

D2.4 Methodological Framework (b)

Deliverable Id: D2.4

Deliverable name: Methodological Framework (b)

Status: Final

Dissemination level: Public

Due date of deliverable: 2023-02-28 (M30)

Actual submission date: 2023-02-20

Work package: WP2 “Specifications & Methodology”

Organization name of lead

contractor for this

deliverable:

Thales Research & Technology

Authors: Thales: Jérôme Quévremont

Modis Consulting: Daniela Angela Parletta

University of Oulu: Lauri Lovén, Teemu Leppänen,

Huong Nguyen

University of Siegen: Daniel Onwuchekwa, Namby

Rakotojaona

BSC: Sergi Alcaide, Jaume Abella

HALTIAN: Matti Vakkuri

Offcode: Antti Takaluoma, Janne Rosberg

Solver Machine Learning: Leticia Pascual

Siemens: Bekim Chilku

UPV: Carles Hernández

AVL: Christina Schwarz, Milan Zivadinovic,

Tomislav Bukić

University of Genoa: Igor Bisio, Andrea Sciarrone,

Chiara Garibotto

ETH Zürich: Frank K. Gürkaynak

Rulex Innovation Labs: Enrico Ferrari

Università degli Studi di Modena e Reggio Emilia:

Gianluca Brilli

LKS Next: Iñaki Paz

Università degli Studi dell’Aquila: Luigi Pomante

PLC2: Ernst Wehlage, Alexander Flick

QUALIGON: Juan Manuel Garcia

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 2 of 74

AITEK: Stefano Delucchi

Ikerlan: Ana Patricia Bautista, Christian Martin

Reviewers: PROINTEC: David Fernández-Cano

INDRA: Martín Rivas

AVL: Bernhard Peischl

Abstract:

D2.4 “Methodologic Framework (b)” introduces a methodological framework

specification. It is presented as a compositional workflow, which introduces the

interactions of FRACTAL building blocks towards the integration of the FRACTAL

computing node and the use cases. Following this global picture, the deliverable

focuses on methodologies for several important topics for the project: AI and safe

autonomous decisions, safety design, integration of FRACTAL platforms and

security analysis.

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 3 of 74

Contents

1 History ... 6

2 Summary ... 7

3 Introduction .. 8

4 Workflow of the project .. 9

4.1 Capturing Requirements ... 9

4.2 FRACTAL Features .. 10

4.3 FRACTAL Product Composition ... 13

5 Methodology and workflow for AI and safe autonomous decision 16

5.1 AI and autonomous decision framework .. 16

5.1.1 Video analysis .. 18

5.1.2 Supervised and unsupervised learning .. 21

5.2 Distributed AI and the AI services in the middleware 22

5.3 Use of LEDEL ... 25

5.4 Advanced control strategies in the automotive domain 26

5.5 Image classification .. 27

6 Measures and strategies for safety design 30

6.1 Diverse redundancy .. 30

6.2 Management of timing interference .. 33

6.3 Reliable communication... 35

6.4 Artificial intelligence .. 36

6.5 Time-triggered NoC .. 37

6.5.1 Adaptability techniques for Time-Triggered NoC 37

7 Methods for the integration on FRACTAL platforms 39

7.1 Operational integration ... 39

7.2 SW integration (PULP, VERSAL), RTOS for PULP 43

7.2.1 Posix compatible RTOS integration to the PULP 44

7.2.2 Asymmetric Linux-RTOS multiprocessing to the FRACTAL project 45

7.3 Electronic System-Level HW/SW co-design .. 46

7.3.1 Reference ESL HW/SW Co-Design Flow ... 49

7.3.2 HEPSYCODE in the FRACTAL project ... 52

7.4 Methodologies for VERSAL platform .. 54

7.5 Methodologies for PULP platform .. 56

7.6 Methodologies for hardware accelerators ... 58

7.6.1 Hardware Accelerator Architecture for Deep Neural Network 59

7.6.2 Metrics for building optimized HW accelerator 59

7.6.3 High Level Synthesis to build HW accelerator 60

7.7 Integration of Speech-based Signal Processing algorithms 62

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 4 of 74

8 Security Risk Management Methodology .. 64

8.1 Introduction to security in embedded systems 64

8.2 Background on IEC 62443 ... 64

8.3 Risk Management Methodology (ISO 27005).. 65

8.4 STRIDE ... 66

8.5 Application of the methodology in the FRACTAL node 66

9 Conclusions .. 68

10 List of Figures ... 69

11 List of Tables .. 70

12 List of Abbreviations ... 71

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 5 of 74

Acknowledgement

This project has received funding from the ECSEL

Joint Undertaking (JU) under grant agreement No

877056. The JU receives support from the

European Union’s Horizon 2020 research and

innovation programme and Spain, Italy, Austria,

Germany, Finland and Switzerland.

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 6 of 74

1 History

Version Date Modification reason Modified by

0.0 2022-10-21
Agreed template, starting

from D2.2 v1.0
Thales

0.1 2023-01-20 Complete version Authors

0.2 2023-02-01 Reviewed version Reviewers

0.3 2023-02-20 Reviewers’ remarks solved Authors

1.0 2023-02-20
Final clean-up, delivered

version
Thales

Table 1 – Document history

To cope with the high number of contributors, this document has been edited online.

The Microsoft Sharepoint solution has been selected to keep information under EU

legislation. This solution offers a reduced feature set compared to a “regular” Word

editor. For instance, we have not been able to build a table of references and have

instead used footnotes.

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 7 of 74

2 Summary

The task T2.2 is described in FRACTAL DoA as “For the integration of the FRACTAL

platform in an industrial environment, an important aspect is to describe (1) how it

should be used and (2) how this usage helps to qualifications and certification of

products developed using it, including safety-critical products.”

Accordingly, D2.4 “Methodologic Framework (b)” introduces a methodological

framework specification. It is presented as a compositional workflow, which

introduces the interactions of FRACTAL building blocks towards the integration of the

FRACTAL computing node and the use cases.

Following this global picture, the deliverable focuses on methodologies for several

important topics for the project:

- AI and safe autonomous decisions

- Safety design

- Integration of FRACTAL platforms

- Security analysis

A list of abbreviations is available at the end of the document.

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 8 of 74

3 Introduction

This deliverable provides a methodological framework specification. The aim of this

framework is to identify the key enabling technologies with their supporting

methodology and tools.

Development of the FRACTAL node product and its sub-products (or sub-

components) are supported by this workflow.

This document is structured into 5 main chapters. First the overall workflow of the

project is presented in chapter 4. Then sub-workflows/methodologies for “AI and Safe

Autonomous Decisions” are presented in chapter 5, for the “Safety Design” in chapter

6, for the “integration of FRACTAL platforms” in chapter 7. The development of the

risk analysis in WP4 is presented in chapter 8.

Different WPs provide or use components for composition. This requires prior

alignment of what is provided and what is expected: functional boundaries,

interfaces, and other necessary information. Collaboration within the workflow

includes handover of these artifacts between stakeholders and workflow steps while

ensuring, managing, and maintaining composability during the workflow.

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 9 of 74

4 Workflow of the project

The FRACTAL platform specifications (see deliverables D2.1 and D2.3 for more

details)define what the framework should provide (i.e. components, tools,

methodology and workflow) to be key enabling technologies (KETs) for the FRACTAL

node. To limit the scope and better target the domains considered in the project, the

use cases specifications are used as inputs. The final specifications should also

consider the extensibility and usage of the framework in related domains of

application.

4.1 Capturing Requirements

Figure 1 shows the overall workflow used to capture requirements during the

FRACTAL project. First, the different demonstrators have been specified (i.e.

scenarios, features, and functional and non-functional requirements) in “Integration

and verification” (WP7) and “Case Studies” (WP8). The demos’ requirements have

been then analysed to get a unified list of requirements and key enabling technologies

that are being developed during the project. These have been identified into

“Specifications & Methodology” (WP2). Third, the identified key technologies have

been characterized and decomposed into the technical work packages: the “node

architecture & building blocks” (WP3), “Safety, security and low power techniques”

(WP4), “AI & safe autonomous decisions” (WP5), and “CPS communications

framework” (WP6). At the same time WP4, WP5 and WP6 have decomposed

requirements received from WP7 and WP8 and have realized what they needed to

further extend the list of requirements for WP3.

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 10 of 74

Figure 1 – Requirements workflow in FRACTAL project

Upon reception of external requirements, each Work Package works its internal

requirement list and develop its “products”.

4.2 FRACTAL Features

There are many definitions of Feature, coming from the Software Product Line (SPL)

community. Using the most notable definition from FODA1: A "feature" is defined

as a "prominent or distinctive user-visible aspect, quality, or characteristic

of a system". SPLs refer to engineering techniques for creating a portfolio of similar

systems from a shared set of assets (components) using a common means of

production. This portfolio of similar systems is called a Family of Products.

Using the analogy of a car, the family of that car model is composed of the different

versions and variations of the given car model (style, colour, engine, etc.) produced

in the car product line. When a user wants to buy a car, (s)he has to select among

the distinct features available. For instance, he may choose the version, the engine,

the colour, the air conditioning system, the transmission, etc. Sometimes some

selections force the selection of another feature. For instance, a given car style can

1 Kang, K.C. and Cohen, S.G. and Hess, J.A. and Novak, W.E. and Peterson, A.S., "Feature-oriented domain
analysis (FODA) feasibility study", Technical Report CMU/SEI-90-TR-021, SEI, Carnegie Mellon University,
November 1990

WP3

Node

WP4

Safety
Security

Low Power

WP5

AI

WP6

Comms.

WP2

Unified List of Requirements

VER-UC1

VER-UC2

VER-UC3

VER-UC4

VAL-UC5

VAL-UC6

VAL-UC7

VAL-UC8

WP8

WP7

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 11 of 74

force a given engine and restrict the number of other options available. That is,

features can have distinct values and also have relationships/dependencies. Even,

some features can be optional (e.g. sunroof). Here, the user must be able to

understand the features in a model to be able to configure a valid product. The car

seller helps the user to understand the given options to configure a valid car to be

produced.

In the context of FRACTAL, a FRACTAL Feature is a distinguishing characteristic

of FRACTAL, visible to users that will configure FRACTAL for their use cases.

FRACTAL Features can describe functional characteristics (hardware, software), non-

functional characteristics (performance or other criteria) or even other parameters

(cost, max weight). A Feature Model is a hierarchical diagram that visually

depicts the features of a solution in groups of increasing levels of detail. Feature

Models are compact representations of all the products in a Family in terms of

features and provide a great way to summarize the features that will be included in

a solution and how they are related in a simple visual manner.

Summarizing, the FRACTAL Feature Model describes the variability in FRACTAL’s

family of products in terms of FRACTAL Features. Use Cases represent variants

of FRACTAL products, this is, specific product realizations.

Based on the concepts described in FRACTAL Document of Agreement and the needs

and requirements captured from the Use Cases, a FRACTAL Feature Model has been

built (and is maintained alive as those needs evolve). This FRACTAL Feature Model

has been introduced in D2.3 as a tree representation with increasing levels of detail.

On the first level, FRACTAL high level features are defined (see figure 2).

Figure 2 – FRACTAL High Level Features

A short definition of these features follows:

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 12 of 74

• Adaptability: Ability to adapt system behaviour to surrounding scenario.

• Context-awareness: Ability to detect and react to context and surroundings.

• Openness: FRACTAL Core should be Open to be used, and mainly based on

open-source licenses.

• Safety: Be resilient to internal failures.

• Security: Be resilient to external attacks and menaces.

• Reliability: The system should behave consistently well.

• Low Power: Ability to support low power scenarios.

• Fractality: Ability to support fractal configurations, which can be seen as the

organization of nodes in distinct layers and the communication/connectivity

involved.

FRACTAL Use Case requirements (see Use Case requirements defined in D2.3) have

been used to guide the feature model construction. For instance, based on the

requirement:

REQ_UC4_06 - the edge node shall provide dedicated HW accelerator to process the

CNN layers (Yolo) of AI inference.

The following features have been defined:

• Adaptability -> AI -> HW -> AI ML Accelerator

• Adaptability -> AI -> SW -> Inference -> Location -> Edge Node

• Adaptability -> AI -> SW -> Learning/Training -> Algorithm -> Yolo

• Adaptability -> AI -> SW -> Learning/Training -> Algorithm -> CNN

Using another example from other UC, based on the requirement:

REQ_UC6_14 - The edge node shall acquire images from at least one HD camera.

The following features have been defined:

• Context Awareness -> Sensors -> HD Camera

The lower the level of the feature in the tree, the higher the detail. For instance,

figure 3 partially presents the Adaptability feature subtree:

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 13 of 74

Figure 3 – FRACTAL Adaptability partial subtree

Adaptability is considered as the ability to adapt system behaviour. System behaviour

can be adapted by (1) extending the system through port connections or extending

the software stack; (2) introducing AI that deals with adaptation; (3) orchestrating

the data on which adaptation is based; (4) orchestrating the services executed on

FRACTAL nodes or (5) changing the operation mode of the system based on a certain

detected condition.

4.3 FRACTAL Product Composition

Technical Work Packages (WP3-6) implement the shared set of components (building

blocks) required to produce the Use Case variants. WP3 provides the node definition

and platform. WP4, WP5 and WP6 add their products on top of the results of WP3

(see figure 4). In particular, WP3 provides the hardware and software components

(aka primitives) and platform nodes that allow building complex services and

properties. On top of this in WP4, WP5 and WP6 aim on smartly combining them in

accordance with specific UC goals. The first global integration attempt is performed

in the verification phase WP7 that helps fine tune all products and then everything

should be ready to the final validation in WP8.

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 14 of 74

Figure 4 – FRACTAL products composition workflow

To ease FRACTAL Product composition, the components developed in the technical

WPs have been associated with the corresponding features it implements (defined in

D2.3) and in which architectural layer it operates. In FRACTAL, three main

architectural layers have been identified:

• Node Layer: References node base infrastructure layer, be it a device (low-

level SW & HW) or the cloud itself.

• Orchestration Layer: Executed over the node layer, provides a standardized

execution environment to FRACTAL Nodes as containers and defines the

FRACTAL Distributed System (how nodes and concrete containerized services

are added/removed/configured). Containers provide a base standard for the

development and distribution of application logic to FRACTAL Nodes.

• Application Layer: Specific application logic is built as services in containers

and deployed over nodes. Services make use of the specific Node Layer

offerings if needed (e.g., HW Acceleration, Diverse redundancy libraries, etc.).

This layer includes data ingestion, federated data collection, data pre-

processing, edge ML API, etc.

Use Cases have selected the specific features they are interested in from the FRACTAL

Feature model. The specific valid selection of features by a Use Case is called Bill of

Features.

By doing so, through the component relationship, Use Cases select the list of

FRACTAL components they are interested in. Finally, a FRACTAL Production plan will

WP3

Node WP4

Safety
Security

Low Power

WP5

AI

WP6

Comms.

VER-UC1

VER-UC2

VER-UC3

VER-UC4

WP7

VAL-UC5

VAL-UC6

VAL-UC7

VAL-UC8

WP8

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 15 of 74

be in place, which given a Platform (selected on the specific bill of features) and the

set of selected components, defines how to build the FRACTAL product (see figure

5).

