

D4.2 FRACTAL low-power services

Deliverable Id: D4.2

Deliverable name: FRACTAL low-power services

Status: Draft

Dissemination level: PUBLIC

Due date of deliverable: 2022-10-31 (M26)

Actual submission date: 2022-10-25

Work package: WP4 “Safety, Security & Low Power

Techniques”

Organization name of lead

contractor for this

deliverable:

ROT

Authors: Nadia Caterina Zullo Lasala, ROT

Damiano Vallocchia, ROT

Amal Alrish, ROT

Daniel Onwuchekwa, SIEG

Pascal Muoka, SIEG

Juan Garcia, QUA

Ankur Raj, QUA

Berkay Enginoglu, PLC2

Alexander Flick, PLC2

Luca Bertaccini, ETHZ

Leticia Pascual, SML

Raúl García, SML

Reviewers: Pietro Abbatangelo, MODIS

Frank K. Gürkaynak, ETHZ

Abstract:

The goal of WP4 is to develop safety, security, and low-power techniques for

individual FRACTAL nodes. In T4.1 we investigated low-power services in seven

components implemented in the FRACTAL project, and this document will report

the results of this work, extending the preliminary implementations reported in

D4.1. The development includes both the node level (i.e., individual FRACTAL

nodes) as well as the system level (i.e., distributed systems comprised of FRACTAL

nodes) in accordance with the FRACTAL system architecture.

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 2 of 80

Co-funded by the Horizon 2020 Programme of the European Union

under grant agreement No 877056.

This project has received funding from the ECSEL

Joint Undertaking (JU) under grant agreement

No 877056

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 3 of 80

Content

1 History ... 5

2 Summary ... 6

3 Introduction .. 7

3.1 Document Organization ... 11

4 High-Level Picture .. 12

4.1 Data Compression for low power services .. 13

4.2 HATMA .. 14

4.3 Low Power services for PULP systems ... 15

4.4 Versal RPU access for Power Services ... 16

4.5 Agreement Protocol for Low-Power Services .. 17

4.6 Versal Isolation Design- Functional Safety ... 18

5 Data Compression for Low-Power Services - WP4T41-01 - ROT 19

5.1 LZW compression technique .. 19

5.2 Design and implementation ... 24

5.3 Testing and evaluation .. 26

 Integration into UC6 ... 27

6 Hierarchical Adaptive Time-triggered Multi-core Architecture (HATMA) - WP4T41-

02 - SIEG .. 29

6.1 HATMA Subcomponents .. 29

 Hierarchical Interactive Consistency Protocol (HICP) 31

6.2 Design and implementation ... 31

 Context Monitor (CM) ... 31

 Context Agreement Unit (CAU) .. 32

6.3 Testing and evaluation .. 35

 Integration in UC8 .. 38

7 Low-Power Services for PULP Systems - WP4T41-03 - ETH 39

7.1 Component description ... 39

7.2 Design and implementation ... 39

7.3 Testing and evaluation .. 40

 Integration into UC3 ... 40

8 Versal RPU Access for Power Services - WP4T41-04 – PLC2 42

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 4 of 80

8.1 Component description ... 42

8.2 Design and implementation ... 42

8.3 Testing and evaluation .. 43

9 Agreement Protocol for Low-Power Services – WP4T41-05 - QUA 44

9.1 Component description ... 44

9.2 Design and implementation ... 44

 Master selection ... 45

 Synchronization of slaves .. 45

9.3 Testing and evaluation .. 46

10 Versal Isolation Design- Functional Safety - WP4T41-06 - PLC2 49

10.1 Component description .. 49

10.2 Design and implementation .. 49

 Hardware Block Design and Settings ... 49

 Software Platform .. 51

10.3 Testing and evaluation ... 52

 Integration into UC8 ... 52

11 Validation of LEDEL library for low-Power Services - SML 53

11.1 Introduction ... 53

11.2 EDDL code compilation process ... 54

 Code compilation for training and ONNX file creation 54

 Example with RISC-V .. 58

 Loading ONNX and inference process in the FRACTAL node 59

 Importing ONNX file generated by PyTorch and TensorFlow 63

 Cross-Compilation .. 68

 Use Case 15 from DeepHealth project ... 70

12 Conclusions ... 75

13 Bibliography .. 76

14 List of figures ... 77

15 List of tables .. 79

16 List of Abbreviations ... 80

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 5 of 80

1 History

Version Date Modification reason Modified by

0.1 2022-05-31 First contributions All partners

0.2 2022-07-15

Refine contributions and outline

tests

All partners

1.0 2022-07-20 Draft version All partners

2.0 2022-08-01
New organization of the contents

of the document

All partners

3.0 2022-09-06
Major contributions to all

chapters
All partners

4.0 2022-09-20
Addressing HLAB feedbacks, final

contributions
All partners

5.0 2022-10-07
Pre-final version of the document

ready for internal review
ROT

Final 2022-10-24
Final version of the document

ready for submission
ROT

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 6 of 80

2 Summary

This deliverable aims to report the outcomes of T4.1 on Low-Power services. The

results of the implementations carried out in the task are presented according to the

components developed, which reflect the objectives of the task.

Namely, the work in T4.1 was focused on suitable Data Compression techniques for

low-power services, specifically the LZW compression techniques, described in

Section 5 (ROT). Moreover, this Task developed a hierarchical architecture to

facilitate low-power services for FRACTAL systems with a time-triggered Network-on-

Chip, with the work on the Hierarchical Adaptive Time-triggered Multi-core

Architecture (HATMA), which will be described in Section 6 (SIEG). In addition,

energy measurement and energy-efficient computing for low-power services for PULP

systems have been explored in Section 7 (ETH). The task also investigated low-power

communication protocols for a wireless network, in the Agreement Protocol in

Chapter 9 (QUA). Furthermore, RPU based access for Power Services on safety

focused Versal platforms have been explored in Sections 8 and 10 (PLC2)

respectively. Finally, following the outcomes of WP3, T4.1 validated the adaptation

of the LEDEL Library for low-power services in Section 11 (SML).

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 7 of 80

3 Introduction

The goal of the 4th work package is to develop safety, security, and low-power

services for individual FRACTAL nodes. In this document, we will shed light upon low-

power services for FRACTAL systems extending their preliminary implementations

reported in the deliverable D4.1. The development includes both the node level (i.e.,

individual FRACTAL nodes) as well as the system level (i.e., distributed systems

comprised of FRACTAL nodes) in accordance with the Fractal system architecture

depicted in Figure 1. To this aim, we will provide low-power services for multi-core

chips that use a time-triggered Network-On-Chip (NoC) to interconnect

heterogeneous types of computing resources such as general-purpose processor

cores. Moreover, we are developing low-power services for the interconnected

FRACTAL nodes based on a hierarchical system concept with wire-bound and wireless

time-triggered off-chip networks. Furthermore, we will extend the low-power services

realized on FRACTAL nodes to the system level by investigating low-power

communication protocols for wireless and wired networks. In addition, we will

investigate new aggregation and compression algorithms to reduce the amount of

time and data needed to transmit information over a channel. Finally, the validation

process of LEDEL, the library to implement Machine Learning algorithms as a low-

power service, is detailed in accordance with the results of WP3.

Figure 1 Fractal system architecture

The strategic objective of this task is to guarantee the energy efficiency of the

FRACTAL system. To achieve this objective, the task was realized by several building

blocks/components which contribute to fulfill the T4.1 objectives and are reusable

and could be demodulated by any use case (UC).

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 8 of 80

A brief description of each of the T4.1 components and how they contribute in

achieving the Task objectives are reported in Table 1.

Table 1 Brief description of the components and contribution T4.1 objectives

Data Compression for low-Power Services - WP4T41-01

Description It is a data compression technique for low-power devices,

applied at the system level. In particular, it is a software library

developed in C++ which performs operations of data

compression and decompression making use of the universal

lossless data compression algorithm LZW.

Contribution to

achieving the

T4.1 objectives

This component satisfies the need to investigate compression

techniques for energy-efficient data compression to reduce the

amount of data transfer for low-power services. This data

compression component contributes to improving nodes

utilization, increasing network lifetime, and improving

bandwidth efficiency.

HATMA - WP4T41-02

Description It is a Hierarchical Adaptive Time-triggered Multi-core

Architecture used to facilitate services at the different

hierarchies. It delivers adaptation services in a distributed

system of multiple nodes and within the nodes.

Contribution to

achieving the

T4.1 objectives

This component facilitates adaptability features of the FRACTAL

node through aligned switching of time-triggered schedules in

response to context events. HATMA delivers low-power

services by leveraging context events such as dynamic slack

arising from the execution of application tasks. Techniques

such as Dynamic Voltage and Frequency Scaling (DVFS) and

clock and power gating are used to reduce the node's power

consumption or efficiently utilize the available power during

periods of dynamic slack.

Low Power services for PULP systems - WP4T41-03

Description It aims to enhance existing platforms to increase energy

efficiency and provide low-power FRACTAL services.

Specifically, microarchitectural modifications and extensions to

the RISC-V platform are explored to specialize the architecture

for a specific application scenario, thus increasing its energy

efficiency. Additional components can be placed in different

power domains, which can be powered down during the sleep

mode of the IoT device. Different power gating granularities

are investigated.

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 9 of 80

Contribution to

achieving the

T4.1 objectives

The component satisfies the objective of the task by exploring

fine-grained power gating and increasing the energy-efficiency

of the platform through microarchitectural modifications and

specialized architectures

Versal RPU access for Power Services - WP4T41-04

Description The component enhances the safety-centric Versal platform to

provide access to power control and monitoring services

through underlying HW accesses as provided by Versal

Isolation Design. This service proxy code is running on the real

time processing units (RPU) in the Versal processing system.

The mission mode (FRACTAL node) services use this

component along the provided protocol to retrieve a predefined

set of control and monitoring features.

Contribution to

achieving the

T4.1 objectives

This component offers power control and status monitoring for

the Versal FRACTAL node by setting the power domains,

Dynamic Voltage and Frequency Scaling (DVFS), and clock

gating. This provides the Versal-based low-power services and

so enables the physical node adaptivity for the HATMA services.

Agreement Protocol for Low-Power Services - WP4T41-05

Description It is an implementation of the agreement protocol on a wireless

network on low-power devices. This protocol aims at having

clock synchronization among all the devices connected in the

network.

Contribution to

achieving the

T4.1 objectives

The component fulfills the T4.1 objective of investigation for

the low-powered wireless communication protocol, it helps in

providing a method for time-based synchronization on low-

powered devices. The synchronization is based on a PTP-like

method with low-powered microcontrollers sending

synchronization messages wirelessly. The implementation was

achieved using ESP-32 microcontrollers and a communication

protocol known as ESP-NOW.

Versal Isolation Design- Functional Safety - WP4T41-06

Description It aims to enhance the common Versal platform to strictly

separate functional accesses and services from underlying HW

access. In particular, in safety augmented designs on the

Versal platform, the direct access to the infrastructure features

of given hardware is limited to a non-mission mode compute

core (RPU). This component exposes the actual internal state

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 10 of 80

to the mission mode (FRACTAL node) services in a way that

still allows to adhere to safety regulations. In addition, it

provides monitor services.

