PyTorch 
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We can execute this code in any machine using Python. Once the training has 

finished, a ONNX file named 'cifar10_pytorch_model.onnx' will be generated. Then 

we can transfer the ONNX to a RISC-V or any other system where we have already 

installed the EDDL library and reuse the code from Figure 37 to test the inference of 

this network. 

To reuse the inference code from Figure 37 we will simply need to change the line 

where the ONNX file is loaded so the path reaches the new ONNX from PyTorch 

[Figure 45]: 

 

Figure 45 Function used to create ONNX file in a program that uses LEDEL 

Once the change is done, we just need to re-compile the code following the same 

instructions as in section 11.2.1 of this document to generate the executable, transfer 

the ONNX to the folder where the executable has been generated and executed. If 

done correctly the Figure 46 should be the output shown on console: 

 

Figure 46 Output for inference process 

In addition to the ONNX files generated with PyTorch, we can use other technologies 

like TensorFlow code to generate a model and then import it to the FRACTAL node. 

Unfortunately, in the case of TensorFlow ONNX files, only the structure of the model 

can be imported to EDDL code and not the trained weights, since EDDL still doesn’t 

fully support this type of ONNX files. 

To transfer a model from TensorFlow first we need to save a model after training and 

then transform that saved model to ONNX using the Python library ‘tf2onnx’: 
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Figure 47 To test the importation of ONNX files from TensorFlow we have created, trained and saved a 

model using the following code  

Code depicted in Figure 47 saves the resulting model in the “saved_model” format 

from TensorFlow. Then, to transform the “saved_model” to ONNX we execute the 

command from Figure 48: 

 

Figure 48 Converting TensorFlow format model to ONNX 

Indicating the path to the ”saved_model” generated by the code and the path where 

the ONNX file will be saved to. This ONNX file can then be transferred to a system 
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with the LEDEL library installed, and use the inference code from the first example 

changing the line of code where the ONNX file is loaded. 

Doing that and recompiling the code will allow us to execute the inference of the 

loaded ONNX from TensorFlow using EDDL functions, showing the output of Figure 

49: 

 

Figure 49 Inference output for TensorFlow ONNX 

In the image we can see that the metric for this network is almost identical to the 

one obtained randomly classifying the images of the dataset. That is because, as we 

have said at the beginning of this section, LEDEL does not support the transferring 

of the trained weights through ONNX files, it only transfers the architecture of the 

model. 

Cross-Compilation 

Due to the limitations of the available software, to compile a program on system build 

on RISC-V may be more difficult than simply to cross-compile on another common 

machine, and then to transfer the compiled program generated and ready to work 

on the RISC-V architecture (in our case, in the FRACTAL node) 

To this aim, we have assembled a second Docker image with the tools needed to 

cross-compile a program which uses the LEDEL library. This docker works identically 

than the previous one and it already has the same code examples as presented in 

the previous sections, with the difference that anytime we compile a program, we 

will need to specify the cross-compiler for the RISC-V architecture. 
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For example, in the console of the Debian system of this docker container we can 

navigate to the directory “cd /home/eddl_examples/cifar10_eddl_cross_train”. 

Inside, there are files identical to those describe in section 11.2.1. To cross-compile 

them, the following commands need to be executed: 

 

Figure 50 Commands needed to follow cross-compilation example 

These are the same commands used during a usual compilation, with the addition of 

the specification of the cross-compiler installed inside the Docker container. After the 

execution, we can find the executable file in the ‘/build’ directory, but trying to 

execute it will return an error message. This happens because this executable is 

compiled to work on a RISC-V architecture and we are trying to run it in a different 

architecture. If instead, we transfer this file to the QEMU emulation and execute it 

there, we will get the correct functioning of the program [Figure 51]: 
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Figure 51 Cross-compiled program output 

In the QEMU emulation of the docker dedicated to the cross compilation we can find 

both examples, training and inference, of the executables ready to be launched, in 

the paths ‘~/cifar10_examples/cifar10_eddl_cross_train’ and 

~/cifar10_examples/cifar10_eddl_cross_infenrece’. 

Use Case 15 from DeepHealth project  

As an example of the capabilities of the LEDEL library executed over a RISC-V 

architecture, we have decided to implement the process followed in the Use Case 15 

from DeepHealth project [11]. The objective of this UC15 is to classify x-ray scans of 

human lungs between two classes, if those scans come from patients with or without 

Covid. 