Figure 5 – FRACTAL production plan

Section 7.1 “Operational integration” presents this composition workflow exemplified

on a given Use Case.

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 16 of 74

5 Methodology and workflow for AI and safe

autonomous decision

This chapter looks at the AI building blocks in WP5, focusing especially on the

FRACTAL autonomous decision framework (section 5.1), the FRACTAL service

architecture and middleware (section 5.2), and a common framework and format for

FRACTAL inference models (section 5.3). Further, the chapter looks at AI functionality

required by the use cases, concentrating in particular on UC2 (Automotive air path

control) (section 5.4) and UC6 (Intelligent Totem) (section 5.5).

5.1 AI and autonomous decision framework

The FRACTAL AI framework aims at integrating the AI functionalities to allow

advanced prediction capabilities in the FRACTAL node. The framework has been

developed keeping in mind the requirements from the use cases but ensuring the

correct degree of generality and flexibility. The FRACTAL node must be able to take

decisions in an autonomous way. This means that while data are measured from the

field, the FRACTAL node must be able to analyse the data and make all the inferences

needed to make the right decision in real time, without the need of communicating

with external server. Notice that, when talking about AI, we need always to

distinguish between the training phase and the inferencing phase. In the first one,

historical data are used to train the AI models while in the second one the already

built models are used to make predictions and decisions about the new incoming

data.

Since in the studied use cases the system’s behaviour is not changing with high

frequency, it is not necessary to perform the training phase very often and, above

all, to have a response quickly. Usually, the training phase is done once or is updated

on a regular basis if the system is supposed to undergo some changes in the

behaviour. So, two different scenarios are considered:

• For the first tests, pretrained models are deployed on the edge node. These

models are either already available in literature or obtained training the data

coming from the first tests.

• The training is done periodically. In this case (see figure 6) data are

automatically transferred to a cloud service (via 5G or Wi-Fi connection) where

they are stored in a database and used for building a model. Task 5.2 and the

related deliverables developed the cloud framework for treating data and

performing AI processing. The model is then sent back to the device where it

is used for subsequent elaborations. Notice that in this case the network is

not a bottleneck since FRACTAL node can continue its processing even without

the generation and the transferal of new model. So, if for some reason the

connection is not guaranteed the system can go on working.

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 17 of 74

Since it could be unfeasible (due to huge amount of produced data) or inappropriate

(for example for security or privacy reasons) to send all the data in FRACTAL also the

possibility of using Federated Learning approaches has been studied. According to

Federated Learning also the training phase is done on edge nodes. Each node uses

the available data to build a local model. All the models can be further processed by

a supervisor to improve their quality, but, nonetheless, each node is independent and

can also use the model generated on its own data.

In any case the inferencing phase is performed on the FRACTAL node since the

decisions should be taken very quickly, which is not in line with sending data over

the internet. Moreover, the system should work also without connection, so the node

must be autonomous in taking decisions.

So, the FRACTAL node is equipped with a layer able to perform some basic pre-

processing operations on the data and an AI module able to use already built models

to make decisions about new incoming data. The elaboration must be very quick

because in some use cases, decisions are expected to take place within 100 ms.

Moreover, the module is able to do some aggregation on the data; in this way, data

could be sent in an easier way to a cloud service where the AI models could be

updated.

Figure 6 – Functioning of the online training for the FRACTAL node

The AI model that is implemented in the FRACTAL node according to the needs of the

use cases:

• Video analysis

• Audio stream analysis

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 18 of 74

• Supervised and unsupervised learning

• Time series analysis

5.1.1 Video analysis

Video Content Analysis deals with the extraction of information from images and

video. Such information can be used for further processing done in “high-level”

applications that collect and correlate data from heterogeneous sensors. Modern

Video Content Analysis (VCA) systems are based on AI approaches: after a proper

training phase, they can understand how to analyse and detect relevant information

inside images and video streams.

The first step needed to build an AI-based VCA system is to define exactly the kind

of information to be recognized and detected. There are different possible tasks:

• Classification: assignment of images to different classes or groups, according

to their content.

• Tagging (or labelling): it is a classification task more complex with respect to

the previous one; multiple labels can be associated to an image as the VCA is

able to recognize multiple “scenarios” or “concepts” in it. A practical example

can be useful to explain differences: classification can distinguish between

images collected indoor or outdoor while tagging can add multiple labels to

the same images like outdoor, city, road intersection or indoor, house,

bedroom for example.

• Detection/Segmentation: both previous tasks are focused on detecting the

presence of one or more reference target (object, person, a scenario etc.) in

an image or a video. Detection and segmentation can also infer the location

of such target(s) inside the image. In particular:

o Detection process generates as output a bounding box that surround

each target detected,

o Segmentation process detects the shape of each target as it performs

a pixel-based decision (i.e., each pixel can be assigned to background

or to a specific target).

During FRACTAL, and in particular in Use Case 6, detection and/or segmentation

tasks play a crucial role, as they are extremely useful to the FRACTAL node to

understand its surrounding environment. As a matter of fact, targets detection and

localization enable further processing like for example counting the number of

persons and or reference objects within a specific area. Also target tracking is a quite

relevant function in the scope of FRACTAL, in particular for those applications related

to safety and security control.

VCA, as any other AI system, is based on a training phase in which the system learns

to detect and recognize a target. In general, the training can be supervised or

unsupervised. For the VCA, training is supervised, meaning that the system learns

how to perform the detection through a set of labelled (annotated) images. Basically,

such annotated dataset (e.g., a large number of images with a person inside) is the

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 19 of 74

input for the training phase; after the training phase, the output is a model that, at

runtime, can be used to perform the task (in this case people detection).

Such training phase has a relevant impact on VCA performance, that is dramatically

affected by the training set characteristics. In particular, this dataset must include

an adequate number of images, it must be accurate, meaning that images used for

training should be similar to those analysed at runtime, but at the same time, it must

be representative of all the different alternatives that are possible at runtime.

Overfitting and underfitting are two typical problems of AI-based VCA system: the

model achieves poor classification/detection performance after training. In particular,

overfitting means that there are too many parameters in the model and a high

variability of the classification. Therefore, the model is too complex and sensitive to

training dataset (high variance). On contrary, underfitting means that there are few

parameters in the model and a high classification discrepancy (high bias). In other

words, underfitting can be explained as the model is too simple and therefore unable

to provide good results during prediction; overfitting is when the model is too good

to be true, as it performs very well analysing training data but it is completely unable

to be generalized and therefore achieve very poor results on runtime prediction.

As previously said, the training phase and therefore the training set play a crucial

role in the VCA system performance. A limited amount of data for training, in this

case annotated images, is one of the worst scenarios concerning an AI-based VCA

system. Data augmentation is a useful technique to overcomes this problem. It

consists in a manipulation of available images in order to increase artificially the

dimension of the dataset. For example, some pictures in the database can be

transformed by rotating, flipping them or by modify colour, contrast or brightness.

Recently has been emerging a new approach for data augmentation based on the use

of Generative Adversarial Network (GAN). Such particular type of Neural Network is

here mentioned as it is quite relevant in the AI framework for the VCA. Moreover, it

is taken in deep consideration during the next phases of FRACTAL, in particular in

WP5. Several details are included in the deliverable D5.1 and D5.3.

Most methods for object detection are essentially based on CNN. Convolutional Neural

Network is a specialized kind of neural network for processing data with a known

grid-like topology, like images or time series. For our purpose we focus particularly

on images. These are the most common methods:

Regional Proposals: These methods are organised in two phases: in the first phase,

a convolutional NN is used to identify the regions where a certain target object could

be found; in the second phase, a more precise NN is trained to confirm or not the

presence of the object. Relatively heavy approach, but one that can achieve very

high accuracies. The first network does a coarse skimming while the second can be

very precise in identifying real targets. The most used NN architectures are: R-CNN

, Fast R-CNN, Faster R-CNN, and cascade R-CNN.

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 20 of 74

Single Shot Detector (SSD): It presents an object detection model using a single

deep neural network combining regional proposals and feature extraction. A set of

default boxes over different aspect ratios and scales is used and applied to the feature

maps. As these feature maps are computed by passing an image through an image

classification network, the feature extraction for the bounding boxes can be extracted

in a single step. Scores are generated for each object category in every of the default

bounding boxes. In order to better fit the ground truth boxes adjustment offsets are

calculated for each box.

You Only Look Once (YOLO): It is a fast real-time multi-object detection algorithm

that utilizes a single convolutional network for object detection. Unlike other object

detection algorithms that sweep the image bit by bit, the algorithm takes the whole

image and reframes the object detection as a single regression problem, straight

from image pixels to bounding box coordinates and class probabilities. In more

details, it takes an image input, splits it up on a SxS grid, passes it through a neural

network to create bounding boxes and class predictions to determine the final

detection output. It is first trained multiple instances over an entire dataset before

being tested on real-life images and video. The advantage of these networks is that

they are (relatively) fast, work on a single frame and can recognise objects of very

different scales.

Typically CNN is a sequence of different types of layers. The input to the CNN is a

pixel array of an input image. The intermediate results obtained are a set of feature

maps. The outputs obtained are in the form of conditional probability for a given set

of inputs. Highest probability for a choice depicts the confidence of the network in

that output.

Figure 7 – Object detection example using CNN approach

The CNN-based object detection requires a high volume of parameters and

calculations to extract features in the image and make predictions about the objects.

To meet this requirement, many researchers adopt high-performance devices, such

as graphics processing units (GPUs), central processing units (CPUs), field-

programmable gate arrays (FPGAs), and application-specific integrated circuits

(ASICs), to build onboard real-time systems. It is difficult for CPUs to take full

advantage of parallel computing to meet real-time processing. They are rarely used

as CNN implementation platforms. While the computing performance of GPUs is

fantastic, the high-power consumption hinders their usage in the onboard system

with limited resources and power budgets. FPGAs and ASICs have the advantages of

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 21 of 74

high performance and energy efficiency. Thus, taking these low-power devices as

hardware implementation platforms for CNNs has become a research hotspot.

However, ASICs require a long development period and high costs to be designed.

Therefore, owing to the advantages of the short development period, energy

efficiency, and reconfigurability, FPGAs are the ideal implementation platforms for

CNNs. Therefore, if the FPGA can be used to implement the target detection

algorithm, the hardware volume can be greatly reduced, and the implementation

speed is fast, the flexibility is high, and the power consumption is low.

5.1.2 Supervised and unsupervised learning

Besides the analysis of video and audio streams, other AI tasks could be implemented

in the FRACTAL AI framework. In this subsection a short overview of more traditional

machine learning applications that could be used to analyse data deriving from use

cases. The methods introduced here deal with structured data, i.e. that can be

organized in tables. Usually, a distinction is done between supervised and

unsupervised methods. Supervised methods assume that data are somehow labelled

either in a natural way or because some human has labelled them manually. This

label is the target of supervised methods since they aim at building a model able to

predict the value of the target starting from a set of inputs. According to the type of

target, classification or regression problems could be defined. Multilayer Perceptron

(MLP), Support Vector Machine (SVM), Logistic Regression (LR), Decision Trees (DT)

are methods for supervised learning.

On the other hand, in unsupervised problems, no target variable is available and the

goal is to find information within the data. For example, some unsupervised

approaches are:

• Clustering, aimed at organizing data in homogeneous groups.

• Outlier detection, that are devoted at finding configurations that deviate from

standard behaviour.

• One-class classification, whose goal is finding a classification model when only

data of one class are available. For example, data about failures could not be

yet available in historical data in a predictive maintenance application.

• Sequence Analysis and Anomaly Detection, aimed at analysing time

sequences to detect frequent or uncommon patterns that could be related to

regular or anomalous behaviours.

In general, these approaches could be used in association with the analysis of audio

and video streams. As a matter of fact, the analysis of video and audio could generate

features that can be used as an input of supervised or unsupervised tasks.

Moreover, it is worth noting that some techniques belonging to this class also allow

the generation of intelligible models, according to the Explainable AI (XAI) paradigm,

enabling applications where the understandability is a key feature.

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 22 of 74

5.2 Distributed AI and the AI services in the middleware

Figure 8 – FRACTAL cognitive agent and the corresponding node architecture.

Building upon the architecture described in section 5.1, the FRACTAL framework

supports common AI workflows related to distributed learning and decision-making.

In more detail, a FRACTAL cognitive agent (figure 8) interacts with other system

components, devices and data sources through the services provided by the platform

middleware. In its operation, it uses and exports both internal and external interfaces

for connecting to its sensors and actuators and to external services and data sources,

for operational control (e.g., setting the agent goals), and for sharing its results,

knowledge and data. The agent architecture is internally composed of software

components with varying roles, such as modules for interactions, decision making,

implementing and evaluating the selected actions and interactions.

Figure 9 – Agent components and APIs. Active component shown in blue.

To facilitate orchestration of the operations towards optimal Quality of Service and

performance, the run-time deployment of each software component must be decided.

To this end, the agent architecture must consider the application requirements. For

example, some processing-heavy components (e.g., the learning element) could be

run on a nearby edge node or on the cloud, while others may run on-device (see

figure 9). As a result, the edge-cloud framework provides component online

deployment (including offloading and migration), management and monitoring

functionalities.

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 23 of 74

On the one hand, the framework enhances the adaptivity of the individual nodes in

response to the dynamics of the environment, the state of the platform, and

application requirements, by allowing control of its communication-computation

trade-off (e.g. latency vs. data transmission vs. computational load). On the other

hand, such a framework increases operational complexity significantly and introduces

a need for (partially) autonomous decision-making by the components. Figure 10

further illustrates the related horizontal offloads and vertical migrations.

Figure 10 – Hierarchical component transfer framework.

For those of the agent components, which encompass learning and decision-making

elements, the framework requires data and knowledge sharing and collaboration

across the platform. For example, some components may employ a federated

learning schema (see figure 11), where a number of edge nodes, coordinated by a

cloud node, collaboratively build a shared understanding (e.g., a model). The

architecture, and largely the framework, must thus allow the online sharing of data,

results and knowledge, all the while monitoring and evaluating the operation and

environments of each component taking part in the learning.

Figure 11 – Federated leaning in a FRACTAL system.

Further, while an agent makes partially autonomous decisions, a number of use cases

also call for collaboration and co-operation (e.g. through swarm intelligence) as

distributed decision-making, targeting operational efficiency and effectiveness of the

system. To facilitate such a multi-agent system, the agent must support sharing of

both data and knowledge, leading to complex interactions between the agents and

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 24 of 74

other system components (figure 12). Such an integrated architecture is also

required to support the top-down/bottom-up control in the operational framework,

further specified in T5.4.

Figure 12 – Distributed decision-making in a FRACTAL system.

In addition to placing and allocating the application components, the distributed AI

framework must also cater for the flow of data used to build those models. Indeed,

the middleware has to provide interfaces for application components to publish data

sets or streams as well as to subscribe to them, while keeping track of the placement

of both: if a component is offloaded or migrated, its pub/sub endpoint has to move

accordingly.

Moreover, taking into consideration the dynamic nature of the edge-cloud computing

continuum, at times the streams have to be routed anew due to link capacity changes

between components. Finally, the data streams themselves can also change in

volume and velocity, requiring a reconsideration of the stream routing.