Contribution to

achieving the

T4.1 objectives

This component defines the Versal FRACTAL node power

control and monitoring accesses that are available to the time-

triggered control instance. In safety-centric platforms, the

power control and monitoring features defined in this

component are only accessible through “Versal RPU access for

Power Services”.

Additionally, several activities have been carried out. In particular,

• In T4.1, the Data Compression for low-power services (WP4T41-01) has been

designed and implemented. In addition, the effectiveness of this technique

has been proven to evaluate this component.

• HATMA has been designed and implemented in hardware based on an NoC

multi-core architecture. Runtime adaptation to slack events has been

demonstrated while balancing a trade-off between adaptability overhead and

energy saving.

• An agreement protocol was also developed in T4.1 for low-powered devices

(WP4T41-05), here a wireless time-based synchronization was achieved with

multiple microcontrollers. A PTP-like synchronization method was developed,

which has one master and several slave devices. Additionally, a master

selection routine was created for this task. This routine program is responsible

for selecting a master device after the bootup process of all the peer devices.

In case the master device loses its connection with the network, necessary

fallback methods were also created to accommodate the selection of a new

master device.

• Verification and validation of the LEDEL library have been carried out. They

show that the LEDEL library can be used to implement neural network

algorithms, compiled or exported to ONNX files, and then transfer to the

FRACTAL node. Even more, programs created using PyTorch that define a

neural network that can be exported to ONNX file can be as well transferred

into the FRACTAL node, loaded using LEDEL, and perfectly executed.

• ETH investigated hardware specialization and microarchitectural modifications

to increase the energy of PULP-based energy efficiency. Furthermore, ETH

explored fine-grained power gating to minimize the power consumption

powering off unused hardware units and allowing tuning the hardware

configuration for specific application scenarios.

• For the Versal based platform the specific controls and monitoring of

infrastructure features have been validated and checked against requirements

to demonstrate scalability of a FRACTAL node. This informed the derived

Versal power service components that have been developed with safety and

isolation as a particular design constraint.

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 11 of 80

3.1 Document Organization

The document is organized as follows: in Section 4 we present a high-level picture of

the Fractal solutions developed in WP4. Then, we report the detailed description,

design and implementation, and evaluation and testing of data Compression for Low-

Power Services, HATMA, low Power services for PULP systems, Versal RPU access for

low Power Services, agreement Protocol for Low-Power Services, and Versal Isolation

Design- Functional Safety, in Sections 5, 6, 7, 8, 9, 10 respectively. Next, we describe

how the LEDEL library is validated for low-power services in Section 11. Finally, in

Section 12, we draw the conclusions.

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 12 of 80

4 High-Level Picture

Figure 2 The big picture of the FRACTAL project

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 13 of 80

The big picture of the project, illustrated in Figure 2, is a holistic representation of

the FRACTAL solution which aims to illustrate the assembly of the components to

build the FRACTAL node. It provides an answer to the use cases’ requirements, which

are the functional and non-functional needs captured by FRACTAL use cases at the

beginning of the project. Starting from these requirements, a set of features could

be established to give a technical notion to the requirements.

Beginning with the platforms' hardware and low-level software layers, one may

interpret the picture from the bottom up (OS, services, drivers...). The various edge

application software layers are integrated on top of them. Finally, this node

communicates with its cloud counterpart that includes for instance learning and

orchestration.

In the following subsections we report how each of the T4.1 components mentioned

in Chapter 3 is integrated into the big picture.

4.1 Data Compression for low power services

The Data Compression component has been developed at the software level thus, it

could be regarded as a part of the software edge of the big picture. Specifically, it

might be considered as a component of the data preprocessing block highlighted in

Figure 3 and can be integrated into any component needing data

compression/decompression functionalities.

Figure 3 The integration of Data Compression component in the big picture

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 14 of 80

4.2 HATMA

HATMA employs a time-predictable/aware interconnect to provide communication

services between processing units, I/O, shared memory, and ML accelerators. Traffic

monitoring and control are supported through time-triggered scheduling of system

resources. HATMA integrates vertically with the operating system to deliver system

services and horizontally to other FRACTAL nodes to deliver hierarchical services.

Figure 4 HATMA integration in the FRACTAL big picture

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 15 of 80

4.3 Low Power services for PULP systems

The component aims at enhancing the low-power services of PULP systems. Fine-

grained power gating has been explored to minimize the power consumption

powering off unused hardware units and allowing tuning the hardware configuration

for specific application scenarios. Use cases built upon PULP-based end nodes will

take advantage of the additional features to build low-power and efficient IoT

applications, reaching higher battery life.

Figure 5 The integration of low power services for PULP systems in the big picture

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 16 of 80

4.4 Versal RPU access for Power Services

This component provides means to access dynamic power and frequency scaling

features on Versal in safety-oriented platform designs. Thus, FRACTAL node-level

services and software applications from use-cases can query or control power state

through this access layer. Low power features must utilize this safety access channel

introduced by this component in order to adhere to isolation defined for a safety-

centric design as in Section 4.6.

Figure 6 The integration of Versal RPU access for low power services in the big picture

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 17 of 80

4.5 Agreement Protocol for Low-Power Services

For the agreement protocol, we are using FreeRTOS as a component to perform tasks

for synchronization of the peers. It integrates into the Hardware platform of the big

picture as shown in Figure 7. The FreeRTOS tasks handle the whole synchronization

protocol starting from the selection of master among a group of nodes, sending SYNC

messages, and handling of cases when the peer connection is lost. The nodes are low

powered microcontrollers (ESP-32).

Figure 7 The integration of agreement protocol in the big picture

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 18 of 80

4.6 Versal Isolation Design- Functional Safety

To fulfil the requirements for a safety-focused Versal design the basic accessibility of

the generic platform is restricted as a base for proper functional safety capabilities.

This component defines a particular policy to support a safety channel that

encapsulates the device and board infrastructure. The definition of the safety channel

has been provided in Deliverable D2.2 - 6.3.2.3 Versal Safety Channel Architecture

and encapsulates the power functionality with a specific RPU core. Resources within

this safety channel are accessible from the application layer through this RPU power

control software component as described in Section 4.4.

Figure 8 Location of the Versal isolation features in the big picture

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 19 of 80

5 Data Compression for Low-Power

Services - WP4T41-01 - ROT

5.1 LZW compression technique

As it was stated in the deliverable D4.1, a variety of compression techniques could

be used in energy-constrained systems in order to minimize the data exchanged

among nodes and thus reduce the network energy consumption. These techniques

could be classified based on some parameters such as application type, data quality,

coding schemes, and data type. In addition, we have provided the state of the art of

possible data compression algorithms and data aggregation techniques that could be

used in such networks. Moreover, according to the Use Cases requirements, we have

set out some specific features which should be taken into careful consideration in

order to choose a suitable data compression technique. Satisfying these features, it

was decided to choose the LZW algorithm. The LZW algorithm is a very common

compression technique that is typically used in text file, TIFF, GIF and optionally in

PDF. The main features of the algorithm:

- Lossless algorithm, no information loss during the processing;

- Excellent compression/decompression speed;

- Good compression ratio;

- Dictionary-based operating principle (the algorithm is an evolution of the first

known dictionary algorithms, LZ77 and LZ78);

- Ability to compress streaming data without knowing the data before

compression;

- Simple implementation, with a potential for very high throughput in hardware

implementations;

LZW is the foremost technique for general purpose data compression due to its

simplicity and versatility. It is the basis of many PC utilities that claim to double the

capacity of your hard drive. LZW is mainly used in the compression of text and images

in the most well-known existing formats. Although its diffusion is still rather limited

compared to algorithms based on LZ77, it is widely used Unix file compression utility

compress and is used in the GIF image format.

Its main advantage over other algorithms is that it uses a dictionary that is built up

as it reads a file or stream of data.

The working principle of a dictionary algorithm consists in replacing a set of recurring

symbols with abbreviated symbols in the output data. The idea relies on reoccurring

patterns to save data space.

To give an example of an algorithm with a dictionary, we can imagine compressing

an SMS by replacing the most used words with numbers. For example, using 16bit

we could have 65535 words in our new compressed dictionary, more than enough to

compose an SMS with a simple language. The saving of this imaginary algorithm in

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 20 of 80

terms of data would be considerable; in fact, each word could occupy even only 2

symbols (in computer science each character of text occupies 8bit), with such a

compression we could get to compose SMS with a much higher number of words.

compared to a classic SMS.

As we often have to work with very varied and non-recursive data, finding a good

algorithm for many cases is no small feat, but it is precisely what LZW guarantees.

The working of the LZW algorithm for compression is as follows:

Figure 9 LZW compression algorithm

To better understand the process, let's take for example a word to be compressed

consisting of 11 characters: ABCABEFGHIL.

The dictionary is initialized with 256 symbols, an array of strings of single character,

which also contain each of the single characters of the word mentioned above: A B C

E F G H I L.

After the first reading, the input buffer will consist of: A.

In the second step, the algorithm reads B, and the buffer becomes: AB.

AB is a symbol not present in the dictionary, at this point the algorithm inserts the

new symbol AB in the first position available in the dictionary, i.e., position 256 which

will therefore contain the new symbol.

Once this symbol has been added, the algorithm will produce an output corresponding

to the position of the last symbol found, i.e., the value of the position associated with

character A, precisely: 65.

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 21 of 80

The algorithm proceeds by discarding the symbol sent out from the buffer and

appending the new byte to be read at the last read, the buffer thus becomes BC. The

new symbol BC is not present in the dictionary thus the algorithm inserts the new

symbol BC in position 257, and always returns as output the value of the position of

the last symbol which is in this stage 66 associated with the symbol B.

The process continues and the buffer becomes CA which is not present in the

dictionary too, thus the algorithm outputs the position of the symbol C that is: 67,

and inserts the new symbol CA in position 258.

In the next step the buffer becomes AB, AB is a symbol in the dictionary, the

algorithm does not produce any output and continues with the reading (the

compression begins).

The buffer then becomes: ABE which is not present in the dictionary. Therefore, the

output is 256 (the value of the symbol AB), and the new symbol inserted in the

dictionary is: ABE with the value 259 and the buffer becomes EF.

The algorithm proceeds in this way until the incoming data ends.

Decompression proceeds in a very similar way to compression, so the algorithm of

decompression can be expressed as in Figure 10:

Figure 10 LZW decompression algorithm

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 22 of 80

Although the LZW algorithm is quite simple to understand from logical point of view,

its implementation brings up considerable technical difficulties from practical point of

view:

1) The use of memory must be optimized within the code where the system must

store a very large dictionary in a small space.

2) The search for symbols in the dictionary must be optimized to reduce data

processing time.

3) Symbols must be written in a format with variable bit-size depending on the

size of the dictionary during the compression phase to maximize the benefits

of the algorithm.

4) Since the size of memory is limited, it is necessary to limit the size of the

dictionary.

5) The dictionary must be reset when it becomes full or the compression ratio

becomes inconvenient since during compression with this method the

compression ratio tends to degrade very easily depending on the portion of

data to be compressed.