To implement the original code of the UC we have selected two different approaches. 

On one hand we will use a reduced version of the original dataset where the images 

have been downsized and reformed to binary files. For this case, we will simply re-

use the code from the MNIST and CIFAR10 examples to load the images into the 

neural network and execute the training and test of it. 
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On the other hand, we are going to simplify the original pipeline of the UC15, 

removing the data augmentation from the images and skipping the use of the ECLV 

and OpenCV libraries. 

For this demonstration we have used the data available in the following link under 

the name “uc15_data_for_cpu_mpi_evaluation.tgz” [7]. Firstly, we are going to start 

the example with a reduced dataset [8]. 

The data in the .tgz file has been created applying some processing to the original 

images with the purpose of creating a dataset suitable for Support Vector Machine 

training, but we think that can also be useful to demonstrate the behavior of the 

EDDL over RISC-V. When decompressing the file in the link we will find multiple 

folders, each named using pixel windows size. 

 

Each folder contains the data resulting from measuring the mean and the standard 

deviation over the image using moving windows of the sizes in their names. For our 

demonstration we are going to work only with files in the folder 

‘5x5_and_7x7_and_9x9_and_11x11’. 

The data is already divided into train, validation and test partition; and we can make 

use of the EDDL functions to directly load these files as tensors into the C++ code. 

Once the tensors with the training and test data are loaded, we will start the training 

and evaluation of a simple neural network (almost identical to the one used in the 
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MNIST examples). We have used the code implemented in C++ from Figure 52 and 

Figure 53 for the entire process. 

 

Figure 52 Use case 15 code, part 1 
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Figure 53 Use case 15 code, part 2 

The most important aspects of this code are: 

• The input layer of the network receives a Tensor of size 2000, this is the size 

of every image after applying the preprocessing with moving windows. 

• “num_classes” has been defined as 1 since this a binary classification problem. 

In reality there are 2 classes and it is defined this way because we only require 

one output from the network. 

• The last layer of the network is a Sigmoid layer connected to dense layer with 

only one output value. This makes the output of the entire network a value 

between 0 and 1. If the final output is closer to 0 the input image is classified 

in the first class and if is close to 1 in the second class. 

• Instead of dividing the training and test tensors loaded by 255, as we should 

do when loading a PNG image, in this case we normalize each Tensor dividing 

by the maximum value in it. 

• The training and evaluation are done one to one. In each epoch the network 

is trained using the whole train dataset and evaluated with the test dataset. 

• The resulting network is stored in ONNX format. 
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Now that the code and use case is presented, we start the training process as 

described in 11.2.1, and we get the output shown in figure below: 

 

Figure 54 Output 

Here we encounter an unexpected error. During the first training epoch, when 

executing the code over a RISC-V architecture, the function loss suddenly skyrockets 

and our metric starts to descend until reaches an almost zero value by the end of the 

epoch. On the other hand, the same code runs without problem during training 

epochs when executed on a x86 architecture, achieving acceptable metric values. 

The strategies followed to address this bug have been: 

1. In the code of this use case different layers were used. Thus, we swapped 

them for the ones we had check worked in the previous examples that we 

certainly know have proper behavior. The bug appeared again. 

2. We thought the problem was in the initiation of the data during the 

preprocessing step. Therefore, we normalized the data out of the program to 

be sure it was correct. This was not the problem. 

3. We decided to use the other RISC-V image that we talked about in WP3 (see 

deliverable D3.6 for more details). With this approach, the LEDEL in this use 

case worked. 

Currently, we are planning what steps should be taken in order to have the LEDEL 

completely working on the RISC-V SIEMENS/ISAR, since the use of the LEDEL is a 

requirement for Use Case 7. 
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12 Conclusions 

In this document, the preliminary implementations for low-power services described 

in the deliverable D4.1 have been elaborated. Several building blocks and 

components that contribute to meeting the T4.1 objectives and could be 

demodulated/exploitable by any Use Case have been developed.  Specifically, they 

are data Compression for Low-Power Services, HATMA, Low Power services for PULP 

systems, Versal RPU access for low Power Services, agreement Protocol for Low-

Power Services, and Versal Isolation Design- Functional Safety. In particular, a 

thorough explanation, design, implementation, testing, and assessment of these 

components have been reported. Furthermore, T4.1 validated the LEDEL Library's 

adaptability to low-power services. 
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