Optimally, the framework thus considers simultaneously the communication,

computation as well as data-related resources while orchestrating the distribution of

AI models in the computing continuum.

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 25 of 74

5.3 Use of LEDEL

Figure 13 – Development stages of LEDEL in FRACTAL

EDDL (https://github.com/deephealthproject/eddl, European Distributed Deep

Learning Library) is a Deep Learning (DL) toolkit designed and developed to provide

support to design and train Deep Neural Networks (DNNs) on single computer nodes

and on hybrid HPC + Big Data computing architectures. EDDL is ready to leverage

hardware accelerators, such as GPUs and many-core CPUs. It also uses the ONNX

standard format (https://onnx.ai) to import/export DNNs. Thus, trained DNNs can be

used on production environments to infer/predict. LEDEL (Low Energy EDDL) is the

adaptation of the EDDL to run on Low Energy hardware. Trained DNNs using the

EDDL are easily employed to infer/predict in production environments working with

the LEDEL. In figure 13 we can observe different tools provided by EDDL.

LEDEL is about to be ready to run on Edge computing hardware that has been

developed in FRACTAL. This hardware has limited computing capabilities but is more

powerful than existing low energy hardware so far. Thus, thanks to LEDEL, not only

is it possible to make decisions based on simple conditions, but more complex

decisions based on indicators provided by more sophisticated algorithms running on

the edge are feasible to be made as well. As an example, we are able to evolve from

simple presence detectors to decide whether to switch on lights, to much more

complex scenarios where the number of people in a room and the distance between

https://github.com/deephealthproject/eddl
https://onnx.ai/

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 26 of 74

individuals is computed every few seconds in order to adapt room conditions such as

light intensity, cooling and heating, only switching on the required lights, etc.

The tasks involving the LEDEL in the FRACTAL project are shown in figure 13 and

defined as follows.

- EDDL adaptation to run on RISC-V based hardware in the NOEL-V processor

model proposed (WP3, T3.5).

- In order to check the correct execution of the LEDEL as a software service in

a FRACTAL node, an example of a use case from the DeepHealth project has

been adapted and tested for its correct behaviour (WP4, T4.1). To emulate

the FRACTAL node, a simulated environment has been built using an/the Isar

of Siemens [https://github.com/siemens/isar-riscv]. The model has been

trained outside the node, imported into an ONNX file and transferred into the

emulated node. Finally, the net from the ONNX has been loaded into a

program implemented using LEDEL and checked for its proper behaviour

(check D4.2 for further detail)

- The work carried out in WP5 corresponds to the investigation of different

models that could be used in a FRACTAL node, considering its dependencies,

like OpenCV to execute TinyYolo, or different techniques and implementation

approaches, such as network configuration, and layers and changing among

different learning techniques like reinforcement learning.

- Finally, SML is providing support to check the integration of the LEDEL in the

FRACTAL platform and guarantying a good performance and a proper

behaviour in UC7.

 In conclusion, LEDEL is almost ready, as a service offered in a FRACTAL node, to be

able to perform more complex calculations (i.e., to run more sophisticated

algorithms). The goal is to develop an API that provides deep learning functionalities

that are devoted to face the deployment on low energy computing infrastructures.

LEDEL is already accessible in the FRACTAL project repository

(https://github.com/project-fractal/WP3/tree/main/Components/WP3T35-

03%20LEDEL) and a very complete tutorial with examples and docker files are

presented in order to make it easy for FRACTAL partners to use it in their use cases.

5.4 Advanced control strategies in the automotive domain

Existing automotive control strategies are fully reliant on model-based control

strategies. These techniques imply a high calibration effort and the ability to perform

self-learning through observations is very limited. This use case therefore contributes

to integrate the environmental influences and changes as a fundamental part of the

system, among other benefits, like potentially increased product quality and

increased efficiency for the development of customized controllers. The FRACTAL

nodes are crucial to the implementation of this use case.

The FRACTAL framework shall demonstrate the following objectives:

https://github.com/siemens/isar-riscv
https://github.com/project-fractal/WP3/tree/main/Components/WP3T35-03
https://github.com/project-fractal/WP3/tree/main/Components/WP3T35-03

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 27 of 74

• Inference of data-driven models aimed at improved energy efficiency and

reduction of environmental pollutants on the FRACTAL node

• Online self-adaptation algorithms of the initial state model, to react to

variations regarding the environment and different driver behaviours

• Freeze frame data collection and connection to the cloud for re-training

purposes

In figure 14 an overview of the planned (implementation) interactive environment

schema can be seen. Three different model operations can be differentiated. Firstly,

the model inference of the initial state AI-based model, as a result from the model

development process, which is implemented to replace the conventional control

strategy. Secondly, the model adaption during the vehicle in-use phase, to cover the

model blind spots coming from the limitations of the input data used for model

training and to have the possibility to adjust to vehicle specific parameters. The

adaptation algorithm would compare the output of the model inference with the

measured data and in case of a deviation, learn and preserve the additional

information. Thirdly, a cloud connection is established to utilize the potentials of

crowdsourcing and the access to extensive information from other drivers/vehicles,

with the overall target to optimize the control strategy from many different aspects

(e.g., changes in environmental conditions, variability, coverage of different

operation modes, etc.). Since this task comprises the use of big data, a

computationally heavy training infrastructure is needed and would therefore require

cloud computing for the execution.

Figure 14 – Overview of FRACTAL framework needed for Automotive implementation

5.5 Image classification

Modern deep learning architectures achieves state-of-the-art performances on vision

tasks such as image classification, tracking and segmentation; nevertheless, the

adoption of these approaches into critical domains is still limited. Two key aspects

limiting the diffusion of these approaches are the limited interpretability of the

learned models and the lack of specific guidelines to efficiently and effectively perform

the optimization of their hyper-parameters.

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 28 of 74

Within the scope of the FRACTAL project the methodological approach taken for this

task is twofold. From one hand, it pursues the adoption of state-of-the-art explainers,

specific algorithms that provide human-interpretable explanations about the model

predictions. One of such explainers that has gained much attention for vision tasks

is LIME (Local Interpretable Model-Agnostic Explanations). Roughly speaking, LIME

takes as input the learned deep network and the image to classify; as output, it

provides the classification of the image along with the image enriched with patches:

the patches highlight the areas that most contributed to the classification of the

image. Since the patches are visual, they are, usually, very-well interpretable by

human users.

On the other hand, the idea of incorporating the optimization of important pre-

processing hyper-parameters into the training and the test phases is promoted. Both

these aspects are demonstrated in the context of a clinical application, diabetic

retinopathy detection.

More specifically, suppose that the processing pipeline use some pre-processing

algorithm A to perform a given step of pre-processing. Suppose also that A requires

as input some parameter p besides the image to process; and suppose also that p

must be specified on a per-image basis. A typical approach to this problem, is to

perform some expensive grid-search procedure, image-per-image, to find each time

the best value for p according to some mathematical criterion. This results in an

extremely time-consuming approach that is not even necessary correlated with good

predictive performances. Indeed, the existing optimality criteria for A might be not

connected with its role in the prediction pipeline. To overcome these limitations, it is

possible to learn the best parameters to use at training time. In particular, the

predictive model is trained jointly with another deep learning architecture – in an

end-to-end fashion – whose sole role is, given an image x, to predict the best value

p(x) for the parameter of A to use. The image is then pre-processed using A

parametrized by p(x). This approach has two advantages, first at test time, given an

image, predicting the parameter to use for A requires only a feedforward step which

is typically faster than performing a grid search. Second, the parameter of A is

optimized to obtains the best predictive accuracy, as one would expect. In order to

learn both networks, the models are connected together through a differentiable

layer (e.g., the Gumbel soft-max activation) which allows for the backpropagation of

the gradients. In this way, both models are optimized to reach the best predictive

accuracy.

Diabetic retinopathy (DR) is a dangerous disease that can lead ultimately to

blindness. A timely diagnosis of this pathology is fundamental to limit its consequence

on the patient. Recent research studies have shown the potential benefits of adopting

deep learning methods to support the specialist in the analysis process. In particular,

those methods have achieved nearly human performances in the task of classifying

certain levels of retinopathy.

However, such algorithms mostly act as black boxes taking as input a high-resolution

image of the eye fundus, and producing as outputs a prediction on the level (if

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 29 of 74

present) of retinopathy affecting the patient. The black-box nature of these methods

limits their usability as support tools from the specialist that has no clues to

understand the factors that caused the model to output a certain prediction.

Moreover, updating and tuning these algorithms for the specific cameras is a timely

consuming and poorly defined process due to the lack of well-defined mathematical

objectives. An important example of this issue is given by the image equalization

algorithms, that turned out to be fundamental to obtains good performances in this

task. These algorithms, most prominently CLAHE, require the user to provide one or

more parameters that control their behaviour. Unfortunately, it is not clear how one

should choose these parameters, and current solutions are often based on expensive

greed search procedures. The proposed methodology is used in the context of a

methodological study described in D5.6. In figure 15, a DR detector enriched with

the LIME explainer is shown. An image is given an input to the processing pipeline

and, and explanation about its prediction is built according by LIME. In figure 16

instead the end-to-end approach to the image equalization problem is shown. Here

the image is given in input to the first network, that predict the parameter of CLAHE

(the image equalization algorithm); then the image is equalized by CLAHE with the

predicted parameter, and finally is given in input to the second network for the DR

detection.

Figure 15 – Image classification with explanations, an example in the context of DR detection

Figure 16 – End-to-end learning for hyper-parameters optimization, and example in the context of DR
detection.

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 30 of 74

6 Measures and strategies for safety design

To build the safety concept for a FRACTAL system, a number of safety-related

properties need to be built bottom up. Generally, these properties relate to the ability

of the system and its components to detect, manage and/or tolerate faults and or

behaviour beyond the intended functionality. This chapter covers those aspects for

the different components in the form of safety measures and strategies. In particular,

approaches are presented to deal with faults for the computation of an application

(diverse redundancy), timing interference across applications, communication across

nodes, AI-related processes and time-triggered NoC.

Note for the reader: the D2.2 sections “6.1 Guidance to define a methodology for a

safety-related development (ISO61508) tailored to an R&D cooperative project” and

“6.3 Certification of VERSAL platform and related applications” have moved to D2.5

“Safety-critical applications regulations compliance handbook”.

6.1 Diverse redundancy

Fault detection in a FRACTAL system architecture can be efficiently provided bottom-

up. This implies that appropriate safety measures need to be deployed along with

computation means. Safety measures for the highest criticality functionalities (e.g.

ASIL C and D) include some form of diverse redundancy so that a single fault, despite

affecting all redundant elements, cannot lead to exactly the same error, which might

escape detection.

Common Cause Failures (CCFs), in automotive terminology, are those failures caused

by a single fault that makes safety measures, such as redundancy, ineffective. For

instance, two identical cores executing the same task redundantly fully synchronized

have the same state, and upon a common fault (e.g. a voltage drop) could experience

the same error. To avoid CCFs, safety-related systems implement redundancy with

some form of diversity so that the risk of experiencing identical errors in redundant

elements is residual. In the case of storage, this is usually achieved using Error

Detection Codes, in the case of communications using Cyclic Redundancy Check

codes, and in the case of computation, using some form of lock-stepped execution

where two or more identical cores execute identical software but with some

staggering (i.e. time shift) so that cores' state is sufficiently diverse.

Therefore, platforms intended to run functionalities with high integrity requirements

need some form of lock-stepping support. This can be achieved with tight lock-

stepping, where only one redundant core is visible at software level and the others

can only work in lock-step mode, as done, for instance, by the Infineon AURIX

microcontrollers for the automotive domain.

Tight lock-stepping at core level can be implemented with different flavours. For

instance, one could compare the outcome of each instruction or even each pipeline

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 31 of 74

stage every cycle2. However, the most effective solution has been shown to compare

only off-core activity (e.g. requests visible in the interconnect) to reduce the

overheads while avoiding any visible impact due to errors.

While this solution is highly effective to attain diverse redundancy, it is inflexible since

it does not allow using the cores independently to run different tasks. An alternative

is using light lock-stepping, where redundancy is created and managed at software

level, and independent cores are used enforcing staggering with SW-only means, as

illustrated in figure 17.

Figure 17 – Schematic of the SW-only lightweight lock-step.

SW-only diverse redundancy builds upon the creation of redundant processes at

software level, so that both of them receive the same – redundant – input data and

return their results for comparison in a safe CPU. Without loss of generality, this

discussion focuses on dual-core lock-step, which is the common approach in many

domains, including automotive.

The methodology builds on the use of three threads (see figure 17):

• Monitor. The monitor is the one spawning the redundant computation threads

(head and trail), and monitoring and enforcing staggering between them.

• Head thread. The head thread executes the functionality without any specific

control for the sake of achieving diverse redundancy.

• Trail thread. The trail thread executes the functionality redundantly with

some staggering (delay) with respect to the head thread. Therefore, if the

staggering at any point is too short, it is stalled for a while.

2 A more detailed analysis of the different alternatives can be found here: C. Hernandez and J. Abella,

"Timely Error Detection for Effective Recovery in Light-Lock-step Automotive Systems," in IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 34, no. 11, pp. 1718-

1729, Nov. 2015, doi: 10.1109/TCAD.2015.2434958.

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 32 of 74

Since the monitor lacks any form of redundancy, it needs to run in a native lock-

stepped core, which may be in a separate microcontroller, or may also be in the same

microcontroller. The monitor spawns the head and trail threads into two other cores,

which do not implement tight lock-stepping support. Then, the monitor performs the

following steps periodically every Tcheck cycles:

1. Collects the instructions executed count (IC) from both threads, so IChead

and ICtrail.

2. Computes the difference between both counters and compares it against a

threshold Istagger.

a. If the head thread is sufficiently ahead from the trail one, then both

threads continue the execution. Formally, execution continues

normally if (IChead - ICtrail) > Istagger.

b. Else, if the trail thread is too close to the head one, then the monitor

stalls the trail thread during the next monitoring period (so Tcheck

cycles). Formally, the trail thread is stalled if (IChead - ICtrail) <=

Istagger.

3. Finally, the monitor sleeps until the remaining time until elapsing Tcheck

cycles.

This mechanism guarantees that the trail thread cannot catch up with the head thread

as long as the instruction threshold Istagger is large enough so that, even if the

head thread stalls completely and the trail thread executes at the maximum possible

speed, the trail thread cannot catch up with the head thread since one monitoring

period until the next one. This implies that executing a Istagger instructions must

require at least Tcheck plus the time to detect that the current staggering is too low

and stalling the trail thread.

In the context of automotive systems, as well as in other domains, as long as faults

are managed short enough after their occurrence, only single-point faults need being

considered. Single-point faults are those faults caused by a single event even if such

event can lead to multiple errors. This is explicitly covered in ISO 26262, part 5,

clause 7.4.3.3: “Evidence of the effectiveness of safety mechanisms to avoid single-

point faults shall be made available”.

Hence, the following scenarios are possible for single-point faults:

• The fault affects one or the two computing threads (head and/or trail). Since

they have intrinsic diversity due to the proposed mechanism, if the fault leads

to errors, those will be detected by the monitor and properly managed with

the corresponding system level recovery solution implemented (e.g., re-

execution).