With an eye toward achieving the main objective of the T4.1 to ensure the energy

efficiency of the FRACTAL system, we proposed some possible solutions of the

aforementioned challenges such as:

1) To limit the space occupied by the dictionary, you can keep in memory only a

list of pairs of variables for each symbol of the dictionary. In other words, a

prefix/last character pair, while the code in the dictionary will be nothing more

than the index of the array used. In particular, it can be seen that each new

symbol to be inserted in the dictionary is nothing more than an old symbol in

the dictionary with one last extra character. It is, therefore, sufficient to

memorize the value of the old symbol and the character that forms the new

symbol instead of memorizing the whole new symbol which could be as long

as the dictionary itself. For instance, by applying this technique on the first

memorization step of the previous example, the insertion of the symbol AB in

the dictionary becomes prefix 65-character B, array index 256.

2) With the aim of solving the problems of the search times of the symbols in

the dictionary, a Hash algorithm is used in many implementations of LZW.

Although this algorithm is more efficient than other data structures and it

provides constant time for searching, it has some disadvantages. Specifically,

using the Hash algorithm can have a considerable cost. It demands a

necessary increase in the memory to be dedicated to saving the dictionary.

Therefore, a large portion of the memory will be wasted to the detriment of

the maximum compression capabilities.

An optimal solution has been analyzed which consisted in making the most of

the hypothesized structure to store the dictionary. In particular, we

considered that each prefix-character element of our structure is used to form

other symbols of the prefix/character + second character type, and the

maximum number of derived symbols will never be higher than 255 due to

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 23 of 80

the operating principles of the algorithm. Then, we can add an array of 255

pointers for each prefix-character pair which point to the pairs derived from

the source ones. The index of these pointers will be used with the second

character. Despite the significant improvement this solution will lead to, where

the cost of research with this structure would always be equal to 1, it involves

excessive use of memory. One way to solve this drawback is to reduce the

pointer arrays in order to create linked lists. Faster processing times are going

to be required in UC6, where the analysis reported here is going to be

implemented and integrated.

3) With the purpose of maximizing the effectiveness of this compression

algorithm, the output values should be stored using only the needed space.

This means that, for example, when a symbol with a position 256 is added to

the dictionary which has a maximum size of 16 bits, the written value must

occupy only 9 bits of the memory rather than 16 bits, as long as it does not

need more bits for storage. In addition, the bit size has to grow dynamically

according to the momentary size of the dictionary. This one will be solved and

developed in another European project.

4) In order to limit the size of the memory, we defined the size of the dictionary.

The best method used in this case is to give a limit to the dictionary based on

a bit-size of the code-word. By doing so, there will be no wasted information

in the compressed output. This means that if, for example, we use code-word

of 14 bits, the maximum number of symbols in the dictionary will be

214 − 1 = 16383 𝑠𝑦𝑚𝑏𝑜𝑙𝑠

5) Since the compression ratio using the LZW algorithm tends to decline easily

depending on the percentage of data to be compressed, the dictionary must

be reset to prevent compression from degrading once the dictionary is full. In

order to do so, we propose two methods which might be implemented in the

next period. We are going to report this improvement on the related UC

deliverable. These methods are:

a) The first one is based on resetting the dictionary to return to the initial

situation in which we have, for example, 255 symbols. In addition, one

way to indicate to the decompression process that the dictionary starting

from the special symbol has been reset is to reverse that symbol in the

dictionary.

b) The second technique is more refined. It focuses on the continuous

analysis of the compression rate and resetting it every time the

dictionary degrades.

In the following subsections, we report the implementation of LZW data compression,

perform a set of practices and processes in order to validate our component, and

determine if our component meets the project KPI metrics. Additionally, we address

the use case which utilizes our component and how it is integrated into that use case.

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 24 of 80

5.2 Design and implementation

The data compression component was designed to be split into two subcomponents:

Compression and Decompression which both have a single entry-point for their

respective action to be performed on the file taken as input.

The following flowchart, Figure 11, explains the data flow of the Compression

subcomponent library which takes as input path, name, and extension of the file to

be compressed. It will read the original file and perform LZW compression to give as

output a file on the same path, with the same name, and extension “.lzw”.

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 25 of 80

Figure 11 The flow chart of the compression process

The flowchart in Figure 12 explains the data flow of the Decompression

subcomponent library, which takes the same input as the Compression

subcomponent (the file extension must be the same as the output file, since the input

file is supposed to always be a previously compressed file, hence with the extension

“.lzw”.)

Figure 12 The flow chart of the decompression process

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 26 of 80

The component was implemented as a software library, developed in C++, as a

wrapper and extension of an open-source LZW C++ implementation. [9]

5.3 Testing and evaluation

The Data Compression component can be evaluated in several ways. Considering the

different types of parameters, it is possible to define a series of tests that measure

or calculate these parameters, through which it is, therefore, possible to provide

evidence of the effectiveness of the component.

Data compression ratio, also known as compression power, is a measurement

of the relative reduction in the size of data representation produced by a data

compression algorithm. It is typically expressed as the division of uncompressed size

by compressed size.

𝐶𝑅 =
𝑈𝑆

𝐶𝑆

where CR is the Compression Ratio, US the Uncompressed Size of input file and CS

the Compressed Size of output file. This formulation applies equally for compression,

where the uncompressed size is that of the original; and for decompression, where

the uncompressed size is that of the reproduction.

Another measurement of size reduction is Space Saving, which is defined as the

reduction in size relative to the uncompressed size:

𝑆𝑆 = 1 −
𝐶𝑆

𝑈𝑆

where SS is the Space Saving, CS is the Compressed Size the of output file, and US

is the Uncompressed Size of the input file. This measurement provides a percentage

value of the space saved with the compression process.

The third parameter to evaluate our component is the time for the compression and

decompression processes, which is an important indicator of the efficiency of the

algorithm.

The Lab tests were conducted on a Windows 10 computer with both compression and

decompression algorithms compiled as a library.

During the lab tests, we focused on the saved space and the time needed for both

compression and decompression.

Due to the fact that Data Compression component is going to be integrated in Use

Case 6, tests have been conducted using sample files provided by the use case. This

set of sample files is composed of images in JPEG format and audio in WAV format,

and the tests have been performed using 14 different audio files. For further details

about integration refer to section 5.3.1.

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 27 of 80

All the files that were used during the tests were successfully compressed apart from

3 cases. In the first one, the file size was the same as the original, and in the other

two the size was greater than the original. However, it was expected that some files

could not be compressed by one compression algorithm because no lossless

compression technique can efficiently compress all types of data/messages. [10]

Given the limits of lossless data compression algorithms, we have reported the results

of the successful tests performed to estimate the value of Space Saving in Table 2.

The average compression and decompression times was, on the other hand,

estimated among all the results of the tests.

As we notice from table below, the algorithm meets the KPIs identified during the

requirements identification phase.

Table 2 KPI and metric of component WP4T41-01

KPI description Means of assurance Expected

Measured/

Achieved

ACCURACY
Saved space

Lab test > 10% 12%

RESPONSE TIME

Compression

Lab test < 3s 2.3 s

RESPONSE TIME

Decompression

Lab test < 3s 2.6 s

The next steps will be to perform improvement to meet the specific requirements of

UC6 (Intelligent Totem) and for integration and field tests.

 Integration into UC6

The Data Compression component is going to be integrated into UC6, which is

expected to use to reduce the amount of the data transferred between nodes. In

particular, the Data Compression is used when the Load Balancer component is

triggered, meaning the current node is overloaded and needs to distribute workloads.

As we mentioned, the component could be utilized to compress/decompress various

media types. Referring to D8.1 - Specification of Industrial validation Use Cases, the

first proposed way of integration was to use our component in the

compression/decompression of the images taken by the node camera. However, the

images provided by the node have JPEG format, which is not suitable for the LZW

algorithm. Furthermore, JPEG is a method of compression for digital images, so using

the LZW compression on a .jpeg image does not produce an admissible result. These

images could be sent to other nodes while all the UC6 requirements are fulfilled

among which is the time constraint.

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 28 of 80

However, using it with the type of image captured by the node’s camera in UC6, will

do a reverse job and expand the output file. Therefore, we decided to use the

compression technique to compress the audio files captured by the node’s

microphone. In fact, the tests reported in section 5.3 have been conducted using

sample audio files.

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 29 of 80

6 Hierarchical Adaptive Time-triggered

Multi-core Architecture (HATMA) -

WP4T41-02 - SIEG

The Hierarchical Adaptive Time-triggered Multi-core Architecture (HATMA), as

introduced in D4.1, delivers services through adaptation on two levels, the system

and node levels. The system-level encompasses nodes interconnected through a

time-triggered off-chip communication network. Access to the network is provided

via a gateway, which encrypts and decodes messages before injecting them into the

network to their intended destination. On the other hand, the node level encompasses

processing elements and a time-triggered network-on-chip to facilitate message

exchanges within the node. Each processing element within a node is interfaced with

a network interface which injects messages from the processing element into the

respective network.

As illustrated in Figure 13, each processing element includes computational cores for

application services, an adaptation logic, and a network interface for accessing the

adaptive communication network and the network-on-chip. In the case of the

gateway core, the network interface is used to access the off-chip communication

network.

Figure 13 Hierarchical Adaptive Time-triggered Multi-core Architecture (HATMA)

A consistent state of all resources facilitates hierarchical adaptation in HATMA at

periodic points in a scheduled period. The time-triggered schedules maintain such

consistency. Adaptation is then achieved at the different hierarchies by an aligned

switching of schedules in response to context events such as dynamic slack for low

power and energy management services.

6.1 HATMA Subcomponents

The adaptation logic of HATMA manages and coordinates adaptation services in a

distributed manner and comprises the context monitor, context agreement unit and

schedule dispatcher. Therefore, hierarchical adaptation is synchronized across all

adaptation logics at the respective hierarchy. The establishment of a consistent

system state is taken in a distributed manner by all context agreement units. The

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 30 of 80

adaptation logic establishes a global view of the system state. A global system state

is realized through observation, reporting, broadcast, distribution and agreement of

local contexts. Therefore, the selection and dispatch of the following schedules for

hierarchical adaptation are possible based on the agreed contexts as described in

Figure 14:

Figure 14 HATMA Adaptation Logic Process

Context monitor (CM): The CM observes the state of its local system resource and

generates local context information. Such local context can be the status of an

application being executed on a core. The local resource is periodically observed for

each scenario based on the precomputed adaptation schedule. The precomputed

adaptation schedule for the periodic sampling of the local resource is synchronized

to the system schedule to enable a potential schedule change without detriment to

the system.

Context Agreement Unit (CAU): Through the Hierarchical Interactive Consistency

Protocol (HICP), the CAUs establish a globally consistent context vector (system

state) by collecting and agreeing on the local contexts reported by all CMs at the

respective hierarchy.

a. All CAUs initiate a synchronized context distribution phase based on a

precomputed adaptation schedule. Through the HICP, the local context is

distributed in a double-ring topology through the adaptation communication

network. Local context is sent to and collected from the next neighbors in the

network and concatenated to produce a global context vector.

b. At the end of the distribution phase, all resources possess identical system

information. At this point, HICP converges, and the CAUs agree on the system

state. The agreed context vector is the globally consistent context vector

representing the system status at all resources. The schedule dispatcher uses

the globally consistent context vector to determine the next schedule and

perform an aligned switching of schedules at runtime.

