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Abstract:

D2.4 “Methodologic Framework (b)” introduces a methodological framework
specification. It is presented as a compositional workflow, which introduces the
interactions of FRACTAL building blocks towards the integration of the FRACTAL
computing node and the use cases. Following this global picture, the deliverable
focuses on methodologies for several important topics for the project: Al and safe
autonomous decisions, safety design, integration of FRACTAL platforms and
security analysis.
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Table 1 - Document history

To cope with the high number of contributors, this document has been edited online.
The Microsoft Sharepoint solution has been selected to keep information under EU
legislation. This solution offers a reduced feature set compared to a “regular” Word
editor. For instance, we have not been able to build a table of references and have
instead used footnotes.
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The task T2.2 is described in FRACTAL DoA as “For the integration of the FRACTAL
platform in an industrial environment, an important aspect is to describe (1) how it
should be used and (2) how this usage helps to qualifications and certification of
products developed using it, including safety-critical products.”

Accordingly, D2.4 "“Methodologic Framework (b)” introduces a methodological
framework specification. It is presented as a compositional workflow, which
introduces the interactions of FRACTAL building blocks towards the integration of the
FRACTAL computing node and the use cases.

Following this global picture, the deliverable focuses on methodologies for several
important topics for the project:

- Al and safe autonomous decisions
Safety design

Integration of FRACTAL platforms
Security analysis

A list of abbreviations is available at the end of the document.
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This deliverable provides a methodological framework specification. The aim of this
framework is to identify the key enabling technologies with their supporting
methodology and tools.

Development of the FRACTAL node product and its sub-products (or sub-
components) are supported by this workflow.

This document is structured into 5 main chapters. First the overall workflow of the
project is presented in chapter 4. Then sub-workflows/methodologies for “Al and Safe
Autonomous Decisions” are presented in chapter 5, for the “Safety Design” in chapter
6, for the “integration of FRACTAL platforms” in chapter 7. The development of the
risk analysis in WP4 is presented in chapter 8.

Different WPs provide or use components for composition. This requires prior
alignment of what is provided and what is expected: functional boundaries,
interfaces, and other necessary information. Collaboration within the workflow
includes handover of these artifacts between stakeholders and workflow steps while
ensuring, managing, and maintaining composability during the workflow.
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The FRACTAL platform specifications (see deliverables D2.1 and D2.3 for more
details)define what the framework should provide (i.e. components, tools,
methodology and workflow) to be key enabling technologies (KETs) for the FRACTAL
node. To limit the scope and better target the domains considered in the project, the
use cases specifications are used as inputs. The final specifications should also
consider the extensibility and usage of the framework in related domains of
application.

4.1 Capturing Requirements

Figure 1 shows the overall workflow used to capture requirements during the
FRACTAL project. First, the different demonstrators have been specified (i.e.
scenarios, features, and functional and non-functional requirements) in “Integration
and verification” (WP7) and “Case Studies” (WP8). The demos’ requirements have
been then analysed to get a unified list of requirements and key enabling technologies
that are being developed during the project. These have been identified into
“Specifications & Methodology” (WP2). Third, the identified key technologies have
been characterized and decomposed into the technical work packages: the “node
architecture & building blocks” (WP3), “Safety, security and low power techniques”
(WP4), “Al & safe autonomous decisions” (WP5), and “CPS communications
framework” (WP6). At the same time WP4, WP5 and WP6 have decomposed
requirements received from WP7 and WP8 and have realized what they needed to
further extend the list of requirements for WP3.

Copyright © 2023 FRACTAL Project Consortium 9 of 74
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Figure 1 — Requirements workflow in FRACTAL project

Upon reception of external requirements, each Work Package works its internal
requirement list and develop its “products”.

4.2 FRACTAL Features

There are many definitions of Feature, coming from the Software Product Line (SPL)
community. Using the most notable definition from FODA!: A "feature" is defined
as a "prominent or distinctive user-visible aspect, quality, or characteristic
of a system". SPLs refer to engineering techniques for creating a portfolio of similar
systems from a shared set of assets (components) using a common means of
production. This portfolio of similar systems is called a Family of Products.