• The fault affects only the monitor. The monitor runs on a native lock-stepping

computing core, so, if the fault leads to an error, it will be detected and

managed as needed at system level. In this case, the execution of the threads

is correct. Hence, one may simply use the result of the head thread since it

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 33 of 74

will match the one of the trail thread even if staggering is not preserved since

the fault only affected the monitor. Since the fault affecting the monitor will

be detected if it leads to an error, we can just compare the result of both

threads to validate that they match. Note that the single-fault assumption

guarantees that this later comparison is fault free.

• The fault affects all components (monitor, head thread and tail thread). In

this case, the monitor detects it failed, and the outcomes of both threads

mismatch. Hence, we can proceed as in the previous case but, in this case,

the later comparison will detect a mismatch across the outputs of the head

and trail thread, so system recovery actions can be taken then to manage the

impact of the fault on the monitor as well as on the computing threads.

Overall, if a single-point fault leads to errors in any of the computing components or

the monitor, those errors will be properly detected and reported so that system level

recovery actions can be taken.

6.2 Management of timing interference

Safety-related systems, as part of their development process, must adhere to specific

verification and validation (V&V) processes, and include safety measures to deal with

random hardware faults that may occur in the field. This is achieved by means of

observability and controllability knobs. Those knobs have already been deployed in

mono-core SoCs. However, MPSoCs pose a number of challenges related to

performance interference in the hardware shared resources across tasks running in

different cores. Such interference must be properly accounted for and mitigated to

meet performance-related safety requirements in line with safety standards

specifications. In the context of FRACTAL, since such interference emanates at node

level, that is the scope where safety measures and V&V means have been deployed

for efficiency reasons3 (e.g., to stop excessive interference immediately rather than

awaiting for software layers to react too late when further interferences has

occurred).

Commercial safety-related MPSoCs, such as, for instance, the Infineon AURIX

processor family, include limited features to monitor and mitigate multicore timing

interference. Typically, those MPSoCs include some form of Statistics Unit (SU)

capable of tracking access counts, number of instructions executed of different types,

as well as aggregated stall cycles in some buffers and queues. Those MPSoCs may

also include powerful debug facilities such as Aurora, Lauterbach and CodeWarrior,

3 J. Cardona, C. Hernandez, J. Abella and F. J. Cazorla, "Maximum-Contention Control Unit (MCCU):
Resource Access Count and Contention Time Enforcement," 2019 Design, Automation & Test in Europe
Conference & Exhibition (DATE), Florence, Italy, 2019, pp. 710-715, doi:
10.23919/DATE.2019.8715155.

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 34 of 74

which allow collecting detailed information about events in the MPSoC. Unfortunately,

those SUs and debug facilities have some limitations:

• It is generally hard – if at all possible – discriminating how much interference

each core creates on each other core since stall cycles, if available, are

provided in an aggregated manner.

• The MPSoC may lack means to exercise control over multicore timing

interference.

• Despite debug facilities are powerful, they are normally only usable during the

development process given the fact that they require specific equipment and

software for their use. Hence, safety measures to be used during operation

cannot exploit those facilities.

Specific SUs can be tailored to deal with those challenges and meet the requirements

of safety-related systems in terms of multicore timing interference, both during V&V

and during operation. In particular, a timing-interference aware SU would allow

implementing appropriate safety measures if it provides the following features:

1. Interference monitoring. Monitoring the amount of delay experienced by each

task due to interference, and being able to identify the particular task causing

such interference is particularly relevant to optimize the system during design

and verification, and to diagnose deadline overruns in the field.

2. Interference quota enforcing. Those deadline overruns can be simply avoided

if means are deployed to set quotas on how much interference each task can

create on each other task.

Those features allow implementing both, reactive mechanisms and diagnostics by

monitoring interference, as well as proactive mechanisms based on quotas to avoid

effects due to undesired timing behaviour. Overall, those mechanisms are the basis

to mitigate interference so that freedom from interference, as requested in some

safety standards (e.g., ISO26262), is achieved to a sufficient extent (e.g., upper-

bounding potential interference).

Timing interference generally manifests in the on-chip interconnection networks since

all data sent to/from the cores needs to traverse those networks. Hence, SUs for

timing interference monitoring and control must likely be deployed along with those

interconnection networks. Since those interconnects use standard interfaces, such as

AMBA AHB/ACE/AXI, SUs may be easier to integrate and reuse if they comply with

those protocols.

In the context of FRACTAL, if the MPSoC includes a centralized interconnect managing

all on-chip traffic from cores (e.g., a bus), a single SU may suffice. Alternatively, if

distributed interconnects are deployed (e.g. NoCs) so that no single location drives

all core-related traffic, we may need to set up multiple SUs to be able to monitor and

control all on-chip traffic. Those SUs may further require some post-processing of the

information collected in a distributed manner to gain global knowledge about how

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 35 of 74

multicore timing interference is occurring. Alternatively, a single SU can be deployed

as long as it can monitor multiple NoCs simultaneously.

It is also common experiencing multicore interference in other components apart

from the NoC, such as, for instance, shared caches and shared memory controllers.

If such interference does not manifest in the form of backpressure in the NoC, just

observing the NoC may not be enough to accurately measure all interference. In this

case, the SU may need being extended to consider additional events such as core

stall signals, and queue occupancy signals in caches and memory controllers. In any

case, simple logic monitoring those signals in the SU can determine what core is

delaying what other cores so that interference can be monitored and ascribed with

sufficiently high precision.

6.3 Reliable communication

FRACTAL systems rely on inter-node and intra-node communications. To satisfy

safety requirements, on-chip communication networks or interconnects may rely on

state of the practice protection mechanisms such as Error Correction Codes (ECC),

replication or monitoring.

ECC is usually required for data links. The choice for the actual ECC implementation,

(e.g. SECDED or parity) depends on the implementation costs and the actual safety

need. For instance, fail-safe applications or applications with long fault tolerance time

intervals can use simple parity bits while more stringent applications requiring fail-

operational capabilities may also require redundancy bits with correction capabilities

such as SECDED (single error correction double error detection).

Hardware replication. Hardware replication (e.g. duplication) might be also needed

in addition to ECC to achieve the highest integrity levels. Implementing redundancy

at the core level with software only means is not sufficient to protect the system from

random faults. Actually, without a hardware mechanism that prevents cores and

other IO to write to arbitrary locations faults affecting a core or I/O can introduce

undesired memory corruptions. Thus, the software redundancy mechanism of the

NOEL-V FRACTAL node requires having a memory protection unit (MMU) like the one

present in the NOEL-V. Unfortunately, accelerators are not covered by the MMU and

memory isolation properties are preserved in our platform using two physically

different memory spaces for the accelerators and cores.

Hardware monitors. Shall be integrated with the interconnect to allow built-in self-

test (BIST) and error reporting capabilities. This is usually a requirement that

expands all integrity levels and it is aimed to ensure safe operation during the lifetime

of an application. In the context of highly complex SoC platforms (e.g. multicores)

these monitors should also have the capability to track software timing information.

Existing monitors in the NOEL-V FRACTAL platform ensure that requests targeting a

specific device (e.g. memory) have the permission rights to access such device.

Different IDs are assigned to specific masters/tasks in the SoC so that safety-relevant

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 36 of 74

and non-safety relevant worlds can be built. Such scheme can also be used to by the

AXI and AHB traffic monitors to propagate contention information to the edge SafeSU.

Additionally, specific software-based tests are used to test the functionality of the

different SoC devices. These tests are currently used for validation purposes but can

also be leveraged for runtime verification.

For off-chip communications, applications safety shall be supported only if the

underlying off-chip communication is based on a safety-critical infrastructure (e.g.

Time-sensitive networking). However, other than such safety-critical communication

infrastructure, a fail-safe mechanism is also considered for the FRACTAL

communication. That is, the node needs to remain safe (i.e. transition to a safe state)

if the communication with other nodes is down. However, data integrity and

authenticity conveyed by the FRACTAL communication are secure features that are

also important for safety, not to make any decision based on flawed information.

6.4 Artificial intelligence

The utilization of artificial intelligence (AI) techniques in the context of FRACTAL

applications with safety requirements are constrained. In general, the utilization of

AI does not involve tasks of the system mapped to a certain criticality level. For

instance, following ISO26262 nomenclature AI tasks are restricted to QM (quality

management) functionalities only. That is, functions without safety relevance and

that only require standard Quality Management processes. Otherwise, safety

violations in absence of HW or SW failures that are a consequence of limitations in

the algorithms, sensors or actuators must be also considered as defined in the

ISO/DIS 21448: Safety of Intended Functionality (SOTIF) automotive sector

standard.

Even in this constrained scenario, the deployment of AI techniques in platforms that

involve critical functionalities (e.g. mixed criticality systems) is challenging. The

reason is that sharing the same CPU between critical and non-critical tasks requires

ensuring the existence of partitioning mechanisms (provided by Linux or a

hypervisor) to allow AI related tasks not to interfere with critical tasks (neither at the

functional nor at the temporal level). The NOEL-V FRACTAL node supports the H

extension for hypervisors and partitioning hypervisors like Jailhouse or Xtratum have

been successfully ported to this platform in the context of the SELENE and DE-RISC

H2020 projects. Additionally, since accelerators are memory intensive the execution

time of critical tasks co-running in the platform can be significantly affected by such

timing interference. To solve this, we have leveraged the end-to-end QoS capabilities

of this platform that allow us to establish contention quotas that also account for the

contention caused by the accelerators. Additionally, if FRACTAL platforms make use

of AI outputs to improve non-safety properties like quality of service (QoS), energy

or availability, the AI system shall provide a measure of uncertainty in all the

decisions to get an estimate of the QoS that these systems based on AI are able to

provide. The robustness of a redundant AI acceleration scheme was analysed in D4.4.

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 37 of 74

In summary, for FRACTAL systems, the safety of the platform should not depend on

the output of the artificial intelligence algorithms. Involving AI in the decisions that

may affect the safety of an application is however mandatory to achieve fully

autonomous certified applications. Unfortunately, this technology, while being

currently a hot research topic, is not expected to be available in the near future for

critical industrial domains.

6.5 Time-triggered NoC

Safe-on-chip communication is required when transferring critical messages within

an SoC. An NoC is a good candidate for on-chip communication when the number of

processors increases within the chip since it provides high bandwidth and scalability

and supports parallel communication. For critical safety systems, the on-chip

communication needs to provide deterministic communication in order to satisfy the

real-time system’s behaviour.

Time-Triggered communication is a good candidate for safety-critical multi-core

architecture. In Time-Triggered communication, the Network Interface of the NoC

has the capability to inject the messages from the core using a predefined schedule

that is computed offline. Having this full control of injection time for each message

within the NoC reduces the risk of message collision and reduces the jitter within the

NoC.

In summary, for FRACTAL on-chip communication, using a Time-Triggered NoC helps

the systems to meet the deadlines when message exchange is needed between cores

since it provides deterministic communication and low jitter compared to a generic

NoC.

6.5.1 Adaptability techniques for Time-Triggered NoC

The static allocation in time-triggered systems offers significant benefits for the

safety arguments of dependable systems, such as avoiding resource conflict within

the NoC. However, adaptation is a key factor for fault recovery in FRACTAL on-chip

communication.

Adaptation using multiple schedules allows the NoC to adapt based on every

predefined scenario (for example, when a fault occurs in one particular core, the

systems should be able to switch from one schedule to another and remove the faulty

core within the new schedule, to avoid the propagation of the fault within the chip,

and allow the entire systems to work even if in the presence of fault).

The TTNoC performs three operations before switching from one schedule to another

when a context event occurs, as described in the following items:

- Context monitor that monitors the presence of faults reported in each core.

- Context Agreement that propagates the local fault to all cores within the chip,

so each core has the state knowledge of all cores.

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 38 of 74

- Adaptation: After the context agreement, each processing element within the

NoC has the state of each core. The state of all the cores in the multicore on

a chip is known as a global context event. Based on the global context event,

the adaptive scheduler generates a new schedule, and this new schedule is

used to reconfigure the NoC in order to maintain the safe operation of the

multicore on a chip.

In summary, adaptability in the TTNoC can provide fault tolerance and increased

reliability for various workloads and applications running on the chip. The ability to

switch between schedules allows for greater flexibility and adaptability to different

context events and situations that may arise, regardless of the specific application

being executed. Overall, this can lead to more efficient and robust operation of the

chip and the applications running on it.

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 39 of 74

7 Methods for the integration on FRACTAL platforms

This chapter introduces methods that are used to integrate use cases on FRACTAL

platforms in WP7 and WP8. Some sections are specific to a use case.

WP7 integrates the FRACTAL building blocks, technologies and methods. The

FRACTAL features cognitive awareness, cloud connectivity, adaptability, security and

low power guide the integration and verification activities. The verification task

assesses the metrics regarding these quality attributes and set up a coordination task

to gather and analyses the insights and KPIs of the various FRACTAL nodes.

WP8 aims at homogenizing the requirements from use case providers to provide a

unique framework for dealing with all the real-world situations considered in the use

cases in term of Fractality. The objective of this work package is to define the needs

of the use cases by identifying domain-specific requirements and assess at the end

of the project whether the technical objectives of the project have been reached.

Moreover, WP8 ensures that developments in the field of:

• Artificial Intelligence and Autonomous Decisions

• Safety and security insurance

• Low power and high performance on the edge implementation

To do this, a coordination process between use case providers, technology providers

and integrators are needed to ensure that the development activities are in the

direction of fulfilling the pillars of the project.

7.1 Operational integration

To be able to fulfil FRACTAL’s goals in the market, FRACTAL must be viewed as a

minimal viable product and this project must define the characteristics of that product

and how it is built and delivered. Chapter 4 has introduced FRACTAL Features and

their relationship with FRACTAL components developed by the distinct partners and

that UCs use.

On the other side, the distinct use cases provide a focus on the variability that a

FRACTAL node must support. By the end of the project, a FRACTAL node should be

be constructed to support the FRACTAL Features that each use case (WPs 7 and 8)

brings to light. Operational Integration refers to the process that must be undertaken

to build the FRACTAL node that an end user wants. This section presents the specific

workflow for a given use case as an example (the use case is simplified for a better

understanding of the process).

The first thing that a given use case needs to do is to identify the features the use

case is interested in. As an example, a given use case pretends to build a device that

will be deployed on a machine on the field. The machine is fully powered and thus

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 40 of 74

the device will not have problems with the power supply. The device will control how

the machine works and adapt its behaviour based on the current context where the

machine is working. The device will receive data from the machine and its sensors,

analyse it and if needed adapt the behaviour. The device will be able to communicate

to the cloud. The adaptation engine will be AI based and the models will be trained

on the cloud and updated in the device when required.

Let’s start with feature selection:

• PLATFORM -> VERSAL will be selected as the more powerful platform used in

FRACTAL.

• FRACTALITY -> ORCHESTRATION -> DATA as data will be orchestrated from

the devices into the cloud.

• ADAPTABILITY -> DATA ORCHESTRATION -> PROCESSES -> INGESTION as

data ingestion processes will apply on the cloud.