Schedule Dispatcher: The precomputed multi-schedule graph is stored in this unit.

The next dispatched schedule is chosen based on the globally consistent context

vector from the CAU mapped to the edges in the multi-schedule graph. Based on the

system state, adaptation is achieved by choosing the next schedule and dispatching

it for an aligned reconfiguration of the respective hierarchy of the system. At the start

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 31 of 80

of the adaptation window, the CMs are triggered, and an instance of the HICP is

initiated. At the end of the window, the schedule dispatcher performs an aligned

schedule change in adaptation to the agreed observed contexts.

 Hierarchical Interactive Consistency Protocol (HICP)

The context event to be monitored influences the timing of instances of the HICP at

the various hierarchies. Context events are differentiated based on their urgency.

The urgency of a context event indicates a period when adaptation to the event can

yield a benefit before it loses its value for adaptation. For example, urgent slack

events require fast switching at the core and node levels to trigger low power and

energy management services. On the other hand, adaptation at the system level is

much slower given the number of resources and the communication cost of the off-

chip communication.

Furthermore, adaptation generally introduces overhead. Thus, the system level's

adaptation frequency has a coarser granularity to balance the increased overhead.

Slowly changing events such as the available power in battery-operated devices or

events critical to overall system reliability are prioritized at the system level given

the adaptation window and the constraints of adaptation overhead.

6.2 Design and implementation

HATMA is instantiated in hardware using the Xilinx Vivado design suite and Vitis

toolchain for synthetic slack scenarios to validate the HATMA low power service. A

multi-core architecture consisting of a Zynq processing system and 3 Microblaze

cores, the adaptation logic and the Adaptive Time-Triggered Network-on-Chip

(ATTNoC) described in deliverable D4.1 was instantiated on a Xilinx Zynq UltraScale+

MPSoC ZCU102 FPGA board.

The adaptation logic for HATMA is key to the timely and consistent reporting,

agreement and adaptation of HATMA to context events. During each adaptation

period, local resources are observed, and local context is reported. Then, through the

HICP, observed local contexts are broadcast to neighboring resources and an agreed

system state at the respective hierarchy is established. The agreed system state

allows for an aligned hierarchical adaptation to the observed events. Therefore,

adaptation at the node level is consistent with the global system state.

 Context Monitor (CM)

The CM is triggered to monitor and report the status of its local resource, for example,

dynamic slack of the jobs of an application service running on a core. The CM can be

realized in hardware and software and is designed to poll and report local context

information.

Synchronous events are predictable, and CMs can be scheduled to observe such

events. On the other hand, asynchronous events are random and are therefore

observed through periodic monitoring of system resources. In either case, there is a

polling delay between the occurrence of a context and its reporting. Therefore, a

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 32 of 80

time-triggered adaptation of system resources is scheduled periodically, where the

granularity is a trade-off between a reduced polling delay and adaptation overhead.

A CM implemented in hardware using a finite state machine is described in Figure 15.

The time-triggered machine reacts to an external trigger and a reset. It starts in the

initial state where no context is observed, and its reported context is initialized to

null. When triggered, it transitions to the encode state. It monitors and records the

local resource state based on observable information (dynamic slack) and the context

time (timestamp). When the observed local context is encoded into a 32-bit bitstring,

it transitions to the output state when the encoded context bitstring is driven at the

output. At the output state, the machine transitions back to the initial state when

reset or to the encode state when the CM is triggered. The machine remains in the

output state when no trigger or reset is present.

Figure 15 Context Monitor Implemented in Hardware using a Finite State Machine

In each case, triggers are generated based on the precomputed adaptation schedule.

Such operation of the machine allows for a periodic observation and reporting of

context events in multiple instances. The outputs produced by this machine are the

encoded local context and outEnable to indicate the availability of the observed

context.

 Context Agreement Unit (CAU)

The CAU manages instances of the HICP when reported local contexts are broadcast

to neighbors in a dedicated double-ring half-duplex network topology. Each instance

of the HICP across multiple CAUs is synchronized to realize an aligned convergence

of the HICP. On the convergence of HICP, each CAU possesses an identical global

view of the system state, which is the basis for hierarchical adaptation.

The CAUs are triggered periodically within adaptation windows in the system

schedule. For example, in one instance of the HICP, the local context provided by

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 33 of 80

CMs is frozen in time and agreed upon by all CAUs. The following instance of the HICP

is used to agree on the next set of reported events, as illustrated in Figure 16. Each

received local context is saved to the local register and relayed to the next neighbour

until the local context gets to the initial broadcaster when the instance of the HICP is

converged.

Figure 16 Periodic Adaptation to Context Events

A CAU implemented in hardware using a finite state machine is described in Figure

17. In the figure, the machine reacts to a trigger and a reset. It starts in the initial

state where its local registers are initialized and its output disabled. Each received

context bitstring is assigned a unique slot in the local registers based on its CAU ID.

When a trigger is present, it transitions to the poll state, where context events

reported by CMs are saved in two registers and held as input context. In this state,

the CAU's local ID is also the CAU ID of origin for the input context.

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 34 of 80

Figure 17 Context Agreement Unit Implemented in Hardware using a Finite State Machine

When the context event is collected and saved, the machine transitions to the write

state, where the input contexts are written to the two output ports. The CAU ID of

origin and an indication of the context availability are also driven as outputs. At the

end of the writing process, the machine transitions to the read state, where inputs

from neighbors in the double-ring are read synchronously from the input ports. These

contexts from neighbors are saved to the local register and held as input contexts.

The CAU ID of the context origin of the received contexts is also stored in this state.

The machine then transitions to the check state, where the received CAU IDs are

checked against the local CAU ID. If any of the received CAU IDs match the local CAU

ID, the machine transitions to the converge state and terminates the HICP. The

machine returns to the write state and drives the respective inputs to the output

ports if the CAU IDs do not match the local CAU ID. The machine maintains the write-

read-check loop synchronously across all CAUs in the network until it transitions to

the converge state, as shown in Figure 17 (Green circle). When in the converge state,

the machine transitions back to the initial state when reset input is present or to the

poll state when a trigger is present. The machine remains in the converge state when

no trigger or reset is present.

Triggers for the CAUs are based on the current schedule and are synchronized across

all CAUs. The aligned and periodic triggers for the CMs and CAUs allow for parallel

instances or periods of adaptation based on Figure 16. For example, an instance of

adaptation can be in the distribution phase, and the next instance of adaptation can

begin with the reporting phase. In each instance, the outputs produced by the CAUs

are the agreed context bitstrings and the trigger signal for schedule change.

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 35 of 80

6.3 Testing and evaluation

The timely adaptation to context events at runtime is desired to increase the

efficiency of HATMA's adaptation. In addition, adaptation through HATMA should also

result in energy savings for low-power applications. Therefore, the evaluation of

HATMA's adaptation for low-power is based on four key metrics: polling delay, time

to convergence, overhead and energy saving.

Polling Delay: HATMA's adaptation is time-triggered and executed based on a

precomputed adaptation schedule. This periodic execution introduces a delay

between the occurrence of a context event and when the adaptation logic reports

such context event, referred to as the polling delay 𝛿. Runtime events are generally

asynchronous due to the unpredictability of their occurrence. To minimize the polling

delay, we introduce a timing granularity 𝜏 of adaptation where the system is sampled

periodically between 100 and 500µs. This range of granularity ensures that all

scheduled tasks are sampled at least once for the occurrence of a slack event relevant

for adaptation for energy saving. This range also ensures that sufficient time is

available to adapt the system schedule. We also simulate a schedule of 20 and 100

tasks with hard deadlines and worst-case execution times (WCET) in the range of

700 - 1000µs on the architecture.

On average, 70% of application tasks are completed in 50% of their WCET [1] where

the maximum polling delay is such that:

𝛿max = 𝜏,

where the timing granularity of adaptation is applied globally to the system schedule.

A 100µs timing granularity represents a frequent sampling of the system every

100µs. The more frequent the system is sampled, the lower the polling delay and the

faster HATMA adapts to observed events. For example, HATMA exploits the early

completion of tasks (slack events) to apply Dynamic Voltage and Frequency Scaling

(DVFS) and Power/Clock gating techniques to save energy. Therefore, the system is

frequently sampled for highly volatile events such as slack, in which energy saving

decreases as the polling delay increases.

Time to convergence: To evaluate the performance of the HICP, we set up a VHDL

testbench in which four adaptation units are interconnected in a double-ring topology.

A global time base is implemented to synchronize the adaptation units, ensuring each

component has a common notion of the system time. A time-triggered (TT) scheduler

is implemented to provide the triggers for monitoring and agreement every 30 clock

cycles. The granularity of triggers is set sufficiently large to allow each instance of

the HICP to converge. A finer timing granularity could lead to an incomplete execution

of the HICP. In this case, all adaptation units do not possess an agreed context event

necessary for an aligned schedule switch. We show the time of convergence of HICP,

which is the time difference between the trigger for agreement and the convergence

of the protocol.

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 36 of 80

Figure 18 shows a 100MHz clock, the triggers from the TT scheduler and context

events reported by each context monitor in the adaptation units. The context events

are simulated to evaluate the time to convergence of the HICP. We observe that all

context agreement units report the same context event after convergence of the

HICP instance. All CAUs start in the initial_state where the time to convergence and

reporting of the detected context event is ≈230ns (23 clock cycles). The time to

convergence is also observed in the second instance of the HICP, where all CAUs

agree upon the context event reported by Context Monitor 2.

Figure 18 Convergence Time of HICP

The time to convergence of the HICP represents a minimum inter-adaptation time for

a given hierarchical architecture. When computing a schedule for adaptation, the

minimum inter-adaptation time is considered. It is the finest granularity for HATMA

adaptation.

Overhead: The system is periodically sampled to minimize the polling delay. This

frequent sampling of the system results in a communication overhead for adaptation

due to the broadcasts of reported context events to all adaptation units in the system.

We evaluate the communication overhead for adaptation due to multiple instances of

the HICP with timing granularities in the range of 100 - 500µs. Each broadcast of a

context event is represented as a message from one CAU to the next. The total

number of messages broadcasted for multiple instances of HICP is such that:

𝐶𝑜𝑣 = 2𝑛2 ∗ 𝑛𝑆𝑎𝑚𝑝

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 37 of 80

where n is the number of monitored hardware resources and nSamp is the number

of instances of the HICP for a time-triggered application. Cov represents the total

communication overhead of adaptation for scheduled applications. We further

observe the polling delay as a trade-off between the communication overhead and

the timing granularity for adaptation.

Energy Saving: the goal of hierarchical adaptation in HATMA for low-power is to

dynamically reduce the system's energy consumption when executing a given

application without detriment to system performance. We evaluate the energy-saving

capability of HATMA as the runtime percentage decrease idle time in applications

execution time compared with the base schedule computed offline. Furthermore,

HATMA exploits the system idle times to facilitate power/clock gating, reducing

energy consumption. We show the reduction in energy consumption of a synthetic

application with 20 tasks and messages and the communication overhead of

adaptation due to the timing granularity of HICP in the range of 100 - 500µs.