Using the analogy of a car, the family of that car model is composed of the different
versions and variations of the given car model (style, colour, engine, etc.) produced
in the car product line. When a user wants to buy a car, (s)he has to select among
the distinct features available. For instance, he may choose the version, the engine,
the colour, the air conditioning system, the transmission, etc. Sometimes some
selections force the selection of another feature. For instance, a given car style can

1 Kang, K.C. and Cohen, S.G. and Hess, J.A. and Novak, W.E. and Peterson, A.S., "Feature-oriented domain
analysis (FODA) feasibility study", Technical Report CMU/SEI-90-TR-021, SEI, Carnegie Mellon University,
November 1990
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force a given engine and restrict the number of other options available. That is,
features can have distinct values and also have relationships/dependencies. Even,
some features can be optional (e.g. sunroof). Here, the user must be able to
understand the features in a model to be able to configure a valid product. The car
seller helps the user to understand the given options to configure a valid car to be
produced.

In the context of FRACTAL, a FRACTAL Feature is a distinguishing characteristic
of FRACTAL, visible to users that will configure FRACTAL for their use cases.
FRACTAL Features can describe functional characteristics (hardware, software), non-
functional characteristics (performance or other criteria) or even other parameters
(cost, max weight). A Feature Model is a hierarchical diagram that visually
depicts the features of a solution in groups of increasing levels of detail. Feature
Models are compact representations of all the products in a Family in terms of
features and provide a great way to summarize the features that will be included in
a solution and how they are related in a simple visual manner.

Summarizing, the FRACTAL Feature Model describes the variability in FRACTAL's
family of products in terms of FRACTAL Features. Use Cases represent variants
of FRACTAL products, this is, specific product realizations.

Based on the concepts described in FRACTAL Document of Agreement and the needs
and requirements captured from the Use Cases, a FRACTAL Feature Model has been
built (and is maintained alive as those needs evolve). This FRACTAL Feature Model
has been introduced in D2.3 as a tree representation with increasing levels of detail.
On the first level, FRACTAL high level features are defined (see figure 2).

Zyng_Ultrascale
ARM <
Versal
Platform Pulpissimo
Pulp <
RISCV << CVA6

Noel_V
Linux
0s < FreeRTOS
RTOS <<
NUTTX

Adaptability 5]

Reliability

Fractal Safety@
Low_Power
Context_Awareness|2) ng(:/lr;dridatory
. g\ gl?élfnr;ilive Group
fractally Corerite Fanthre
Openness|(4] () Collapsed

Figure 2 — FRACTAL High Level Features

A short definition of these features follows:
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Adaptability: Ability to adapt system behaviour to surrounding scenario.
Context-awareness: Ability to detect and react to context and surroundings.
Openness: FRACTAL Core should be Open to be used, and mainly based on
open-source licenses.

Safety: Be resilient to internal failures.

Security: Be resilient to external attacks and menaces.

Reliability: The system should behave consistently well.

Low Power: Ability to support low power scenarios.

Fractality: Ability to support fractal configurations, which can be seen as the
organization of nodes in distinct layers and the communication/connectivity
involved.

FRACTAL Use Case requirements (see Use Case requirements defined in D2.3) have
been used to guide the feature model construction. For instance, based on the
requirement:

REQ_UC4_06 - the edge node shall provide dedicated HW accelerator to process the
CNN layers (Yolo) of AI inference.

The following features have been defined:

Adaptability -> AI -> HW -> AI ML Accelerator

Adaptability -> AI -> SW -> Inference -> Location -> Edge Node
Adaptability -> AI -> SW -> Learning/Training -> Algorithm -> Yolo
Adaptability -> AI -> SW -> Learning/Training -> Algorithm -> CNN

Using another example from other UC, based on the requirement:

REQ _UC6_14 - The edge node shall acquire images from at least one HD camera.

The following features have been defined:

Context Awareness -> Sensors -> HD Camera

The lower the level of the feature in the tree, the higher the detail. For instance,
figure 3 partially presents the Adaptability feature subtree:

Copyright © 2023 FRACTAL Project Consortium 12 of 74
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Figure 3 — FRACTAL Adaptability partial subtree

Adaptability is considered as the ability to adapt system behaviour. System behaviour
can be adapted by (1) extending the system through port connections or extending
the software stack; (2) introducing Al that deals with adaptation; (3) orchestrating
the data on which adaptation is based; (4) orchestrating the services executed on
FRACTAL nodes or (5) changing the operation mode of the system based on a certain
detected condition.

4.3 FRACTAL Product Composition

Technical Work Packages (WP3-6) implement the shared set of components (building
blocks) required to produce the Use Case variants. WP3 provides the node definition
and platform. WP4, WP5 and WP6 add their products on top of the results of WP3
(see figure 4). In particular, WP3 provides the hardware and software components
(aka primitives) and platform nodes that allow building complex services and
properties. On top of this in WP4, WP5 and WP6 aim on smartly combining them in
accordance with specific UC goals. The first global integration attempt is performed
in the verification phase WP7 that helps fine tune all products and then everything
should be ready to the final validation in WPS.