• ADAPTABILITY -> DATA ORCHESTRATION -> DATA SET -> STORAGE as the

data will need to be stored on the cloud.

• ADAPTABILITY -> DATA ORCHESTRATION -> DATA SET -> VERSION

CONTROL as the data sets for AI training will be versioned.

• FRACTALITY -> ORCHESTRATION -> MODEL as the built models will be

orchestrated and version controlled.

• ADAPTABILITY -> AI -> HW -> AI/ML ACCELERATOR as the acceleration from

the Versal board will be used.

• ADAPTABILITY -> AI -> SW -> INFERENCE -> MODEL FORMAT -> VERSAL as

the Versal model for deployment will be used.

• FRACTALITY -> ORCHESTRATION -> SERVICES as the analysis engine will be

containerized.

• ADAPTABILITY -> DATA ORCHESTRATION -> DATA PROCESSES ->

TRANSFORMATION since the data will be analysed and transformed on the

device.

• ...

Notice that in this process the selection of a FRACTAL feature can force the

selection/removal of another feature. For instance, a feature of Low Power

consumption may exclude the Versal Platform (feature dependencies and

constraints).

In order to be able to select the features, understanding of the goal of the features

is required, thus a FRACTAL-skilled interpreter should be in place (as a seller to

describe option when buying a car).

The bill of features corresponds to all the features that have been selected. It may

also be represented with a pruned tree (see figure 18).

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 41 of 74

Figure 18 – Sample bill of features

Given a valid “Bill-of-Features", the process to build the FRACTAL node should start.

First, a set of components has been selected following the FRACTAL Feature –

component map defined in D2.3 and also crossing it with the selected platform. For

the given example, the following components have been selected:

Component ID Component Name Related Features

WP3T34-03 Versal Model deployment

layer

ADAPTABILITY -> AI -> HW

-> AI /ML ACCELERATOR

WP5T52-01-01 Cloud Data Ingestion

Service

ADAPTABILITY -> DATA

ORCHESTRATION ->

PROCESSES -> INGESTION

WP5T52-02-01 Cloud Raw data Object

storage service

ADAPTABILITY -> DATA

ORCHESTRATION -> DATA

SET -> STORAGE

FRACTALITY ->

ORCHESTRATION -> DATA

WP5T52-04-05 Cloud Datasets version

control

ADAPTABILITY -> DATA

ORCHESTRATION ->

DATASET -> VERSION

CONTROL

FRACTALITY ->

ORCHESTRATION -> DATA

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 42 of 74

Component ID Component Name Related Features

WP5T52-04-03 Cloud S3 compatible data

storage

ADAPTABILITY -> DATA

ORCHESTRATION ->

DATASET -> STORAGE

FRACTALITY ->

ORCHESTRATION -> DATA

WP5T52-04-07 Images repository FRACTALITY ->

ORCHESTRATION ->

SERVICES

WP6T61-02 Edge API FRACTALITY ->

ORCHESTRATION ->

SERVICES

...

Table 2 – Selecting Components from FRACTAL Features

Note that these features are not related to use case business needs. Those needs are

covered by use case specific components that are integrated in the FRACTAL

Platform. Thus, we have FRACTAL Base Components (or building blocks) and use

case specific components that deal with the specific business logic for the use case.

In FRACTAL, these components can be integrated in two ways:

• System specific libraries integrated in the OS of the node

• Container based services, which may include system specific libraries to

access specific functionalities, that may be executed on the node or on the

cloud.

Having this in mind, the following diagram describes FRACTAL product construction.

Figure 19 – Sample FRACTAL construction process for Versal

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 43 of 74

Construction process is separated in two parts: FRACTAL Node and FRACTAL Cloud.

For the node, first the node HW platform has to be constructed and its corresponding

OS built adding the corresponding selected system libraries (low level components).

Then the FRACTAL Distributed System must be added, which includes the container

runtime and orchestration capabilities (which may themselves be containers). Finally

Use Case specific services are added as containers managed through the FRACTAL

Distributed System.

For the cloud, the same implies. First a base cloud configuration is executed over

which the cloud services are added as containers (both FRACTAL and Use Case

specific cloud services).

Containers play a crucial role on FRACTAL’s architecture, being able to produce

application logic that can be executed over different hardware platforms or even the

cloud, being able to load balance its execution depending on use case needs.

With this process, the industrialization and productization of FRACTAL is achieved,

enabling companies to sell products that conform to FRACTAL for any other use case.

Following sections detail construction specifics.

7.2 SW integration (PULP, VERSAL), RTOS for PULP

The purpose of this task was to expand the FRACTAL framework to support also the

extremely limited nodes. This opens a huge area of new business cases, especially

at the consumer sector.

Focus on work at low-end nodes was to introduce and demonstrate APIs, where

higher levels of FRACTAL integrate smoothly. This task specially focuses to introduce

Posix compatibility on low-end nodes.

The secondary focus was the integration of Asymmetric Multi Processing (AMP), so

the Linux capable nodes can benefit RTOS low-energy and real-time features —

resulting simpler node electronics and smaller energy budget. Unfortunately, this part

was not utilized by any UC. However, while UCs move closer to commercial product

the need will arise (after the project).

Major part of the work was utilizing and modifying existing Nuttx background and

publishing the results to the Nuttx forum (e.g., over the years the Nuttx Pulpissimo

support was deprecated).

Another part was the integration of the Pulpissimo FPGA implementation and other

used RISC-V low-end targets (see section 7.2.1).

The AMP implementation task was mainly developing and utilizing Nuttx background.

Results were published back to Nuttx. Work in this task, was very hardware

dependent. The implementation was demonstrated at yet another RISC-V platform

(see section 7.2.2).

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 44 of 74

7.2.1 Posix compatible RTOS integration to the PULP

Background:

In FRACTAL the general (low risk – fast to deliver) approach is to integrate the

middleware layers (by WP4 and WP5) top of the Linux operating system. For use-

cases this offers a simple and powerful system to implement the application logic.

Also, the acceleration/protection functions that physical HW offers are easy to

integrate to the Linux low-level layers. The drawback is that Linux requires adequate

amount of processing power and energy. Due high-power nature Versal platform this

is not issue as such, but in low-end nature of PULP it limits the options.

On this task a Posix compatible OS (Nuttx) is integrated to PULP. From software point

of view, this is limited – less memory, no supervisor abstractions, it lacks high-level

languages such as Java and Python. However, unlike most of the Realtime operating

systems (RTOS) it has Posix threads and sockets, standard C-APIs and standard dev-

tools. Most of the cases source-code developed to the Linux can just be compiled in.

As a result, the Nuttx is compatible with a FRACTAL subset. In its scope, it does not

require any special porting for the FRACTAL SW.

As a result, this offers a mechanism to push certain Factual applications to the

extreme low-power – low-cost targets.

Development of Pulpissimo requires special tools. Xilinx tools are needed for loading

the system binary file from ETH Zürich to the Genesys2 FPGA board. Due instruction

extensions the Pulpissimo RISC-V requires a special version of GCC C-compiler.

Integrating the Nuttx RTOS to Pulpissimo requires mainly work on DMA and interrupt

processing. Also, the existing binary file supports just one serial port, so assignment

of console and logs to that.

Results are published at Nuttx official git-repository.

Due to limited peripheral support and low system clock (10MHz) of Pulpissimo

Gensys2 FPGA implementation, the further FRACTAL connectivity development was

implemented at ESP32-based RISC-V platform that had more integrated peripherals

I.e. Wi-Fi, that Nuttx IP-stack can easily utilize.

Together with UC3 – that was developing Pulpissimo FPGA further, this was too

agreed. They demonstrated their system as two. One demonstrating FRACTAL secure

AI FPGA implementation based on Pulp and second demonstrating FRACTAL

connectivity with ESP32 based RISC-V top of Nuttx RTOS.

Nuttx was not ported to UC3 FPGA, due the FPGA processor peripherals and modem

change at next phase when final ASIC is developed.

For similar reasons the AMP (see next subsection) was implemented on Microchip

ICICLE platform.

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 45 of 74

7.2.2 Asymmetric Linux-RTOS multiprocessing to the FRACTAL

project

In symmetric multiprocessing (SMP) all processor cores are utilized by same

operating system. In asymmetric case (AMP) cores are utilized by different operating

systems. There are some benefits of this sort of systems. Here are briefly the two

cases:

First: The Real time matter. Linux as such is not a real-time operating system. At

certain stage – that is not fixed – Linux begin to lose real time deadlines (Practical

tests have demonstrated that response jitter below 1ms is intolerable). One solution

to solve this issue, is the Real time version(s) of Linux. There the certain parts of

kernel are modified for real time purposes. Drawback on this is that these changes

are branches of the main line Linux. While the Linux evolves, the compatibility of this

branch weakens and over time the new feature backporting becomes more difficult.

This yields to practical problems – typically related to security and compatibility.

Another solution is to have a parallel real time operating system (RTOS). This RTOS

process the real time tasks, while Linux is the actual computing platform. And, having

this RTOS running on same processor chip, eases the system design.

Second: The low power operation. Linux is a complex system that requires complex

HW to run – lot of moving parts that consume energy. Driving system to standby and

woke up on event is a better solution, however the woke up takes in average more

energy than normal operation and often the woke-up events require only little

processing or even are false. Again, obvious solution is to introduce a second low-

power OS that stays awake, while Linux is standby. This OS can verify the woke-up

events and some cases process them. And in cases where “The Force” is needed,

RTOS can woke-up Linux OS and delegate the event. Like the above case, the system

design is easier, when the low-power OS and application OS are in same physical

chip.

Two cases above and combination of them are valuable tools for certain application

types in FRACTAL context. In task we seek to run Nuttx (RTOS) in one core and Linux

in other cores. The Posix compatibility offers yet another potential compatibility

benefit: Due both OSes are in same processor context; they may share same

security, data and even binaries.

Challenges on this task are related to the context switching, security and shared

resources matters below the OSes.

As in previous task the implementation was done according to the spiral model. At

first an adequately good platform is selected, where some version of previous task

Nuttx implementation is integrated together with some Linux. The second target is a

FRACTAL improved version of that. And so on.

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 46 of 74

Security features, low-power operation, application requirements need to be

collaborated with other FRACTAL partners. This can be also in focus of Versal

platform.

AMP communication between Linux and NuttX is possible via Remote Processor

Messaging (RPMsg). Both operating systems support RPMsg over VirtIO. Basically,

shared memory with proper notification mechanisms is the foundation for this AMP

mechanism.

It's even possible to use multiple RPMsg channels. For example, Linux may talk to

two different operating systems. However, support for this kind of features is very

limited at the moment. A part of this work is available at commit:

https://github.com/apache/nuttx/commit/3afc83abc7887b0371a1a6501a056641c5f

5ff3 on NuttX operating system.

Moreover, the hardware has likely a fixed set of peripherals, and thus not all the

operating systems can use them simultaneously. Especially NuttX has a number of

RPMsg drivers: block drivers, network drivers and serial drivers just to name a few.

Those drivers may be accessed from a remote processor. For example, NuttX may

have complete control over a network driver, but Linux may still use it via the RPMsg

based AMP system. RPMsg drivers are less common in Linux than in NuttX.

7.3 Electronic System-Level HW/SW co-design

Systems based on heterogeneous parallel architectures (Heterogeneous Parallel

Systems - HPSs) have been recently exploited for a wide range of application

domains, especially in the System-on-Chip (SoC) form factor (e.g., Xilinx

ZYNQ/VERSAL and Altera Cyclone V SoC families). Such systems can include several

processors, memories, and a set of physical links among them. By definition, the set

of processors in the same architecture is heterogeneous. This implies that it is

possible to exploit, at the same time, the following processing classes4:

• General-Purpose Processors (GPP): x86/x64, ARM, MicroBlaze, NiosII, Leon3,

etc.

• Application-Specific Processors (ASP): Digital Signal Processor (DSP),

Graphics Processing Unit (GPU), Network Processor (NP), Artificial Intelligence

Processor (AIP), etc.

• Single-Purpose Processors (SPP): AES encoder/decoder, JPEG

encoder/decoder, UART/SPI/I2C controllers, AI engines; in general, every ad-

hoc developed digital HW component (a.k.a. co-processors or accelerators).

4 Frank Vahid and Tony Givargis. 2001. Embedded System Design: A Unified Hardware/Software

Introduction. John Wiley & Sons, Inc.

https://github.com/apache/nuttx/commit/3afc83abc7887b0371a1a6501a056641c5f5ff3
https://github.com/apache/nuttx/commit/3afc83abc7887b0371a1a6501a056641c5f5ff3

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 47 of 74

Finally, such processors can be adopted in the form of soft, hard or fuse (i.e.,

hardwired) IP cores or as discrete integrated circuits (IC) mainly depending on the

final system form factor (i.e., on-chip, on-FPGA, on-board) and scope (complete

product or platform).

HPSs are often used to implement Dedicated Systems (DS). DSs are digital electronic

systems with an application-specific HW/SW architecture. They are specifically

designed to satisfy a priori known application requirements, both functional (F) and

not functional (NF). A DS could be then embedded in a more complex system and/or

it could be subjected to hard/soft real-time constraints. When DSs are based on HPS

they are called Dedicated Heterogeneous Parallel Systems (D-HPS).

Apart from possible differences in terminology and composition, for this kind of

systems one consideration is always true: they are so complex that the adopted

HW/SW Co-Design Methodology plays a major role in determining the success of a

product. Moreover, in order to cope with such a complexity, the selected methodology

should allow the designer to start working at the so-called Electronic System-Level

(ESL) of abstraction. This means to be able to start the design activities from an

executable model of the system behaviour based on a given Model of Computation

(MoC) that would be unifying for HW and SW, and that could be described by means

of a proper specification/modelling language. In fact, in the past years, a remarkable

number of research works have focused on the system-level HW/SW co-design of D-

HPS. In such works, the most critical issues have been always related to the System

Specification and Design Space Exploration activities. In the first activity, the

designer models the behaviour of the desired system (specifying also possible NF

requirements), the available basic HW components, and the target HW architecture.

The second activity is then related to the approach, automated or not, used to find

the best HW/SW partitioning and mapping for the final system implementation. The

main differences among the various approaches are related to the different amounts

of information and actions that are directly requested to the designer and that are so

heavily influenced by his/her experience. In particular, a lot of approaches explicitly

require as input the HW architecture to be considered for mapping purposes. Very

few others try to fully addresses the problem of both to “automatically suggest an

HW/SW partitioning of the system specification” and to “map the partitioned entities

onto an automatically defined heterogeneous parallel architecture”. In the context of

the latest category, during other ECSEL RIA projects (e.g., MegaM@RT2, AQUAS,

FITOPTIVIS, COMP4DRONES), it has been defined and improved a model-based ESL

HW/SW co-design methodology (and related prototypal toolchain), called

HEPSYCODE5, targeting heterogeneous parallel dedicated systems. HEPSYCODE

reference ESL HW/SW co-design flow is briefly described in the following, together

with a proposal about possible adaptation/integration opportunities of HEPSYCODE in

the context of the FRACTAL project.