In Figure 19, a key point ≈180µs highlights an optimal point for energy consumption

and communication overhead. A shift to the right of this point, although resulting in

lower communication overhead, leads to reduced energy saving and vice versa for a

change to the left. In scheduling HATMA's adaptation, a trade-off is made between

the adaptation overhead and energy-saving constraints of the application.

Figure 19 Energy Saving and Communication Overhead for Synthetic Application

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 38 of 80

Table 3 KPI and metric of component WP4T41-02

KPI description Means of assurance Expected

Measured/

Achieved

Adaptation to predefined scenarios Simulation <1ms 900µS

Adaptation for energy saving Simulation >5% 6%

 Integration in UC8

A hierarchical automated warehouse shuttle system, UC8, is implemented as a

SWARM intelligent system, utilizing the adaptability service of HATMA to improve

dependability. HATMA ensures the FRACTAL node-based shuttle system adapts to

new tasks and failures in the system, ensuring tasks are completed even in crash

scenarios (e.g., failure of a shuttle, failure of a lift, failure of a track). HATMA also

facilitates adaptation to avoid obstacles by adjusting routing paths and enabling

strategies to clear them if possible.

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 39 of 80

7 Low-Power Services for PULP Systems -

WP4T41-03 - ETH

7.1 Component description

PULP (Parallel Ultra-Low-Power) is an open-source computing platform targeting IoT

applications. To cope with the tight power constraints that small battery-powered IoT

devices need to meet, the PULP architecture is designed around low-power

operations. Further low-power services have been developed at ETH to meet the

requirements as defined by the UCs.

Figure 20 PULPissimo SoC Schematic

7.2 Design and implementation

PULPissimo, introduced in deliverable D2.1, provides a full microcontroller

architecture containing a single RISC-V core, a low-latency multi-bank scratchpad

memory, a set of peripherals, and a direct memory access (DMA) engine taking care

of autonomous I/O, advanced data pre-processing, and external interrupts.

The main three phases of the workloads faced by an IoT device are sensing,

processing, and transmission. As the transmission phase requires more power than

processing data on such a low-power microcontroller, the goal of PULP-based systems

is to maximize the processing performed on the edge to minimize the time spent in

transmission. To increase the energy efficiency of the overall system and achieve

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 40 of 80

higher performance, various paths have been investigated: (i) coupling PULPissimo

with a multicore compute cluster, (ii) extending PULPissimo with domain-specific

hardware accelerators, or (iii) enhancing PULPissimo’s RISC-V core with instruction

set architecture extensions.

To minimize the power consumption of the IoT device, additional components

introduced to increase the energy efficiency of the system can be placed in different

power domains, which can be powered down during sleep mode. We targeted power

budgets typical of microcontroller systems (<100mW), and explored fine-grain clock

and power-gating techniques that can be employed to fine-tune the architecture

configuration to specific application phases following a sub-10ns power-up sequence.

7.3 Testing and evaluation

We prototyped PULPissimo-based platforms on FPGA to evaluate the benefits of the

extensions and customization. Deployment scripts for various FPGA platforms

(Digilent Genesys2, Xilinx VCU108, Xilinx ZCU102, ZedBoard, ...) are open-source

on the PULPissimo GitHub page (https://github.com/pulp-platform/pulpissimo).

Partners interested in prototyping their PULPissimo-based use case can use such

scripts to speed up the testing process. Furthermore, we taped out and tested

Echoes, a low-power PULPissimo-based chip enhanced with a domain-specific

hardware accelerator.

Figure 21 Echoes Chip - A Low-Power PULPissimo-based Chip

 Integration into UC3

A PULP-based architecture will be used in UC3 (Smart meters for everyone), where

a smart meter prototype will be designed. A PULP-based IoT system will be connected

to a camera to take a picture of the display of a mechanical meter, process it to

extract the information displayed by the meter, and finally send the data over the

https://github.com/pulp-platform/pulpissimo

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 41 of 80

cellular network. The low-power features provided by PULP will allow achieving a long

battery life.

Table 4 KPI and metric of component WP4T41-03

KPI description Means of
assurance

Expected

Measured/

Achieved

Power reduction through clock and
power gating

Lab results > 35% 42% reduction in the
idle power

Additional power reduction introduced
by fine-grain power gating with respect
to clock-gating-only

Lab results > 10% 12.7% additional
reduction in the idle
power

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 42 of 80

8 Versal RPU Access for Power Services -

WP4T41-04 – PLC2

8.1 Component description

As described in Section 10.1 the isolated Versal ACAP platform as designed would

block access to the device infrastructure to protect core functionality from any access

fault or attack. To still enable system state changes on purpose some access

mechanism has to be provided.

To accomplish this, this component creates an RPU project that exposes a defined

subset of Versal / VCK190 power and observability features through an interface. The

communication interface between APU and RPU subsystems is selected as OpenAMP.

This component shall provide means that the application running on APU can request

support for power settings, local power and temperature monitoring data from RPU

node via an OpenAMP channel. RPU shall handle the requests in a safety focused

manner as this RPU core is the target of a safety zone in the certifiable platform

version. RPU image shall be included in the main boot image and shall be loaded via

PMC to comply with safety regulations.

8.2 Design and implementation

This work package will provide a system with APU cores running SMP Linux OS

(PetaLinux) and RPU running FreeRTOS.

RPU application has two main roles which are handling OpenAMP communication and

interfacing with hardware through PMC. In OpenAMP communication, RPU plays the

slave role which is receiving messages from APU and reacts by checking the

command embedded in the message protocol. In RPU application development, Vitis

Unified Software Platform 2021.2 tool has been used as the software development

kit.

APU core is running PetaLinux which is supporting OpenAMP. The device-tree and

Linux Kernel configuration of the PetaLinux project has been adapted properly to

support OpenAMP and the RPMsg channel between RPU and APU. This channel

between APU and RPU supports maximum 512 bytes message including header and

payload. Therefore, the messages defined in the protocol cannot be larger than this

limit.

In Figure 22, the message protocol is described. The message protocol between APU

and RPU shall have three components which are data, the size of the data and the

command. The command is a definition of the request from APU to RPU. Data is the

result of the action performed on the RPU for a specific command.

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 43 of 80

Figure 22 PLC2 OpenAMP payload struct

In Figure 23, the command types for the message protocol are defined. This

enumerator can be further extended with the new commands required.

Figure 23 PLC2 OpenAMP command list

8.3 Testing and evaluation

System level functional testing can be performed in this platform related component.

It shall contain following steps to proof the functionality. For testing purposes, the

device-tree supports RemoteProc which enables developers to update RPU images at

run-time to enhance the development cycle. RemoteProc support will be disabled in

the final design and RPU image shall be inside the main boot image as it is described

in the component description.

• APU shall load executable on RPU core via RemoteProc,

• RPU application shall initialize OpenAMP and wait for message,

• APU shall initialize OpenAMP and send a message for reading local voltage or

temperature,

• RPU shall receive and parse the message, read the corresponding sensor data

and send back as payload via RPMsg channel,

• APU shall display the message on the standard output.

Table 5 KPI and metric of component WP4T41-04

KPI description Means of
assurance

Expected

Measured/

Achieved

Versal based node
infrastructure
monitoring

Development Kit
testcases

Retrieve local
temperatures and current
and voltage values

Achieved

Versal based node
infrastructure control

Development Kit
testcases

Control and scale power
consumption

Achieved, with
restrictions due to
dev kit.

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 44 of 80

9 Agreement Protocol for Low-Power

Services – WP4T41-05 - QUA

9.1 Component description

In the deliverable D4.1 the principles of the Agreement Protocol were explained. The

main objective for this protocol is to have a clock synchronization among all the

devices connected in the network achieved wirelessly. This clock synchronization

would lead to all the devices in the network, having the same clock reading/value.

Which would be essential in case of measurement of sensor data (e.g. acceleration,

gyroscope) or keeping devices in a configuration in sync with the other devices in the

network.

This synchronization is performed by selecting a master which will share its clock with

all the devices in the network. The master device in this case is a low power

microcontroller. The process of selecting a master starts when all the devices share

a specific value, in this case their clock value. Once all devices have agreed on a

value, the device with a specified value will be selected as master, and start the

synchronization from the slaves in the network.

The Agreement Protocol must detect and correct when slaves or even a master with

a faulty clock is in the network. If a faulty clock of a slave is detected, the master will

restart the procedure to synchronize the faulty slave clock. In case the master is lost

or present a faulty clock, the selection of a new master will be initiated.

One of the biggest challenges to implement an Agreement Protocol is the latency.

The greater the latency a greater difference between the master and the slave will

be present. In the case for wireless communications, latency is affected to even more

with factors such as interference distance and signal strength. Even though with

these challenges, a wireless communication provides such a greater benefit which is

the mobility of a device or setting a system where cabling might be difficult to route.

To this advantage, add a low power device and the capability to obtain data or control

systems, provides a versatility that can simplify multiple engineering fields.

9.2 Design and implementation

For the implementation of the Agreement Protocol on a wireless network the ESP32-

WROOM microcontroller from Espressif was selected. This microcontroller can be

programmed in C or C++, it also counts with a two-core processor that can be

individually controlled, enabling this microcontroller to run FreeRTOS. It can also

provide Wi-Fi, Bluetooth and Bluetooth Low Energy (BLE) for wireless connectivity.

These two key features allow us to use Espressif wireless communication ESP-NOW.

This protocol is based on the Data Link layer providing a low latency connection with

the devices connected to this network.

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 45 of 80

The availability of having a multicore processor and FreeRTOS implies that it is

possible to control the wireless communications while performing additional

processes without interference between tasks. To communicate the devices among

them, they require only the MAC address of the ESP32 peers that be in the network.

This enables a direct communication between devices.

 Master selection

To select the master of the network each device will start their boot-up sequence and

will record that boot-time using their internal clock. Once the boot-up sequence is

finalized, each device on the network will broadcast their boot-up time with their MAC

address. For this a structure is defined as shown in Figure 24.

Figure 24 QUA Data structure for synchronization

To address the Y2K38 problem and to have an accurate time value 64-bit Integer is

used. We can get the system time from the ESP32 microcontroller using the function

gettimeofday(). We can also set the system time using the function settimeofday()

as shown in Figure 25. These functions were used to get and set time in the peer

ESP32.

Figure 25 QUA gettimeofday() command to obtain the clock value of an ESP32 in values of microseconds

While receiving the boot-times and MAC addresses of the peers in the network, each

device will create a list for all the devices that will be present in the network. Once

compared and verified the lowest boot time from all the devices the master is

selected. With a master defined, the process of synchronizing the clocks of the slaves

is started.