Copyright © 2023 FRACTAL Project Consortium 13 of 74
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Figure 4 — FRACTAL products composition workflow

To ease FRACTAL Product composition, the components developed in the technical
WPs have been associated with the corresponding features it implements (defined in
D2.3) and in which architectural layer it operates. In FRACTAL, three main
architectural layers have been identified:

Node Layer: References node base infrastructure layer, be it a device (low-
level SW & HW) or the cloud itself.

Orchestration Layer: Executed over the node layer, provides a standardized
execution environment to FRACTAL Nodes as containers and defines the
FRACTAL Distributed System (how nodes and concrete containerized services
are added/removed/configured). Containers provide a base standard for the
development and distribution of application logic to FRACTAL Nodes.
Application Layer: Specific application logic is built as services in containers
and deployed over nodes. Services make use of the specific Node Layer
offerings if needed (e.g., HW Acceleration, Diverse redundancy libraries, etc.).
This layer includes data ingestion, federated data collection, data pre-
processing, edge ML API, etc.

Use Cases have selected the specific features they are interested in from the FRACTAL
Feature model. The specific valid selection of features by a Use Case is called Bill of
Features.

By doing so, through the component relationship, Use Cases select the list of
FRACTAL components they are interested in. Finally, a FRACTAL Production plan will

Copyright © 2023 FRACTAL Project Consortium 14 of 74
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be in place, which given a Platform (selected on the specific bill of features) and the

set of selected components, defines how to build the FRACTAL product (see figure
5).

Building FRACTAL Edge Node Building FRACTAL
Cloud Node
PULP
CVAB . Add
Eéﬁ?é?él ggﬂminer FRACTAL | Add Configure || Add
NOEL-V HW + SW Runtime Distributed || Services Cloud Services
System

VERSAL

Components from Tech WPs

Figure 5 — FRACTAL production plan

Section 7.1 “Operational integration” presents this composition workflow exemplified
on a given Use Case.
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This chapter looks at the AI building blocks in WP5, focusing especially on the
FRACTAL autonomous decision framework (section 5.1), the FRACTAL service
architecture and middleware (section 5.2), and a common framework and format for
FRACTAL inference models (section 5.3). Further, the chapter looks at Al functionality
required by the use cases, concentrating in particular on UC2 (Automotive air path
control) (section 5.4) and UC6 (Intelligent Totem) (section 5.5).

5.1 AI and autonomous decision framework

The FRACTAL AI framework aims at integrating the AI functionalities to allow
advanced prediction capabilities in the FRACTAL node. The framework has been
developed keeping in mind the requirements from the use cases but ensuring the
correct degree of generality and flexibility. The FRACTAL node must be able to take
decisions in an autonomous way. This means that while data are measured from the
field, the FRACTAL node must be able to analyse the data and make all the inferences
needed to make the right decision in real time, without the need of communicating
with external server. Notice that, when talking about AI, we need always to
distinguish between the training phase and the inferencing phase. In the first one,
historical data are used to train the Al models while in the second one the already
built models are used to make predictions and decisions about the new incoming
data.

Since in the studied use cases the system’s behaviour is not changing with high
frequency, it is not necessary to perform the training phase very often and, above
all, to have a response quickly. Usually, the training phase is done once or is updated
on a regular basis if the system is supposed to undergo some changes in the
behaviour. So, two different scenarios are considered:

e For the first tests, pretrained models are deployed on the edge node. These
models are either already available in literature or obtained training the data
coming from the first tests.

e The training is done periodically. In this case (see figure 6) data are
automatically transferred to a cloud service (via 5G or Wi-Fi connection) where
they are stored in a database and used for building a model. Task 5.2 and the
related deliverables developed the cloud framework for treating data and
performing Al processing. The model is then sent back to the device where it
is used for subsequent elaborations. Notice that in this case the network is
not a bottleneck since FRACTAL node can continue its processing even without
the generation and the transferal of nhew model. So, if for some reason the
connection is not guaranteed the system can go on working.

Copyright © 2023 FRACTAL Project Consortium 16 of 74
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Since it could be unfeasible (due to huge amount of produced data) or inappropriate
(for example for security or privacy reasons) to send all the data in FRACTAL also the
possibility of using Federated Learning approaches has been studied. According to
Federated Learning also the training phase is done on edge nodes. Each node uses
the available data to build a local model. All the models can be further processed by
a supervisor to improve their quality, but, nonetheless, each node is independent and
can also use the model generated on its own data.