5 http://www.hepsycode.com

http://www.hepsycode.com/

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 48 of 74

Figure 20 – The reference ESL HW/SW co-design flow

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 49 of 74

7.3.1 Reference ESL HW/SW Co-Design Flow

The HEPSYCODE ESL HW/SW co-design flow is shown in figure 20: it shows the main

co-design steps and the related items that are briefly described in the following

paragraphs. More details about the whole methodology can be found in 6,7,8,9.

7.3.1.1 System Behaviour Specification

The entry point of the reference co-design flow is the System Behaviour Specification

(SBS). It is composed of System Behaviour Model (SBM), Reference Inputs (RI), and

Non-Functional Constraints (NFC).

SBM represents the behaviour of the system to be implemented, i.e., the functional

requirements. It is based on a CSP-like (Concurrent Sequential Processes) MoC10,11

and described by means of the SystemC language12.

RI is a set of input-output tuple pairs, possibly timed, that represents the expected

outputs from the SBM when specific inputs are provided to it. RI is of critical

importance since it has to be as much as possible representative of the actual

operating conditions of the system (a.k.a. Golden Inputs).

NFC represents requirements related to aspects orthogonal to the behaviour. In fact,

they specify a set of constraints that have to be satisfied while still following a correct

behaviour. They are currently related to one or more of the following issues:

• Timing Performance Constraints

o Time-To-Completion constraint (TTC)

▪ Time allowed to complete the processing related to RI

6 L. Pomante. “System-level design space exploration for dedicated heterogeneous multi-processor

systems”. IEEE Int. Conf. on Application-specific Systems, Architectures and Processors, 2011.

7 L. Pomante, D. Sciuto, F. Salice, W. Fornaciari, C. Brandolese. Affinity-Driven System Design Exploration

for Heterogeneous Multiprocessor SoC. IEEE Transactions on Computers, vol. 55, no. 5, May 2006.

8 Pomante, L., Muttillo, V., Santic, M., Serri, P. SystemC-based electronic system-level design space

exploration environment for dedicated heterogeneous multi-processor systems. Microprocessors and

Microsystems, 72, 2020.

9 Ciambrone, D., Muttillo, V., Pomante, L., Valente, G. HEPSIM: An ESL HW/SW co-simulator/analysis tool

for heterogeneous parallel embedded systems, 2018. 7th Mediterranean Conference on Embedded

Computing, MECO 2018 - Including ECYPS 2018, Proceedings.

10 C.A.R. Hoare. Communicating sequential processes. Communications of the ACM, 21(8):666–676,

August 1978.

11 http://www.usingcsp.com

12 SystemC, http://www.accellera.org

http://www.usingcsp.com/
http://www.accellera.org/

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 50 of 74

o Time-To-Reaction (TRC)

▪ Time allowed to complete the processing related to specific

processes of the SBM

• Energy Consumption Constraints

o Energy-To-completion (ETC)

▪ Energy consumption allowed to complete the processing related

to RI

• Mixed-Criticality Constraints

o Isolation

▪ Do not map processes with different criticalities on the same

processor

o Isolation with hypervisor technologies (HPV)

▪ Do not map processes with different criticalities on the same

HPV-based SW partition

• Architectural Constraints

o Set of available processors and physical links

o Min and max number of available processors and physical links

instances

o Available area (for PCB/ASIC) or an equivalent metric for FPGA

o Reference template architecture

▪ HW

• Distributed/shared memory

• Homo/heterogeneous mono/multi-core processors

▪ SW

• Available (hyper)scheduling policies.

7.3.1.2 Technologies Library

In order to list and describe the basic HW elements available to automatically build

the final architecture, a proper Technologies Library (TL) provides a characterization

of available processors, memories and physical links. Such a library contains

information like processing classes (i.e. only GPP, DSP, and SPP), operating

frequencies, maximum load (for GPP and DSP classes), capacity (for SPP and

memories), max bandwidth (for physical links), relative cost (considering the cost

related to obtain a component and/or the effort needed to use it), and so on. Such

information is then exploited during the different steps of the co-design flow.

7.3.1.3 Functional Simulation

The first step of the proposed co-design flow is the Functional Simulation where SBM

is simulated to check its correctness with respect to RI. Such a simulation allows also

to consider timed inputs, i.e., there is a concept of simulated time, but it doesn’t

consider the time needed to execute computation and communication (i.e., 0

simulated time). If SBM is not correct (i.e., wrong outputs or critical conditions such

as deadlocks) it should be properly modified and simulated again. The early detection

of anomalous behaviours allows the designer to correct the specification avoiding a

late discovery of problems that could lead to time-consuming design loops.

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 51 of 74

7.3.1.4 Co-Analysis and Co-Estimation

This step aims at extracting as much as possible information about the system by

analysing the SBM while considering the provided TL. This step is composed of Co-

Analysis and Co-Estimation activities.

During Co-Analysis, SBM is analysed to evaluate three metrics: Affinity,

Communication and Concurrency. The first one represents how much a process is

suitable to be executed on a specific processor class (i.e., GPP, ASP, SPP). The second

one is the evaluation of the number of bits that the different processes pairs have

exchanged during the simulation. The third is related to how much concurrency has

been found during the simulation in the activities of processes and channels.

Co-Estimation provides a set of estimations about Timing, Energy, Size, Load and

Bandwidth. Timing is related to the estimation of the number of clock cycles needed,

by each processor in the TL, to execute each single statement composing the SBM

processes13. Energy is related to the estimation of the Joule consumed, by each

processor in the TL, to execute each single statement composing the SBM

processes14. Size represents the number of ROM/RAM bytes needed for SW

implementations and equivalent gates (or similar metrics for FPGA) for HW ones15.

Finally, by exploiting Timing data and considering the TTC constraint, it is also

possible to estimate the Load associated with the execution of the SBM processes

when mapped on a single instance of each processor in TL, and the Bandwidth needed

to the different processes to communicate while fulfilling the TTC constraint. The

extraction of these data from the SBM is an important step that allows, during the

following design space exploration, the identification of the number and type of

processors and physical links needed to satisfy the NFC.

7.3.1.5 Design Space Exploration

Finally, the reference co-design flow reaches the Design Space Exploration (DSE)

step that is constituted of two iterative activities: “HW/SW Partitioning, Architecture

Definition and Mapping”, and “Timing/Energy HW/SW Co-Simulation”. All the data

(i.e., metrics and estimations) extracted in the previous steps are then used to drive

the DSE by considering all the NFC. The “HW/SW Partitioning, Architecture Definition

and Mapping” activity is based on a genetic algorithm that allows exploring the design

space looking for feasible mapping/architecture items suitable to satisfy imposed

13 V. Muttillo, G. Valente, L. Pomante, V. Stoico, F. D’Antonio, and F. Salice, “CC4CS: an Off-the-Shelf

Unifying Statement-Level Performance Metric for HW/SW Technologies”, In Companion of the 2018

ACM/SPEC Int. Conf. on Performance Engineering (ICPE '18).

14 V. Muttillo, P. Giammatteo, V. Stoico, L. Pomante. An Early-Stage Statement-Level Metric for Energy

Characterization of Embedded Processors. Microprocessors and Microsystems, 2020.

15 Brandolese, C.; Fornaciari, W.; Salice, F. An area estimation methodology for FPGA based designs at

systemc-level. Design Automation Conference, 2004. Proceedings. 41st, 2004 Page(s):129 – 132).

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 52 of 74

constraints. Then, the “Timing/Energy HW/SW Co-Simulation” activity considers

suggested mapping/architecture items to actually check for Timing/Energy NFC

satisfaction. If the suggested mapping/architecture item does not meet such

constraints, the designer should perform again the DSE by changing some exploration

parameters, by modifying the starting SBM, by enriching the TL with new elements,

or by relaxing some constraints.

7.3.1.6 Algorithm-Level Flow

When the mapping/architecture item proposed by the DSE step is satisfactory, it is

possible to implement the system. For this, the SW-mapped processes are typically

transformed in C/C++ code, with the support of a possible embedded and/or real-

time OS, while the HW-mapped ones are transformed in synthesizable HDL code or

implemented by means of existing COTS component depending on the final system

form factor. It is worth noting that such transformations are done automatically or

manually depending on the language and the coding style adopted to describe the

SBM. This step is fully based on existing commercial algorithm-level methodologies

and tools.

7.3.2 HEPSYCODE in the FRACTAL project

Given the ever-increasing opportunities provided by the advancement in the HW/SW

technologies, there is a strong need for ESL methodologies and tools able to keep as

much as possible smaller the design-productivity gap in the field of HW/SW dedicated

systems. According to this scenario, the HEPSYCODE methodology, briefly described

in the previous sub-section, has been customized to consider some of the platform

related to FRACTAL (i.e., ZYNQ Ultrascale+ and VERSAL) and exploited to support

UC6 development. As detailed below, the customization and the analysis performed

during UC6 development are the most relevant contributions.

In order to early support the FRACTAL designer during the mapping of a set of

functionalities on UC6 FRACTAL node, and during the related FRACTAL node

customization, the following ESL activities have been performed:

• ESL modelling of the Totem Node behaviour (SBM), by considering as RI the

ideal scenario described in D8.2 (sec. 5.2.2). Such a modelling has been done

by referring to a CSP-like MoC and by using the SystemC modelling language.

• Analysis of UC6 requirements (see D8.2 – sec. 5.1) to identify the NFCs

relevant for the HEPSYCODE methodology. In particular, REQ_UC6_26 has

been considered to set TRC = 1 sec as the maximum time that shall elapse

from the moment a user is in front of a Totem and the moment the Totem

start to be reactive in a tailored way.

• Enrichment of the TL to consider specific ZYNQ Ultrascale+ and VERSAL

components: ARM core (GPP), Xilinx DPU (ASP), and FPGA (SPP).

• Timing HW/SW co-estimations, related to the added TL components, in order

to annotate the SBM with information about timing performances of different

“SBM to components” mappings.

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 53 of 74

• Timing HW/SW Co-Simulations to verify which mapping/architecture items are

suitable to implement SBM while satisfying TRC. It is worth noting that, since

the Architectural Constraints impose the use of a predefined SoC, the DSE has

been limited to co-simulation issues.

As main results, by considering the Data Flow Diagram (DFD) shown in figure 21

(adapted from the one in D8.2- sec. 5.2.3 and used to create the SBM), it has been

possible to early verify that the mapping shown in figure 22 (i.e., the one finally

selected for UC6, see D8.2 - sec. 5.2.1) is able to satisfy TRC.

Figure 21 – Totem Node DFD

Figure 22 – Totem Node Architecture and Mapping

Moreover, it has been also possible to verify that, by offloading additional instances

of GC and AE to available nodes in the surrounding, it would be possible also to

manage more complex scenarios (e.g., multiple persons in front of the same camera,

multi-touchscreen totem) by still satisfying TRC.

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 54 of 74

Summarizing, by exploiting an ESL approach, combined with timing estimations

related to single components, it has been possible to early verify timing performances

of several mappings, finally identifying the most suitable ones without the need to

completely perform time consuming integration activities at lower levels of

abstraction. Finally, as a more general result, the HEPSYCODE methodology has been

customized to consider some of the platforms related to FRACTAL and so it could be

potentially exploited to support other UCs and the whole FRACTAL approach.

7.4 Methodologies for VERSAL platform

The heterogenous nature of the Versal ACAP devices resemble one readily available

example of a platform to scale the FRACTAL nodes as described in the earlier

chapters. The capabilities support the features to implement components way into

the AI techniques required for Video analysis as presented in chapter 5. Even the

orchestration and separation methods required for the safety and reliability

requirements, chapter 6, are available to add to the node design.

To cater consistent integration of components on the different processing elements,

the AMD-Xilinx Vitis toolchain is deployed. This is not a monolithic approach to deliver

a closed node artifact but instead lends to a modularity that is beneficial for the use

cases’ requirement-driven selection of actually used features from the catalogue. Part

of the integration work within FRACTAL also provides increased visibility into the

toolchain applicability and best practices to enable efficient work on the Versal

platform.

Versal ACAP based designs are based on this design flow to define the hardware

features as well as the software ecosystem for the heterogenous processing system.

These tools provide for basic platform creation as well as accelerator-based design

and the application on either bare metal or OS support packages.

While the efficient design creation is typically ramped through authorized training

partners of AMD-Xilinx, there are substantial tutorials available from

https://github.com/Xilinx to get an overview of the basic design steps.

For most part the FRACTAL designs utilize the VCK190 development kit to derive the

components or apply required use case integration steps. Along WP3 a base platform

component has been derived where a FRACTAL node should be based on. The use

case specific features and requirements yield a further selection of components, that

require additional integration of hardware and / or software components. The tools

are available to cover these integration steps, also along the Application Acceleration

Development (UG139316). The typical steps are shown here:

16 https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/Building-and-Packaging-the-
System

https://github.com/Xilinx
https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/Building-and-Packaging-the-System
https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/Building-and-Packaging-the-System

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 55 of 74

Figure 23 – Basic platform design flow

Extend the basic static platform: to cater for design specific elements, like support

for proprietary FMC cards, an existing platform can be extended by re-inserting it

into the Vivado flow to add to or adapt the initial bit stream. Some of the components

of the technical work packages use this methodology to encapsulate the contribution.

Specifically additions for safety setups or additional separation between the

heterogenous cores are benefitting from this approach.

Extend the design with accelerators: the basic provided platform allows for

software defined extensions that manifest as hardware kernels. Such approaches are

highly adaptable for fast design turn around and dynamic workload support. Typically

the components for pre- and post-processing of AI workloads utilize this design

methodology, where the respective kernels are often implemented by high level

synthesis (HLS).

Integrate software and drivers: The Vitis toolchain allows for development of

setup or control flow software directly within the same workspace as the hardware

development described above. The components that are using this flow target any of

the heterogenous processor cores or even full OS- based application.

While the higher level software components for use case applications running on the

FRACTAL node microservice based framework are supported within these IDE

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 56 of 74

workspaces, such software development is also available from the PetaLinux17 tools,

and any build system of own definition can be used.

7.5 Methodologies for PULP platform

The Parallel Ultra Low Power (PULP) platform is a RISC-V based open-source platform

for energy efficient computing. While there are multiple PULP systems with different

capabilities, within the FRACTAL project the reference PULP system is the PULPissimo

system available under:

https://github.com/pulp-platform/pulpissimo

The platform is fairly mature and has been used as part of various ASIC tape-outs so

far and comes with FPGA images for popular XILINX boards such as the Genesys II,

allowing partners to hit the ground running. As part of FRACTAL, the goal was to

improve and adapt this basis system for several use cases with additional capabilities

developed by FRACTAL partners as part of technical developments WP4, 5 and 6.

Figure 24 – PULPissimo block diagram

Specific improvements to the PULP platform supported through the involvement in

FRACTAL have been:

17 https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842250/PetaLinux

https://github.com/pulp-platform/pulpissimo
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842250/PetaLinux

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 57 of 74

• The ISA extensions for low-precision training on RISC-V cores. These include

8- and 16-bit floating point units that can perform dot product operations and

accumulate on 16- and 32-bit registers.

• On-demand grouping of RISC-V cores in many-core architectures to improve

reliability. This way a three-core system can either operate in high-

performance mode where each core contributes to computation, or the three

can be grouped together to work as a triple redundant mode.