 Synchronization of slaves

Once the master is selected from the group of nodes (ESP-32 microcontrollers), it

will start sending SNYC messages to the peers. The synchronization protocol is based

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 46 of 80

on a PTP-like synchronization method. The master would send a SYNC message

requesting the peer/slave to start syncing the internal clock. This is followed up by a

FOLLLOW_UP message from the master. Then the peer would send a

DELAY_REQUEST message, the master would reply to this message by

DELAY_RESPONCE message. This interaction is visualized in Figure 26. The

peer/slave would now adjust its own clock by calculating the offset in time and then

adjusting its own clock with the offset. This whole synchronization method is repeated

regularly to course correct the slave if the clock has moved more than the maximum

offset (MAX_OFFSET). The payload used for the message is shown in Figure 24.

Figure 26 QUA message interaction between master and slaves

9.3 Testing and evaluation

Agreement protocol for low-powered devices provides a method to synchronize the

clocks of all the peers with a master device in a network. Since the system clock

(software timer) is updated internally with each SYNC message, not the RTC (Real

Time Clock), it becomes hard to test the time offset externally. This led us to create

a test bench to observe the offset time using two different approaches, one using a

GPIO (General Purpose Input Output) pin and the other using messages to calculate

the offset time in a salve.

GPIO Triggering

In this method we wanted to create an external response which is cyclic in nature.

The GPIO trigger would happen every second (or millisecond) on the master and peer

device. If the clocks are synchronized among the peers, the trigger event would occur

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 47 of 80

at the same time for each of the devices. Later with the help of an oscilloscope we

can measure the offset time externally among the peers and the master.

Figure 27 An example of clock synchronization on GPIO

Since the POSIX function settimeofday() was used to update the clock value, it was

only updated on the software level instead of the RTC clock. Due to this we cannot

observe the changes in clock values in peer and master, as the GPIO trigger works

with the clock value (delay) from FreeRTOS, which in turn depends on the RTC clock

of the hardware. Due to this, the offset time were not observed for the software

timers.

Figure 27 shows a demonstration of expected behavior with GPIO signals from a

master (red) and a slave (blue). If the clocks were synchronized, both the signal

would either overlap or be close to each other. Since it is difficult to observe the

software timing externally, Figure 27 shows the internal clock behavior instead.

Offset estimation with messages

Another approach which was used to evaluate the offset time was calculation of offset

value in a peer device. Since we are sending our clock value with each message, it is

easy to save the time values locally and use them later to calculate the offset value

for a peer. The formula is used to calculate the offset time of a peer with the master’s

clock. The lower the value for the offset time the closer it is with the master’s clock.

𝑑𝑒𝑙𝑎𝑦  =
((𝑠𝑦𝑛𝑐𝑇𝑖𝑚𝑒 − 𝑓𝑜𝑙𝑙𝑜𝑤𝑢𝑝𝑇𝑖𝑚𝑒)  −  (𝑑𝑒𝑙𝑎𝑦𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑇𝑖𝑚𝑒 − 𝑑𝑒𝑙𝑎𝑦𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑇𝑖𝑚𝑒))

2

 𝑜𝑓𝑓𝑠𝑒𝑡 = (𝑠𝑦𝑛𝑐𝑇𝑖𝑚𝑒 − 𝑓𝑜𝑙𝑙𝑜𝑤𝑢𝑝𝑇𝑖𝑚𝑒) − 𝑑𝑒𝑙𝑎𝑦

We can monitor this value to observe for changes, if the offset time has increased for

the peer, we would update the clock of the peer to accommodate it for the new offset

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 48 of 80

value. Our goal was to have the clock offset value of the peer be under 100 µs. With

this method we can track the timings of peers easily.

Table 6 KPI and metric of component WP4T41-05

KPI description Means of
assurance

Expected

Measured/

Achieved

Synchronization Achieved:
The value of

synchronization between
the clocks of peers and

master

Lab test Having the clock
of the peer be in
sync all the time

with a value
lower than 100

µs.

The clocks drifted in value
after the subsequent

message. It adjusts itself
when the clock drift

increases more than 100 µs

Number of peers: The
maximum number of peers
that could be connected to

the network

Lab test The network
allows a total
number of 20
peers for one

master

Performance of the
synchronization drops after

4 peers with one master

Clock drift per hour:
Number of times the clock
drifted in one hour, when
the SYNC message is being

sent every minute

Lab test Drift should be
15 times in one

hour

It was observed that our
method produced a clock

drift of more than 100µs 20
times in an hour

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 49 of 80

10 Versal Isolation Design- Functional

Safety - WP4T41-06 - PLC2

10.1 Component description

The basic description of the platform reference design for Versal based FRACTAL

nodes as described in deliverable D4.1 shall be used in a commercial / industrial

environment. In some scenarios with safety concerns access separation needs to be

put in place to comply to the definitions of deliverable D2.2. This component details

the design choices in the hardware setup of the Versal ACAP device in the VCK190

development kit to achieve such basic isolation design. With subsequent maturity of

the Versal development eco system the supplier AMD-Xilinx will publish formally

tested and thus certifiable design setups. At the time of this report such official

releases are not available. The current state of this component reflects the

understanding of the approach that will become available in due time but some detail

changes may apply.

To allow controlled access to the data and controls available in the isolation-based

platform, a proxy setup is required to accompany this component. This is established

by the WP4T41-04 RPU component, that is exposing the internals of the safety

channel features as defined in this component.

10.2 Design and implementation

As commonly used for various AMD-Xilinx device technologies, the basic hardware

setup of Versal Designs is created in Vivado. Specific separation settings are

configured in the specifications of the hard- IP block CIPS and are given here.

Hardware Block Design and Settings

The overall setup of the hardened IP of the Versal ACAP devices allows for protection

units to control and filter the transactions hitting a specified address slice. Depending

on the target wrapped by these units, there is a difference in control granularity

supported by these units. A more block granular set of units typically connects to

memory Xilinx Memory Protection Units (XPMU) whereas a finer control is exerted for

peripherals with the Xilinx Peripheral Protection Units (XPPU). For this component the

following protection units are applied and setup to split between APU and RPU

transactions.

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 50 of 80

Figure 28 Location of protection units in Versal CIPS

The protection units are set to block transactions from APU side for the respective

address blocks while allowing RPU side accesses to propagate. To allow this there are

multiple registers that need to be configured appropriately and finally arrive at a

separated address map. This configuration is defined as a base scenario but minor

adaption to the specific requirements of the use cases will be visited.

On top for Versal ACAP based safety centric designs the isolation of address blocks

through the network on chip (NoC) typically need to be considered. Within the

generation of this component this has been visited to create a suitable mapping of

NoC paths as exclusive or defined by a grouping of lanes. Final choice was to skip

this from the isolation setup as for the use cases under consideration the NoC based

components are not safety related.

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 51 of 80

Using these units with configurations according to the desired isolation properties

yields an address map that reflects the separation as seen here.

Table 7 CIPS isolation address map and peripherals based on XPPU and XPM

APU Subsystem Configured
 Base Address

Size SW = Secure world
NSW = non-secure world

Access

A72 NSW

OCM 0xFFFF_0000 64 KB NSW R/W

DDR_LOW 0x0000_0000 32 MB NSW R/W

DDR_LOW 0x6000_0000 1 MB NSW R/W

UART0 NSW R/W

GPIO NSW R/W

SWDT0 NSW R/W

TTC0 NW R/W

RPU Subsystem Configured
 Base Address

Size SW = Secure world
NSW = non-secure world

Access

RPU SW

OCM 0xFFFC_0000 192 KB SW R/W

OCM 0xFFFF_0000 64 KB SW R/W

DDR_LOW 0x4000_0000 16 MB SW R/W

DDR_LOW 0x6000_0000 1 MB SW R/W

GPIO SW R/W

I2C1 SW R/W

UART1 SW R/W

Software Platform

To allow the binding of the hardware setup into the application layer on APUs is

carried out by deploying ARM Trustzone technology, so that the APU and its memory

and peripherals are TZ non-secure while the RPU and PMU along with their dedicated

memory and peripherals are TZ secure. This component is supported by correct setup

of the software platform that is set up to drive this hardware setup.

With this platforming place, a minimum executable can be delivered on the bare

metal as well as on the Linux domain to run and prove the effectiveness of this

hardware definition.

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 52 of 80

10.3 Testing and evaluation

The implementation with the low-profile applications provides a bootable PDI file to

ensure the ramp of the multiprocessor system in the defined isolated setup. The core

access to the low-level infrastructure is blocked from APU / application level and the

functionality can be reached only through the indirection through the PMC. A proper

testcase would follow through:

• Show access is possible to the low-level services and peripherals from APU

and RPU in a non-isolation-based platform, i.e., before the platform

availability.

• Show access is only available for the respective component that is allowed

access through the separation setup, prove blocked access otherwise

• Identify that in the final setup the delivery version will not allow APU access

to the PMC level.

Table 8 KPI and metric of component WP4T41-06

KPI description Means of
assurance

Expected

Measured/

Achieved

Consistently block access to
predefined components

Development
board tests

PMC functions cannot
be reached from APU

Achieved

 Integration into UC8

Current plan is to ramp UC8 application-level software on the overall Fractal Versal

Reference Design for safety related systems, specifically on the APUs. All

environmental awareness is provided through the RPU proxy into the isolated

domain.

The dynamic scheduling of the UC8 Fractal nodes is also deploying this

communication path to even control the local power level if the schedule planning

requires.

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 53 of 80

11 Validation of LEDEL library for low-

Power Services - SML

11.1 Introduction

This is the documentation of the demonstration on the use of the EDDL library and

the execution of code which use said library in RISC-V systems, more precisely, in

an emulation of a NOEL-V hardware system. Following the instructions here, one

should be able to compile C++ code using the functions of the EDDL library, with the

only dependency being the installation in your local machine of Docker and a Docker

Image.

We have explained how we have approached the creation, infrastructure and first

simple example of the LEDEL in deliverable D3.6 that belongs to WP3. A very similar

procedure will be followed in this document with different examples. First, In the first

docker container the EDDL library and all the tools needed to compile and run C and

C++ code have already been installed. The idea of this container is that it can be

perceived as the FRACTAL node since we will work with it in a similar manner.

Figure 29 Docker diagram

In Figure 29 diagram of the docker container is presented. The docker containers

enclose a Debian Linux Machine where the EDDL is installed. Next to it, we can find

the QEMU emulation RISC-V SIEMENS/ISAR [2]76, which emulates a Linux SO

running in an emulated NOELV RISC-V based machine HW.

All the documentation, files, containers and examples are uploaded to the repository

of the FRACTAL project [3].

One entry of the repository is the manual of the use of the LEDEL and, as well, two

demonstration videos.

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 54 of 80

The tests and examples used to validate the use of LEDEL as a low power service in

a FRACTAL node are organized as follows. First, we explain how to compile and

generate an ONNX file with the description of the machine learning algorithm

topology, inside and outside of the FRACTAL node. Second, the ONNX generated in

the previous step is imported inside the FRACTAL node and the process of inference

is shown. Third, a couple of neural network training algorithm implemented using

PyTorch and TensorFlow that create other ONNX files that are loaded inside the node

for the inference process. Fourth example is the cross-compilation process of the first

program. Finally, a use case from the Deep Health project with a reduced dataset is

executed.

All the examples are executed using the first docker container, while the cross-

compiled example has an own docker container with its required system

configuration.

11.2 EDDL code compilation process

To start with the testing process, we focus on the first case, a simple neural network

that uses the CIFAR10 dataset [4].