In any case the inferencing phase is performed on the FRACTAL node since the
decisions should be taken very quickly, which is not in line with sending data over
the internet. Moreover, the system should work also without connection, so the node
must be autonomous in taking decisions.

So, the FRACTAL node is equipped with a layer able to perform some basic pre-
processing operations on the data and an AI module able to use already built models
to make decisions about new incoming data. The elaboration must be very quick
because in some use cases, decisions are expected to take place within 100 ms.
Moreover, the module is able to do some aggregation on the data; in this way, data
could be sent in an easier way to a cloud service where the AI models could be
updated.

Training engine

Models

Fractal Al module

Historical data

[ Data |

Figure 6 - Functioning of the online training for the FRACTAL node

The AI model that is implemented in the FRACTAL node according to the needs of the
use cases:

e Video analysis
e Audio stream analysis

Copyright © 2023 FRACTAL Project Consortium 17 of 74



Project FRACTAL

Methodological Framework (b)

Del. Code D2.4

e Supervised and unsupervised learning
e Time series analysis

5.1.1 Video analysis

Video Content Analysis deals with the extraction of information from images and
video. Such information can be used for further processing done in “high-level”
applications that collect and correlate data from heterogeneous sensors. Modern
Video Content Analysis (VCA) systems are based on Al approaches: after a proper
training phase, they can understand how to analyse and detect relevant information
inside images and video streams.

The first step needed to build an Al-based VCA system is to define exactly the kind
of information to be recognized and detected. There are different possible tasks:

e Classification: assignment of images to different classes or groups, according
to their content.

e Tagging (or labelling): it is a classification task more complex with respect to
the previous one; multiple labels can be associated to an image as the VCA is
able to recognize multiple “scenarios” or “concepts” in it. A practical example
can be useful to explain differences: classification can distinguish between
images collected indoor or outdoor while tagging can add multiple labels to
the same images like outdoor, city, road intersection or indoor, house,
bedroom for example.

e Detection/Segmentation: both previous tasks are focused on detecting the
presence of one or more reference target (object, person, a scenario etc.) in
an image or a video. Detection and segmentation can also infer the location
of such target(s) inside the image. In particular:

o Detection process generates as output a bounding box that surround
each target detected,

o Segmentation process detects the shape of each target as it performs
a pixel-based decision (i.e., each pixel can be assigned to background
or to a specific target).

During FRACTAL, and in particular in Use Case 6, detection and/or segmentation
tasks play a crucial role, as they are extremely useful to the FRACTAL node to
understand its surrounding environment. As a matter of fact, targets detection and
localization enable further processing like for example counting the number of
persons and or reference objects within a specific area. Also target tracking is a quite
relevant function in the scope of FRACTAL, in particular for those applications related
to safety and security control.

VCA, as any other Al system, is based on a training phase in which the system learns
to detect and recognize a target. In general, the training can be supervised or
unsupervised. For the VCA, training is supervised, meaning that the system learns
how to perform the detection through a set of labelled (annotated) images. Basically,
such annotated dataset (e.g., a large number of images with a person inside) is the

Copyright © 2023 FRACTAL Project Consortium 18 of 74
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input for the training phase; after the training phase, the output is a model that, at
runtime, can be used to perform the task (in this case people detection).

Such training phase has a relevant impact on VCA performance, that is dramatically
affected by the training set characteristics. In particular, this dataset must include
an adequate number of images, it must be accurate, meaning that images used for
training should be similar to those analysed at runtime, but at the same time, it must
be representative of all the different alternatives that are possible at runtime.

Overfitting and underfitting are two typical problems of Al-based VCA system: the
model achieves poor classification/detection performance after training. In particular,
overfitting means that there are too many parameters in the model and a high
variability of the classification. Therefore, the model is too complex and sensitive to
training dataset (high variance). On contrary, underfitting means that there are few
parameters in the model and a high classification discrepancy (high bias). In other
words, underfitting can be explained as the model is too simple and therefore unable
to provide good results during prediction; overfitting is when the model is too good
to be true, as it performs very well analysing training data but it is completely unable
to be generalized and therefore achieve very poor results on runtime prediction.