• Adding specialized ML accelerators optimized for temporal convolutional

networks quantized to ternary values to be used as part of a dynamic vision

sensor.

• Developing systematic fixes to timing-channels in our processor cores, which

introduces a fence.t instruction.

• Working on fine-grained power gating techniques to reduce the leakage power

of many-core architectures.

In addition to these specific contributions, there were many improvements and fixes

in the open-source repositories improving the general quality and availability of the

PULP platform for all partners.

From the onset, the positioning of the PULP platform has been complimentary to the

XILINX Versal platform. While Versal is addressing high performance, industrial

maturity and established processor cores, for FRACTAL, PULP was designed to

address low power IoT operation, with a flexible and open architecture allowing

partners to easily integrate changes to the platform using an open-source ISA.

The training videos and material available on the PULP platform site under:

https://pulp-platform.org/pulp_training.html

For example, the following (3.5h) training video explains the design and features of

PULPissimo:

https://www.youtube.com/watch?v=27tndT6cBH0

There are several different ways in how changes to PULPissimo as part of

developments in FRACTAL have been implemented:

• Adapting software to be compatible with PULPissimo. In addition to

FreeRTOS and seL4 there have been successful ports of various other

operating systems and libraries. PULP based systems rely on standard

GCC/LLVM based SW development flow and also include a custom software

development kit. The following tutorial explains the PULP software

development kit:

https://youtu.be/Ydd9TlKQiO4

• Adding accelerators and peripherals to the PULPissimo system to enhance

its hardware capabilities. In addition to standardized AXI/APB compatible

peripherals, PULPissimo also supports accelerators that can access a shared

scratchpad memory with the RISC-V processor greatly reducing the overhead

https://pulp-platform.org/pulp_training.html
https://www.youtube.com/watch?v=27tndT6cBH0
https://youtu.be/Ydd9TlKQiO4

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 58 of 74

of data transfers. The following tutorial is on the HW/SW co-development

needed for such modifications:

https://youtu.be/B7BtaYh3VqI

• Adding instruction set extensions to the RISC-V core in the system, which

could improve the performance of the system significantly. RISC-V has a very

clear methodology for such extensions, and ETH Zurich has significant

experience with them. In fact, the default processor core in PULPissimo

(RI5CY/CV32E40P) has already many extensions for digital signal processing.

However, SW tools must be made aware of these modifications, so that code

can be generated that maps to these additional instructions.

Some FRACTAL partners have utilized sophisticated systems from the PULP platform

like the HERO (heterogeneous Research Platform) or the 64-bit Ariane/CVA6 system

with Linux support. ETH Zürich has guided partners that want to explore these

options, but has concentrated its main effort around the PULPissimo.

The flexibility offered by the platform and the experience of ETH Zurich on actual

ASIC implementations of the platform has helped partners to assess the cost and

benefit of various improvements and changes that are explored throughout FRACTAL.

Such evaluations has provided value for partners even in cases where a direct use

case implementation was not feasible due to technical reasons.

7.6 Methodologies for hardware accelerators

Naturally, Deep Neural Networks (DNN) perform many computations on a huge

amount of input data for generation of the outcome. The use of classic general-

purpose computer designs has been shown to be not very efficient for execution of

such networks due to the sequential concept of computation that these architectures

apply. Therefore, building a specialized hardware that provides better performance

and is energy efficient is required.

However, DNNs are a central part of machine learning which means they must be

trained before they infer. During the training phase the DNN’s parameters (weights

and bias) are derived. As a process training is much more complex than inference,

where inference computes the outputs based on the previously trained weights and

biases. Since training of DNN is a onetime process and requires much more

computation power it can be performed on high performance machines that have no

restriction on energy consumption. On the other hand, inference is usually applied

on many devices located near the sensors and runs repeatedly with different input

data patterns. Thus, specialized hardware needs to be customized for inference

execution to satisfy performance requirements and energy efficiency goals.

The following subsections describe the methodology used for building and evaluation

of the hardware accelerators in FRACTAL project. After listing the main components

required for building of the hardware accelerator, the metrics that need to be

observed for evaluation and optimization of the performance are described. All these

https://youtu.be/B7BtaYh3VqI

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 59 of 74

steps are performed with the help of Catapult High-Level Synthesis tool, which

enables the hardware designer to evaluate performance parameters at an earlier

stage of the design before generating the hardware implementation details. The tool

itself has integrated features that makes the performance evaluation a

straightforward process. Once the design satisfies the performance requirements

defined in the project the High-Level Synthesis tool automatically generates the

implementation outcome which can be for ASIC or FPGA technology.

7.6.1 Hardware Accelerator Architecture for Deep Neural Network

DNN accelerators typically consist of an array of processing elements (PE) and

memory blocks interconnected by a Network on Chip (NoC). The PEs are simple

Multiply-Accumulate (MAC) units capable to perform multiplication of inputs and

weights and add the resulting products to the partial sum.

Memory of hardware accelerators are organized hierarchically consisted of register

files (RF), global buffers, and main memory. RFs are the smallest and fastest memory

units located on PEs. They hold data immediately available to the MAC unit. The type

of data stored in RF can be weights (weight stationary), partial sums (output

stationary), or a combination of both types (row stationary). Which type of data is

located on RF depends on the data flow model in use. There are hardware

accelerators as well without RFs (no local reuses) in case the size of the chip area is

critical. A global buffer is an intermediate memory layer located on-chip to hold

fragments of the weights and inputs. Its location and size enable a global buffer to

respond faster and efficiently when its content is reused by PEs. The last layer is the

main memory, usually in form of off-chip DRAM memory, that holds all weights and

input data.

Hardware accelerators for DNN can either be implemented on Field Programmable

Gate Arrays (FPGA) or as Application Specific Integrated Circuits (ASIC). FPGAs are

used for development of prototypes since the design for such technology is simple

and the time to develop the product is shorter. On the other hand, ASICs can be

optimized for much more parameters, have lower energy consumption and better

computation performance. However, for ASIC technology the production costs are

much higher combined with longer development cycles compare to FPGA solution.

7.6.2 Metrics for building optimized HW accelerator

To build an efficient hardware accelerator for DNN it is important to take into

consideration a set of metrics that are key for achieving an optimal solution. Mainly

the efficiency of the accelerator is associated with the number of operations per Watt,

but this metric is a composition of accuracy, throughput, latency, energy

consumption, cost, flexibility, and scalability18. Accuracy indicates the quality of

18 Vivienne Sze et al. „Efficient processing of deep neural Networks: A Tutorial and Survey” – Proceeding
of the IEEE, Vol:105, Issue: 12, Dec 2017

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 60 of 74

inference outcome and should be high enough to perform correct classification. The

accelerator should have capability to process enough data in a given period of time

so its throughput can achieve real-time performance. Also, the time between input

and output should be short if it is required to have low latency. When an accelerator

is used within an edge device the power consumption and energy efficiency must be

taken into consideration during design phase to ensure that the accelerator operates

within the boundaries of the power envelope. It has been observed that frequent

access to the main memory for data read/write is one of the main sources of energy

consumption and compared to the demand of the various arithmetic operation

performed in the accelerator it is few magnitudes higher. Cost is constrained by the

required hardware volume and the size of the market. Obviously, it is important the

designed hardware accelerator is attractive from a financial point of view. If the

accelerator is more generic, it can execute a wider variety of different inference tasks,

a feature which makes the accelerator more flexible. The last metric, scalability,

refers to how well the accelerator can adopt from perspective of throughput and

energy consumption when its number of components increases. Thorough upfront

evaluation of all the mentioned metrics allows the hardware designer to evaluate if

the accelerator is a beneficial and viable solution for a given application.

7.6.3 High Level Synthesis to build HW accelerator

Nowadays, hardware design processes have become quite complex and sometimes

manual coding is even impossible due to increased complexity of the needed

hardware solution. High-level synthesis (HLS) aims to generate synthesizable

register transfer level (RTL) implementation of the hardware derived from its high-

level specification. Its goal is to automate all the intermediated processes performed

between specification of the hardware and the RTL level. The approach raises the

level of abstraction on functional and implementation details and thus eliminates all

the steps that were performed manually in the past. The whole concept is like the

approach of compiling high-level code into assembler one. HLS also makes the

verification process faster compared to the time required to perform the same

process on Register Transfer Level (RTL), which sometime can take so long that the

process itself becomes impractical. By elimination of the manual steps and reduction

of the verification time HLS brings a lot of benefits:

• The automated generation of RTL implementation is less prone to errors due

to the predefined rules applied for its generation.

• Well-designed automation tool can generate RTL that outperforms in quality

compared to human design RTL level.

• Gives hardware designer more time to spend on design space exploration

rather than on implementation.

• HLS simulation runtime is few times faster than RTL simulation runtime.

• HLS makes the design platform independent by enabling its implementation

on a wide range of platforms.

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 61 of 74

The process of generating the RTL hardware description from its specification is a

multi-level task19 as shown in figure 25. The process starts with describing the desired

functionality of the hardware in a high-level language. The HLS tool takes the input,

compiles it and generates a formal model. This model is then converted into a

structured network of components (functional units, memories, controllers, and

interfaces). During this stage the HLS firstly allocates the resources that are needed

for computation. Next, the HLS schedules the execution order of derived operations.

Thirdly, it binds the allocated resources to the corresponding operations derived from

the formal model. These three tasks are interrelated and for optimal results they

should be done in conjunction. The output is an RTL description of the hardware

consisted of control and data path. It is important that HLS takes as input untimed

high-level hardware description and transforms it into a fully timed hardware

implementation.

The most popular languages used in HLS tools for functional description are SystemC

and C/C++. The resulting RTL description is generated in form of popular Hardware

Description Languages (HDL) like VHDL or VERILOG. However, not all C/C++ code

structures can be converted into an HDL. Usually, non-synthesizable segments of the

code are sections used for system calls, input/output structures, and pointers.

Therefore, it is required from the implementer to distinguish between code structures

that can and cannot be synthetized.

19 Philippe Coussy et al. “An Introduction to High-Level Synthesis” – IEEE Design & Test Computers, 2009

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 62 of 74

Figure 25 – HLS design flow

Mainly, HLS generates the HDL based on a set of predefined transformation rules.

However, these rules can be overruled with pragmas within the source code if a better

outcome can be produced. The usual techniques used in HLS design for performance

improvement of the hardware are pipelining, unrolling, and in-lining20. Pipelining

enables parallel execution within the loop, unrolling generates more processing

elements in parallel, while in-lining removes the hierarchy. All these techniques can

be implemented in form of pragmas or within the HLS tool.

7.7 Integration of Speech-based Signal Processing

algorithms

The number of connected devices has increased rapidly. The Internet of Things (IoT)

framework and the diffusion of related enabling technologies, such as Device-to-

Device (D2D) communications, cloud and edge computing and big data analysis have

strongly improved the feasibility of connecting and communicating through many

mobile nodes, often in non-ideal environmental conditions. Moreover, the importance

of audio speech processing is demonstrated by the use of this type of approach in a

20 Adam Taylor “Porting Vivado HLS design to Catapult HLS Platform” – White paper

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 63 of 74

wide variety of commercial applications. This growing interest in speech and speaker

recognition is witnessed by the widespread use of applications, such as speaker

verification and authentication procedures, gender recognition and language

recognition.

Other common applications of speech processing techniques lie in the range of

accessibility solutions: the most remarkable examples of this kind are the speech-to-

text and text-to-speech functionalities. Moreover, in numerous practical cases a

speaker talks in an environment in which many smart devices (e.g., mobile phones)

are present, for example during a seminar presentation, a conference call, or during

a lecture in a classroom.

For this reason, within the FRACTAL project, understanding audio context represents

an important tool that can be extremely useful in several realistic scenarios. As the

quality of audio signals is deeply influenced by the environmental conditions, an

exhaustive study of the performances of the most common speech processing

techniques in variable noise conditions and at different source-receiver distances is

required. For this reason, many literature works address the issue of speech

processing in challenging environmental conditions, proposing noise robust audio

processing techniques, able to provide good performances even if noise is corrupting

the audio signal.

Our contribution within the FRACTAL project is to provide a useful tool for idiom

recognition, in order to support the user in common use case applications. For

instance, a totem node supporting users in public places could be used by people of

different nationalities, and therefore a custom-tailored response to the user based on

his/her native language would be beneficial for user experience and tool usability.

Many techniques have been used to tackle the language recognition problem, among

which the most widely used is certainly hotword-based recognition. This method is

rather quick, matching the strict constraints of almost real-time applications, and

also very effective in terms of system accuracy. The rationale is to collect a speech

utterance, remove unnecessary silence and noise, and study the correlation in terms

of signal features and characteristics, in order to match a pre-defined template signal.

Such signal will be related to a specific language, thus allowing the system to interact

with the user and select proper content based on the processing outcome.

The main purpose of speech-based signal processing algorithms is to analyse audio

signals and correlate them with a set of hotwords matching different languages. In

this way a user speaking in his/her native language will be able to interact with smart

systems in a transparent and easy way.

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 64 of 74

8 Security Risk Management Methodology

This chapter is a summary of deliverables D4.1, sections 4.5.2 and 4.5.3, and D4.5,

sections 4.4, 4.5, and 4.6. The methodology described in this section is the one that

has been followed for the development of the risk analysis that is explained in chapter

6 of deliverable D4.5 and for the development of the WP4T44-02 OS Security Layer

component.

For more information, check the sections referred above.

8.1 Introduction to security in embedded systems

The use of embedded systems for industrial applications in Industry 4.0 has grown

in complexity, including increased connectivity for remote monitoring and

management. However, this increased connectivity also poses a greater risk of

attacks and intrusions, making it necessary to develop safe and reliable systems.

Historically, embedded systems have focused on functionality and efficiency rather

than security, leaving them vulnerable to attacks. The industry is responding by

implementing the IEC 62443 standard, which sets requirements for the development

life cycle of these systems and defines safe product development processes. During

the design phase, security requirements must be established for later implementation

and systems must be tested for cybersecurity. The IEC 62443-4 standard must be

considered and used as a precedent for analysing system security requirements.

8.2 Background on IEC 62443

The IEC 62443 international series is the standard to consider when it comes to

industrial cybersecurity, as it defines the development of secure industrial control

systems. Developed by the International Electronic Commission, it is a precursor to

the ISA99 standard of the International Society of Automation.

It is structured in several documents which are classified in four main groups:

• IEC 62443-1: General concepts, which presents the main concepts, terms and

acronyms related to cybersecurity in an industrial environment.

• IEC 62443-2: Policies and procedures, which describes how security should be

managed within an organization and the requirements that security management

systems must meet.

• IEC 62443-3: Organization and distribution, which explains how a plant should

be divided into zones with different levels of security, and their requirements and

security systems. Four security levels are established, SL1, SL2, SL3 and SL4,

which are applied according to the use to which the product is intended and define

the cybersecurity functions implemented that make it more resistant to threats.