To be complete and thorough with the tests, we have compiled the same program

out of the FRACTAL node, to show that the mechanism used to load ONNX files works,

and also inside the node, to prove that the LEDEL works properly.

For the demonstration of this process, we have included some code examples inside

the docker container that shows the training of a convolutional network over the

Cifar10 dataset. The same example will be used in the second part of this section to

show the complete compilation process.

The CIFAR-10 dataset consists of 60000 32x32 color images in 10 classes, so the

trained neural network needs to classify each image as one of the 10 possible classes,

these classes being ‘airplane’, ‘truck’, ‘cat’, ‘horse', 'automobile’, ‘dog’, ‘deer’, ‘bird’,

‘frog’ and ‘ship’.

Code compilation for training and ONNX file creation

We are going to start by compiling a simple program. To this aim, only two files are

required and need to be placed in the same folder of choice: a program with a main

function implemented in C++ and using the EDDL [Figure 30 and Figure 31, and a

CMakeLists.txt file with instructions to link the EDDL library and configure the

executable that will be generated [Figure 32]:

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 55 of 80

Figure 30 C++ program using EDDL, part 1

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 56 of 80

Figure 31 C++ program using EDDL, part 2

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 57 of 80

Figure 32 Configuration file for CMAKE

To compile the program, simply execute these commands within the same directory

where the two files are placed. To make things neater, it is recommended to create

a folder where the compiled files will be created and saved, and then, follow with the

compilation command. For instance:

Figure 33 Recommended instructions

In the directory named ‘build’ we find the compiled file, which can be directly

executed and the training process of the network will automatically start,

“./cifar10_eddl_train”. In Figure 34 we can see the results of command for the

program “./cifar10_eddl_train”:

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 58 of 80

Figure 34 Training trace and results for CIFAR10 example.

Once the training process is finished, we can find the ONNX file in the same ‘build’

folder. This ONNX file contains the network architecture and the trained weights.

From here, we can import the ONNX file to the FRACTAL node. This process will be

depicted in the following section.

Example with RISC-V

In order to complete the demonstration of the full functionality of the LEDEL we have

prepared another example that shows its behavior inside the FRACTAL node. For the

purpose of this task, we have used the same code as in the previous example and its

training execution can be seen in Figure 35.

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 59 of 80

Figure 35 Cifar-10 training execution

Loading ONNX and inference process in the FRACTAL node

Up to this point, if the steps have been followed, we have created an ONNX file that

includes not only the topology of the neural network, but the weights of the training

process as well. We are ready for the next step.

Now is the moment to import the ONNX file into the RISC-V machine or FRACTAL

node to proceed with the process of inference. We point out that the process this

time is a lot slower due to the emulation process. A similar situation might happen

with real NOEL-V/RISC-V hardware due to its low computing power. From this, it is

easy to understand why the training process is smarter to be executed in the cloud

or in a designated hardware more powerful, to create the ONNX file and then load it

into the FRACTAL node. Thus, it is more efficient and interesting to perform only the

inference part of the machine learning process by using the strategy of importing the

ONNX format file to place the neural network and/or the weights. The node can send

afterwards the data collected or created back to the cloud if needed.

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 60 of 80

Consequently, we can understand that the training phase is a lot heavier in terms of

computational time and resources and, actually, it does not need to be executed in

the FRACTAL node.

Coming back to the first example of the previous section, now we proceed to import

the ONNX file, that includes the network architecture and its trained weights. It is

indicated in the program with the function indicated by figure 36. Consider that other

languages and frameworks use a similar function with the same objective.

Figure 36 Function used to create ONNX file in a program that uses LEDEL

Besides the ONNX file, we need to compile a new code for the inference of the trained

network. This code will simply load the test part of the dataset, load the net from the

ONNX file and start the evaluation of the network, printing the results in the console.

The code we have used can be observed in Figure 37:

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 61 of 80

Figure 37 Inference code

In contrast to the training code shown in Figure 30 and Figure 31 we can see that in

the inference code there is no need to define the network layers one by one, since

they are already loaded from the ONNX. We still need to build the model with the

EDDL function ‘build’, to assign an optimizer, a loss function and metrics. Another

important difference with the training code is that in the ‘build’ function of the

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 62 of 80

inference code we need to specify explicitly that the weight initialization of the model

is disable. Otherwise, the loaded weights from the ONNX file will be overwritten by

random values and the result from the training code will be lost. To disable the weight

initialization simply pass the value False to the parameter init_weights of the build

function (Figure 38) [5].

Figure 38 Details of build function

The method to compile the code is identical to the one followed for the training code.

Along with the code file shown in Figure 39 we will need a CMakeLists.txt file for the

CMake compilation:

Figure 39 CMakeLists.txt file for compilation

Remember to place the inference code and the CMakeLists.txt files in the same folder

of your choice and then execute the following commands within the folder created

earlier for this task (like in Figure 33).

Like in the training compilation, this will generate an executable file named

‘cifar10_eddl_inference’ this time and inside the ‘build’ folder that can be found in

the directory containing the code a CMakeLists.txt files we have just compiled.

Executing right away the generated file will return an error, shown in Figure 40.

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 63 of 80

Figure 40 Error

This error is caused because the executable is trying to load the file

"cifar10_eddl_net.onnx" but can’t find it. To correct this simply transfer the ONNX

file generated by the training code to the same folder where the executable for the

inference code has been generated. Executing the program again will show the result

of Figure 41, where we can see that the same model defined during the training code

has been loaded and the metrics reach in training are kept.

Figure 41 Inference process output

Importing ONNX file generated by PyTorch and TensorFlow

Not only ONNX files generated by EDDL code can be imported by the EDDL functions.

Since ONNX is a standard format, any ONNX file, regarding of its method of

generation, can be loaded as network by the EDDL/LEDEL. As an example of this

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 64 of 80

behavior, we have implemented a counter-part to the training code of Figure 30 and

Figure 31, using PyTorch [6] [Figure 42 and Figure 43].

Figure 42 Cifar-10 training code using PyTorch, part 1

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 65 of 80

Figure 43 Cifar-10 training code using PyTorch, part 2

Using this code, we build a model with the same layers as in the first example, but

using PyTorch framework. The model is then train with the CIFAR10 dataset, and the

architecture and weights of the network are saved to ONNX. The output of this code

while training is the following shown in Figure 44.

Figure 44 Training trace using PyTorch

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 66 of 80

We can execute this code in any machine using Python. Once the training has

finished, a ONNX file named 'cifar10_pytorch_model.onnx' will be generated. Then

we can transfer the ONNX to a RISC-V or any other system where we have already

installed the EDDL library and reuse the code from Figure 37 to test the inference of

this network.

To reuse the inference code from Figure 37 we will simply need to change the line

where the ONNX file is loaded so the path reaches the new ONNX from PyTorch

[Figure 45]:

Figure 45 Function used to create ONNX file in a program that uses LEDEL

Once the change is done, we just need to re-compile the code following the same

instructions as in section 11.2.1 of this document to generate the executable, transfer

the ONNX to the folder where the executable has been generated and executed. If

done correctly the Figure 46 should be the output shown on console:

Figure 46 Output for inference process

In addition to the ONNX files generated with PyTorch, we can use other technologies

like TensorFlow code to generate a model and then import it to the FRACTAL node.

Unfortunately, in the case of TensorFlow ONNX files, only the structure of the model

can be imported to EDDL code and not the trained weights, since EDDL still doesn’t

fully support this type of ONNX files.

To transfer a model from TensorFlow first we need to save a model after training and

then transform that saved model to ONNX using the Python library ‘tf2onnx’:

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 67 of 80

Figure 47 To test the importation of ONNX files from TensorFlow we have created, trained and saved a

model using the following code

Code depicted in Figure 47 saves the resulting model in the “saved_model” format

from TensorFlow. Then, to transform the “saved_model” to ONNX we execute the

command from Figure 48:

Figure 48 Converting TensorFlow format model to ONNX

Indicating the path to the ”saved_model” generated by the code and the path where

the ONNX file will be saved to. This ONNX file can then be transferred to a system

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 68 of 80

with the LEDEL library installed, and use the inference code from the first example

changing the line of code where the ONNX file is loaded.

Doing that and recompiling the code will allow us to execute the inference of the

loaded ONNX from TensorFlow using EDDL functions, showing the output of Figure

49:

Figure 49 Inference output for TensorFlow ONNX

In the image we can see that the metric for this network is almost identical to the

one obtained randomly classifying the images of the dataset. That is because, as we

have said at the beginning of this section, LEDEL does not support the transferring

of the trained weights through ONNX files, it only transfers the architecture of the

model.

Cross-Compilation

Due to the limitations of the available software, to compile a program on system build

on RISC-V may be more difficult than simply to cross-compile on another common

machine, and then to transfer the compiled program generated and ready to work

on the RISC-V architecture (in our case, in the FRACTAL node)

To this aim, we have assembled a second Docker image with the tools needed to

cross-compile a program which uses the LEDEL library. This docker works identically

than the previous one and it already has the same code examples as presented in

the previous sections, with the difference that anytime we compile a program, we

will need to specify the cross-compiler for the RISC-V architecture.

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 69 of 80

For example, in the console of the Debian system of this docker container we can

navigate to the directory “cd /home/eddl_examples/cifar10_eddl_cross_train”.

Inside, there are files identical to those describe in section 11.2.1. To cross-compile

them, the following commands need to be executed:

Figure 50 Commands needed to follow cross-compilation example

These are the same commands used during a usual compilation, with the addition of

the specification of the cross-compiler installed inside the Docker container. After the

execution, we can find the executable file in the ‘/build’ directory, but trying to

execute it will return an error message. This happens because this executable is

compiled to work on a RISC-V architecture and we are trying to run it in a different

architecture. If instead, we transfer this file to the QEMU emulation and execute it

there, we will get the correct functioning of the program [Figure 51]:

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 70 of 80

Figure 51 Cross-compiled program output

In the QEMU emulation of the docker dedicated to the cross compilation we can find

both examples, training and inference, of the executables ready to be launched, in

the paths ‘~/cifar10_examples/cifar10_eddl_cross_train’ and

~/cifar10_examples/cifar10_eddl_cross_infenrece’.

Use Case 15 from DeepHealth project

As an example of the capabilities of the LEDEL library executed over a RISC-V

architecture, we have decided to implement the process followed in the Use Case 15

from DeepHealth project [11]. The objective of this UC15 is to classify x-ray scans of

human lungs between two classes, if those scans come from patients with or without

Covid.

To implement the original code of the UC we have selected two different approaches.

On one hand we will use a reduced version of the original dataset where the images

have been downsized and reformed to binary files. For this case, we will simply re-

use the code from the MNIST and CIFAR10 examples to load the images into the

neural network and execute the training and test of it.

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 71 of 80

On the other hand, we are going to simplify the original pipeline of the UC15,

removing the data augmentation from the images and skipping the use of the ECLV

and OpenCV libraries.

For this demonstration we have used the data available in the following link under

the name “uc15_data_for_cpu_mpi_evaluation.tgz” [7]. Firstly, we are going to start

the example with a reduced dataset [8].

The data in the .tgz file has been created applying some processing to the original

images with the purpose of creating a dataset suitable for Support Vector Machine

training, but we think that can also be useful to demonstrate the behavior of the

EDDL over RISC-V. When decompressing the file in the link we will find multiple

folders, each named using pixel windows size.

Each folder contains the data resulting from measuring the mean and the standard

deviation over the image using moving windows of the sizes in their names. For our

demonstration we are going to work only with files in the folder

‘5x5_and_7x7_and_9x9_and_11x11’.

The data is already divided into train, validation and test partition; and we can make

use of the EDDL functions to directly load these files as tensors into the C++ code.

Once the tensors with the training and test data are loaded, we will start the training

and evaluation of a simple neural network (almost identical to the one used in the

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 72 of 80

MNIST examples). We have used the code implemented in C++ from Figure 52 and

Figure 53 for the entire process.

Figure 52 Use case 15 code, part 1

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 73 of 80

Figure 53 Use case 15 code, part 2

The most important aspects of this code are:

• The input layer of the network receives a Tensor of size 2000, this is the size

of every image after applying the preprocessing with moving windows.

• “num_classes” has been defined as 1 since this a binary classification problem.

In reality there are 2 classes and it is defined this way because we only require

one output from the network.

• The last layer of the network is a Sigmoid layer connected to dense layer with

only one output value. This makes the output of the entire network a value

between 0 and 1. If the final output is closer to 0 the input image is classified

in the first class and if is close to 1 in the second class.

• Instead of dividing the training and test tensors loaded by 255, as we should

do when loading a PNG image, in this case we normalize each Tensor dividing

by the maximum value in it.

• The training and evaluation are done one to one. In each epoch the network

is trained using the whole train dataset and evaluated with the test dataset.

• The resulting network is stored in ONNX format.

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 74 of 80

Now that the code and use case is presented, we start the training process as

described in 11.2.1, and we get the output shown in figure below:

Figure 54 Output

Here we encounter an unexpected error. During the first training epoch, when

executing the code over a RISC-V architecture, the function loss suddenly skyrockets

and our metric starts to descend until reaches an almost zero value by the end of the

epoch. On the other hand, the same code runs without problem during training

epochs when executed on a x86 architecture, achieving acceptable metric values.

The strategies followed to address this bug have been:

1. In the code of this use case different layers were used. Thus, we swapped

them for the ones we had check worked in the previous examples that we

certainly know have proper behavior. The bug appeared again.

2. We thought the problem was in the initiation of the data during the

preprocessing step. Therefore, we normalized the data out of the program to

be sure it was correct. This was not the problem.

3. We decided to use the other RISC-V image that we talked about in WP3 (see

deliverable D3.6 for more details). With this approach, the LEDEL in this use

case worked.

Currently, we are planning what steps should be taken in order to have the LEDEL

completely working on the RISC-V SIEMENS/ISAR, since the use of the LEDEL is a

requirement for Use Case 7.

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 75 of 80

12 Conclusions

In this document, the preliminary implementations for low-power services described

in the deliverable D4.1 have been elaborated. Several building blocks and

components that contribute to meeting the T4.1 objectives and could be

demodulated/exploitable by any Use Case have been developed. Specifically, they

are data Compression for Low-Power Services, HATMA, Low Power services for PULP

systems, Versal RPU access for low Power Services, agreement Protocol for Low-

Power Services, and Versal Isolation Design- Functional Safety. In particular, a

thorough explanation, design, implementation, testing, and assessment of these

components have been reported. Furthermore, T4.1 validated the LEDEL Library's

adaptability to low-power services.

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 76 of 80

13 Bibliography

Ref. Title

[1] Axer, P., Ernst, R., et al.: Building timing predictable embedded

systems. In: ACM Transactions on Embedded Computing Systems

(TECS) 13(4). (2014)

[2] https://github.com/siemens/isar-riscv

[3] https://github.com/project-

fractal/WP3/tree/main/Components/WP3T35-03%20LEDEL

[4] https://www.cs.toronto.edu/~kriz/cifar.html

[5] https://deephealthproject.github.io/eddl/model/model.html#_CPPv

4N4eddl5buildE5model9optimizerRK6vectorI6stringERK6vectorI6st

ringEP8CompServb

[6] https://pytorch.org

[7] https://clocalprog.dsic.upv.es/winter-

school/data/uc15_data_for_cpu_mpi_evaluation.tgz

[8] https://clocalprog.dsic.upv.es/winter-school/data

[9] https://github.com/asad82/LZW-Compression

[10] Joshi, M. (2015). Lossless Compression, Proof Patterns (pp. 21–22).

Springer International Publishing Switzerland.

[11] https://deephealth-project.eu

https://github.com/siemens/isar-riscv
https://github.com/project-fractal/WP3/tree/main/Components/WP3T35-03%20LEDEL
https://github.com/project-fractal/WP3/tree/main/Components/WP3T35-03%20LEDEL
https://www.cs.toronto.edu/~kriz/cifar.html
https://deephealthproject.github.io/eddl/model/model.html#_CPPv4N4eddl5buildE5model9optimizerRK6vectorI6stringERK6vectorI6stringEP8CompServb
https://deephealthproject.github.io/eddl/model/model.html#_CPPv4N4eddl5buildE5model9optimizerRK6vectorI6stringERK6vectorI6stringEP8CompServb
https://deephealthproject.github.io/eddl/model/model.html#_CPPv4N4eddl5buildE5model9optimizerRK6vectorI6stringERK6vectorI6stringEP8CompServb
https://pytorch.org/
https://clocalprog.dsic.upv.es/winter-school/data/uc15_data_for_cpu_mpi_evaluation.tgz
https://clocalprog.dsic.upv.es/winter-school/data/uc15_data_for_cpu_mpi_evaluation.tgz
https://clocalprog.dsic.upv.es/winter-school/data
https://github.com/asad82/LZW-Compression
https://deephealth-project.eu/

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 77 of 80

14 List of figures

Figure 1 Fractal system architecture .. 7

Figure 2 The big picture of the FRACTAL project ... 12

Figure 3 The integration of Data Compression component in the big picture 13

Figure 4 HATMA integration in the FRACTAL big picture 14

Figure 5 The integration of low power services for PULP systems in the big picture

 .. 15

Figure 6 The integration of Versal RPU access for low power services in the big picture

 .. 16

Figure 7 The integration of agreement protocol in the big picture 17

Figure 8 Location of the Versal isolation features in the big picture 18

Figure 9 LZW compression algorithm .. 20

Figure 10 LZW decompression algorithm ... 21

Figure 11 The flow chart of the compression process ... 25

Figure 12 The flow chart of the decompression process 25

Figure 13 Hierarchical Adaptive Time-triggered Multi-core Architecture (HATMA) .. 29

Figure 14 HATMA Adaptation Logic Process .. 30

Figure 15 Context Monitor Implemented in Hardware using a Finite State Machine32

Figure 16 Periodic Adaptation to Context Events ... 33

Figure 17 Context Agreement Unit Implemented in Hardware using a Finite State

Machine .. 34

Figure 18 Convergence Time of HICP .. 36

Figure 19 Energy Saving and Communication Overhead for Synthetic Application . 37

Figure 20 PULPissimo SoC Schematic .. 39

Figure 21 Echoes Chip - A Low-Power PULPissimo-based Chip 40

Figure 22 PLC2 OpenAMP payload struct .. 43

Figure 23 PLC2 OpenAMP command list ... 43

Figure 24 QUA Data structure for synchronization ... 45

Figure 25 QUA gettimeofday() command to obtain the clock value of an ESP32 in

values of microseconds ... 45

Figure 26 QUA message interaction between master and slaves 46

Figure 27 An example of clock synchronization on GPIO 47

Figure 28 Location of protection units in Versal CIPS ... 50

Figure 29 Docker diagram.. 53

Figure 30 C++ program using EDDL, part 1 ... 55

Figure 31 C++ program using EDDL, part 2 ... 56

Figure 32 Configuration file for CMAKE .. 57

Figure 33 Recommended instructions .. 57

Figure 34 Training trace and results for CIFAR10 example. 58

Figure 35 Cifar-10 training execution .. 59

Figure 36 Function used to create ONNX file in a program that uses LEDEL 60

Figure 37 Inference code ... 61

Figure 38 Details of build function ... 62

Figure 39 CMakeLists.txt file for compilation .. 62

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 78 of 80

Figure 40 Error ... 63

Figure 41 Inference process output ... 63

Figure 42 Cifar-10 training code using PyTorch, part 1 64

Figure 43 Cifar-10 training code using PyTorch, part 2 65

Figure 44 Training trace using PyTorch .. 65

Figure 45 Function used to create ONNX file in a program that uses LEDEL 66

Figure 46 Output for inference process .. 66

Figure 47 To test the importation of ONNX files from TensorFlow we have created,

trained and saved a model using the following code .. 67

Figure 48 Converting TensorFlow format model to ONNX 67

Figure 49 Inference output for TensorFlow ONNX .. 68

Figure 50 Commands needed to follow cross-compilation example 69

Figure 51 Cross-compiled program output ... 70

Figure 52 Use case 15 code, part 1 ... 72

Figure 53 Use case 15 code, part 2 ... 73

Figure 54 Output .. 74

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 79 of 80

15 List of tables

Table 1 Brief description of the components and contribution T4.1 objectives 8

Table 2 KPI and metric of component WP4T41-01 ... 27

Table 3 KPI and metric of component WP4T41-02 ... 38

Table 4 KPI and metric of component WP4T41-03 ... 41

Table 5 KPI and metric of component WP4T41-04 ... 43

Table 6 KPI and metric of component WP4T41-05 ... 48

Table 7 CIPS isolation address map and peripherals based on XPPU and XPM 51

Table 8 KPI and metric of component WP4T41-06 ... 52

Project FRACTAL

Title FRACTAL Low-power services

Del. Code D4.2

 Copyright © FRACTAL Project Consortium 80 of 80

16 List of Abbreviations

Acronym Title

AI Artificial Intelligence

API Application Programming Interface

ATTNoC Adaptive Time-triggered Network-on-Chip

CAU Context Agreement Unit

CM Context Monitor

DMA Direct Memory Access

DVFS Dynamic Voltage and Frequency Scaling

ECVL European Computer Vision Library

EDDL European Distributed Deep Learning Library
EDP Energy-Delay Product

GCC GNU Compiler Collection

GNU GNU is Not Unix
HATMA Hierarchical Adaptive Time-triggered Multi-core Architecture

HICP Hierarchical Interactive Consistency Protocol

HW Hardware

IoT Internet of Things

ISA Instruction Set Architecture

LEDEL Low Energy DEep Learning Library

MMU Memory Management Unit

NI Network Interface

NOC Network on Chip

ONNX Open Neural Network Exchange

PE Processing Element

PULP Parallel Ultra Low Power

QEMU Quick EMUlator

QoS Quality of Service

RPU Realtime Processing Unit (Versal)

SoC System on Chip

SW Software

TT Time-triggered

UC Use case

VHDL Very high-speed integrated circuit Hardware Description Language

WCET Worst Case Execution Time

XMPU Xilinx Memory Protection Unit