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 65 of 74

o IEC 62443-3-2 establishes the procedure to determine the zones, conduits,

and risk assessment requirements. It defines five steps and the fifth one is to

perform a detailed cyber security risk assessment process. For that, it

proposes some possible risk assessment methodology, such as the ISO 27005

which is the most common for cybersecurity applications.

o IEC 62443-3-3: Establishes the security requirements for the system's

architecture, design, and management, including the definition of the

system's security zone and its relationship with other systems.

• IEC 62443-4: Component development, which establishes the specifications that

must be included in the components of the cybersecurity industry, and the

development life cycle that must be followed to develop these components.

o IEC 62443-4-1: Product development requirements, which defines the

cybersecurity development life cycle that new industrial control systems must

follow, although they can also be applied to existing systems.

o IEC 62443-4-2: Security Requirements, which establishes the seven

requirements that a cybersecure industrial control system must have.

Depending on the security level that a component has, certain requirements

must be met, where the highest level is the one that must meet all of them.

8.3 Risk Management Methodology (ISO 27005)

According to IEC 62443 establishes that any detailed risk assessment methodology

can be followed as long as the selected methodology satisfies the risk assessment

requirements such us the ISO/IEC 27005, which It is a systematic establishment,

assessment and treatment process of all risks associated and/or related to a given

scenario or purpose.

The Risk Management process is divided in different stages, those are Context

Establishment, Risk Assessment and Risk Treatment.

Context Establishment is needed to determine the environment and conditions in

which the risk assessment takes place.

The STRIDE thread modelling is one widely used approach for identifying potential

threats in the context establishment stage. This method involves considering six

types of threats: Spoofing, Tampering, Repudiation, Information disclosure, Denial

of service, and Elevation of privilege.

Risk assessment process plays an important role in the cybersecurity management

processes, since the identification and qualification of the security threats and risks

is essential when it comes to the protection of assets. This task and responsibility

shall be jointly addressed by all actors/entities involved in the cybersecurity

management process of the system under consideration. For this purpose, three main

activities are performed, Risk identification, Risk Estimation and Risk Evaluation.

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 66 of 74

From the risk assessment results, a risk treatment is generated. Risk Treatment is

the process of selecting and implementing of measures to modify risk. Risk treatment

measures can include avoiding, optimizing, transferring, or retaining risk21. It is a

good part of the cybersecurity requirements to be met / developed in the product.

8.4 STRIDE

The STRIDE methodology is a tool created by Microsoft to identify potential threats

related to computer security. It includes consideration of six types of threats

represented by the acronym, Spoofing, Tampering, Repudiation, Information

disclosure, Denial of service, and Elevation of privilege. Each letter represents a

different type of threat that can be used to identify potential vulnerabilities in a

system. In addition to these, the methodology also includes consideration of five

other elements, External Entities, Process, Data flow and Data Store.

External entities are actors or systems that interact with the system under

consideration, such as users or other systems. Process represents the actions or

activities that take place within the system, such as data processing and decision

making. Data flow refers to the movement of data within the system, including input,

output, and storage. Data Store represents the locations where data is stored and

managed within the system, such as databases or file systems. Trust boundary refers

to the point at which the system trusts the identity or actions of external entities and

allows them access to resources or information.

The goal of using the STRIDE methodology is to identify all potential threats and

vulnerabilities in a system, by considering these six types of threats and five

elements. Once identified, appropriate countermeasures can be put in place to

mitigate the risk of a successful attack. This can include implementing security

controls, such as firewalls, intrusion detection systems, and encryption, as well as

developing security policies and procedures to help prevent and respond to potential

attacks.

8.5 Application of the methodology in the FRACTAL node

The methodology described has been applied in the development of the WP4T44-02

OS Security Layer component. This component implements the necessary security

measures to protect the FRACTAL node and has been the result of the risk assessment

process.

Firstly, the different use cases in which one or several FRACTAL nodes are applied

have been analysed and a set of assets have been obtained. From these assets, a

risk analysis has been carried out. These assets have then been analysed following

21 https://www.enisa.europa.eu/topics/threat-risk-management/risk-management/current-risk/risk-
management-inventory/rm-process/risk-treatment

https://www.enisa.europa.eu/topics/threat-risk-management/risk-management/current-risk/risk-management-inventory/rm-process/risk-treatment
https://www.enisa.europa.eu/topics/threat-risk-management/risk-management/current-risk/risk-management-inventory/rm-process/risk-treatment

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 67 of 74

the STRIDE methodology, resulting in a series of security countermeasures. These

countermeasures have been implemented in a Yocto customization layer.

This entire risk analysis process is described in detail in chapter 6 of Deliverable D4.5.

In summary, the ISO 270005 methodology and the STRIDE process have been used

to develop the WP4T44-02 OS Security Layer component. Likewise, this component

is used on UC5. The applications, assets and risk analysis have been thoroughly

described in the deliverable, ensuring that the necessary security measures are in

place to protect the FRACTAL node.

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 68 of 74

9 Conclusions

In this deliverable, first, we have introduced the workflow of the project from

capturing requirements to FRACTAL features definition and product composition.

Then we introduced the methodology and workflow for AI and Safe Autonomous

decisions, from different perspectives, starting from the framework to the services,

libraries, strategies and algorithms.

This methodological framework also relates to the safety aspects to be considered in

FRACTAL nodes, that can be addressed by a series of different safety standards

depending on the target applications. Apart of the diversity of application specific

standards to be considered we also have considered safety communications, safety

aspects of Artificial Intelligence and how the building block approach can fit into the

FRACTAL framework.

Integration aspects have also been considered. For this purpose, the methods that

are used to integrate the use cases into the FRACTAL platforms have been introduced.

First the operational integration was explained with an example use case, from the

selection of features to the selection of components and how the building process

would be done. Then, the SW integration on the HW platforms, considering several

aspects for each specific HW.

Finally, an overview about the Risk Management Methodology that has been followed

for the development of the risk analysis in WP4 is presented. where the need to

develop secure and reliable systems is considered. In addition, the most important

standards to be considered in these developments are presented.

 A general methodology for FRACTAL system development has been presented here

and has been used throughout the FRACTAL project. We described the overall

workflow of the project with a focus on the identification of the key enabling

technologies, the task of this deliverable, based on the use case descriptions.

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 69 of 74

10 List of Figures

Figure 1 – Requirements workflow in FRACTAL project 10

Figure 2 – FRACTAL High Level Features .. 11

Figure 3 – FRACTAL Adaptability partial subtree ... 13

Figure 4 – FRACTAL products composition workflow .. 14

Figure 5 – FRACTAL production plan ... 15

Figure 6 – Functioning of the online training for the FRACTAL node 17

Figure 7 – Object detection example using CNN approach 20

Figure 8 – FRACTAL cognitive agent and the corresponding node architecture. 22

Figure 9 – Agent components and APIs. Active component shown in blue. 22

Figure 10 – Hierarchical component transfer framework. 23

Figure 11 – Federated leaning in a FRACTAL system. .. 23

Figure 12 – Distributed decision-making in a FRACTAL system. 24

Figure 13 – Development stages of LEDEL in FRACTAL 25

Figure 14 – Overview of FRACTAL framework needed for Automotive implementation

 .. 27

Figure 15 – Image classification with explanations, an example in the context of DR

detection ... 29

Figure 16 – End-to-end learning for hyper-parameters optimization, and example in

the context of DR detection. .. 29

Figure 17 – Schematic of the SW-only lightweight lock-step. 31

Figure 18 – Sample bill of features.. 41

Figure 19 – Sample FRACTAL construction process for Versal 42

Figure 20 – The reference ESL HW/SW co-design flow 48

Figure 21 – Totem Node DFD ... 53

Figure 22 – Totem Node Architecture and Mapping ... 53

Figure 23 – Basic platform design flow .. 55

Figure 24 – PULPissimo block diagram ... 56

Figure 25 – HLS design flow ... 62

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 70 of 74

11 List of Tables

Table 1 – Document history .. 6

Table 2 – Selecting Components from FRACTAL Features 42

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 71 of 74

12 List of Abbreviations

ACAP Adaptive Compute Acceleration Platform (relates to VERSAL)

ACE AXI Coherency Extensions

AES Advanced Encryption Standard

AHB Advanced High-performance Bus

AI Artificial Intelligence

AIP Artificial Intelligence Processor

AMBA Advanced Microcontroller Bus Architecture

AMP Asymmetric Multi-Processing

APB Advanced Peripheral Bus

API Application Programming Interface

ASIC Application Specific Integrated Circuits

ASIL Automotive Safety Integrity Level

ASP Application-Specific Processors

AXI Advanced eXtensible Interface

BIST Built-In Self Test

BPF Band Pass Filter

CCF Common Cause Failure

CLAHE Contrast Limited Adaptive Histogram Equalization

CNN Convolutional Neural Network

COTS Component Off The Shelf

CPS Cyber Physical System

CPU Control Processing Unit

CSP Concurrent Sequential Processes

DFD Data Flow Diagram

DL Deep Learning

DMA Direct Memory Access

DNN Deep Neural Network

DR Diabetic Retinopathy

DRAM Dynamic Random Access Memory

DoA Description of Action

DS Dedicated Systems

DSE Design Space Exploration

DSP Digital Signal Processor

DT Decision Tree

ECC Error Correction Code

EDDL European Distributed Deep Learning Library

ERI Energy Ratio Index

ESL Electronic System Level

ETC Energy-To-completion

EU European Union

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 72 of 74

FIT Failure In Time

FMC FPGA Mezzanine Card

FODA Feature-Oriented Domain Analysis

FPGA Field Programmable Gate Arrays

GAN Generative Adversarial Network

GCC GNU C Compiler

GPP General-Purpose Processor

GPU Graphics Processing Unit

HD High Definition

HDL Hardware Description Language

HEPSYCODE HW/SW CO-DEsign of HEterogeneous Parallel dedicated SYstems

HERO Heterogeneous Research Platform

HLS High-level synthesis

HPC High Performance Computing

HPS Heterogeneous Parallel Systems

HPV Hypervisor technologies

HW Hardware

IC Instruction Count or Integrated Circuit (context dependent)

IDE Integrated Development Environment

IEC International Electrotechnical Commission

IO Input/Output

IoT Internet of Things

IP Intellectual Property

ISA Instruction Set Architecture

ISO International Organization for Standardization

JPEG Joint Picture Action Group

JU Joint Undertaking

KET Key Enabling Technology

LEDEL Low Energy DEep Learning Library

LIME Local Interpretable Model-Agnostic Explanations

LLVM Low Level Virtual Machine (compiler)

LR Logistic Regression

MAC Multiply-Accumulate

MFCC Mel-Frequency Cepstral Coefficients

ML Machine Learning

MLI Maximum Likelihood Index

MLP Multilayer Perceptron

MMU Memory Management Unit

MoC Model of Computation

MPSoC Multi Processor SoC

NF Non-Functional

NFC Non-Functional Constraints

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 73 of 74

NoC Network on Chip

NN Neural Network

NP Network Processor

NPI NoC Programming Interface

OAA One Against All

OAO One Against One

ONNX Open Neural Network eXchange

OS Operating System

PCB Printed Circuit Board

PE Processing Element

PM Probability Matrix

PULP Parallel Ultra Low Power

QM Quality Management

QoS Quality of Service

R&D Research & Development

RAM Random Access Memory

REQ Requirement

RF Register File

RI Reference Inputs

RIA Research and Innovation Actions

RISC Reduced Instruction Set Computer

ROM Read-Only Memory

RTL Register Transfer Level

RTOS Real Time Operating System

SBM System Behaviour Model

SBS System Behaviour Specification

SECDED Single Error Correction Double Error Detection

SFI Spectrum Flatness Index

SMP Symmetric Multi-Processing

SoC System-on-Chip

SOTIF Safety of Intended Functionality

SPI Synchronous Peripheral Interface

SPL Software Product Line

SPP Single-Purpose Processors

SSD Single Shot Detector

STRIDE Spoofing, Tampering, Repudiation, Information Disclosure, Denial of

Service (DoS), and Elevation of Privilege

SU Statistics Unit

SVM Support Vector Machine

SW Software

TL Technologies Library

TRC Time-To-Reaction

TTC Time-To-Completion constraint

Project FRACTAL

Title Methodological Framework (b)

Del. Code D2.4

 Copyright © 2023 FRACTAL Project Consortium 74 of 74

TTNoC Time Triggered NoC

UART Universal Asynchronous Receive/Transmit

UC Use case

V&V Verification and Validation

VAD Voice Activity Detection

VCA Video Content Analysis

VHDL Very High Speed Integrated Circuit Hardware Description Language

WP Work Package

XAI Explainable AI

YOLO You Only Look Once

The short names of FRACTAL partners are not considered as abbreviations: ACP,

AITEK, AVL, BEE, BSC, CAF, ETH, HALTIAN, IKER, LKS, MODIS, OFFC, PLC2,

PROINTEC, QUA, ROT, RULEX, SIEG, SIEM, SML, THA, UNIGE, UNIMORE, UNIVAQ,

UOULU, UPV, VIF, ZYLK.

	1 History
	2 Summary
	3 Introduction
	4 Workflow of the project
	4.1 Capturing Requirements
	4.2 FRACTAL Features
	4.3 FRACTAL Product Composition

	5 Methodology and workflow for AI and safe autonomous decision
	5.1 AI and autonomous decision framework
	5.1.1 Video analysis
	5.1.2 Supervised and unsupervised learning

	5.2 Distributed AI and the AI services in the middleware
	5.3 Use of LEDEL
	5.4 Advanced control strategies in the automotive domain
	5.5 Image classification

	6 Measures and strategies for safety design
	6.1 Diverse redundancy
	6.2 Management of timing interference
	6.3 Reliable communication
	6.4 Artificial intelligence
	6.5 Time-triggered NoC
	6.5.1 Adaptability techniques for Time-Triggered NoC

	7 Methods for the integration on FRACTAL platforms
	7.1 Operational integration
	7.2 SW integration (PULP, VERSAL), RTOS for PULP
	7.2.1 Posix compatible RTOS integration to the PULP
	7.2.2 Asymmetric Linux-RTOS multiprocessing to the FRACTAL project

	7.3 Electronic System-Level HW/SW co-design
	7.3.1 Reference ESL HW/SW Co-Design Flow
	7.3.1.1 System Behaviour Specification
	7.3.1.2 Technologies Library
	7.3.1.3 Functional Simulation
	7.3.1.4 Co-Analysis and Co-Estimation
	7.3.1.5 Design Space Exploration
	7.3.1.6 Algorithm-Level Flow

	7.3.2 HEPSYCODE in the FRACTAL project

	7.4 Methodologies for VERSAL platform
	7.5 Methodologies for PULP platform
	7.6 Methodologies for hardware accelerators
	7.6.1 Hardware Accelerator Architecture for Deep Neural Network
	7.6.2 Metrics for building optimized HW accelerator
	7.6.3 High Level Synthesis to build HW accelerator

	7.7 Integration of Speech-based Signal Processing algorithms

	8 Security Risk Management Methodology
	8.1 Introduction to security in embedded systems
	8.2 Background on IEC 62443
	8.3 Risk Management Methodology (ISO 27005)
	8.4 STRIDE
	8.5 Application of the methodology in the FRACTAL node

	9 Conclusions
	10 List of Figures
	11 List of Tables
	12 List of Abbreviations