As previously said, the training phase and therefore the training set play a crucial
role in the VCA system performance. A limited amount of data for training, in this
case annotated images, is one of the worst scenarios concerning an Al-based VCA
system. Data augmentation is a useful technique to overcomes this problem. It
consists in a manipulation of available images in order to increase artificially the
dimension of the dataset. For example, some pictures in the database can be
transformed by rotating, flipping them or by modify colour, contrast or brightness.
Recently has been emerging a new approach for data augmentation based on the use
of Generative Adversarial Network (GAN). Such particular type of Neural Network is
here mentioned as it is quite relevant in the AI framework for the VCA. Moreover, it
is taken in deep consideration during the next phases of FRACTAL, in particular in
WP5. Several details are included in the deliverable D5.1 and D5.3.

Most methods for object detection are essentially based on CNN. Convolutional Neural
Network is a specialized kind of neural network for processing data with a known
grid-like topology, like images or time series. For our purpose we focus particularly
on images. These are the most common methods:

Regional Proposals: These methods are organised in two phases: in the first phase,
a convolutional NN is used to identify the regions where a certain target object could
be found; in the second phase, a more precise NN is trained to confirm or not the
presence of the object. Relatively heavy approach, but one that can achieve very
high accuracies. The first network does a coarse skimming while the second can be
very precise in identifying real targets. The most used NN architectures are: R-CNN
, Fast R-CNN, Faster R-CNN, and cascade R-CNN.
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Single Shot Detector (SSD): It presents an object detection model using a single
deep neural network combining regional proposals and feature extraction. A set of
default boxes over different aspect ratios and scales is used and applied to the feature
maps. As these feature maps are computed by passing an image through an image
classification network, the feature extraction for the bounding boxes can be extracted
in a single step. Scores are generated for each object category in every of the default
bounding boxes. In order to better fit the ground truth boxes adjustment offsets are
calculated for each box.

You Only Look Once (YOLO): It is a fast real-time multi-object detection algorithm
that utilizes a single convolutional network for object detection. Unlike other object
detection algorithms that sweep the image bit by bit, the algorithm takes the whole
image and reframes the object detection as a single regression problem, straight
from image pixels to bounding box coordinates and class probabilities. In more
details, it takes an image input, splits it up on a SxS grid, passes it through a neural
network to create bounding boxes and class predictions to determine the final
detection output. It is first trained multiple instances over an entire dataset before
being tested on real-life images and video. The advantage of these networks is that
they are (relatively) fast, work on a single frame and can recognise objects of very
different scales.

Typically CNN is a sequence of different types of layers. The input to the CNN is a
pixel array of an input image. The intermediate results obtained are a set of feature
maps. The outputs obtained are in the form of conditional probability for a given set
of inputs. Highest probability for a choice depicts the confidence of the network in
that output.

-[Aoroplar\c" no l
e ¢ sl

+[ TV monitor? no|

Warped
region A pretrained CNN A classifier and
to extract features bounding box
Input image Extract regions of interest regressor

(ROI) using Selective
Search algorithm

Figure 7 — Object detection example using CNN approach

The CNN-based object detection requires a high volume of parameters and
calculations to extract features in the image and make predictions about the objects.
To meet this requirement, many researchers adopt high-performance devices, such
as graphics processing units (GPUs), central processing units (CPUs), field-
programmable gate arrays (FPGAs), and application-specific integrated circuits
(ASICs), to build onboard real-time systems. It is difficult for CPUs to take full
advantage of parallel computing to meet real-time processing. They are rarely used
as CNN implementation platforms. While the computing performance of GPUs is
fantastic, the high-power consumption hinders their usage in the onboard system
with limited resources and power budgets. FPGAs and ASICs have the advantages of
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high performance and energy efficiency. Thus, taking these low-power devices as
hardware implementation platforms for CNNs has become a research hotspot.
However, ASICs require a long development period and high costs to be designed.
Therefore, owing to the advantages of the short development period, energy
efficiency, and reconfigurability, FPGAs are the ideal implementation platforms for
CNNs. Therefore, if the FPGA can be used to implement the target detection
algorithm, the hardware volume can be greatly reduced, and the implementation
speed is fast, the flexibility is high, and the power consumption is low.

5.1.2 Supervised and unsupervised learning

Besides the analysis of video and audio streams, other Al tasks could be implemented
in the FRACTAL AI framework. In this subsection a short overview of more traditional
machine learning applications that could be used to analyse data deriving from use
cases. The methods introduced here deal with structured data, i.e. that can be
organized in tables. Usually, a distinction is done between supervised and
unsupervised methods. Supervised methods assume that data are somehow labelled
either in a natural way or because some human has labelled them manually. This
label is the target of supervised methods since they aim at building a model able to
predict the value of the target starting from a set of inputs. According to the type of
target, classification or regression problems could be defined. Multilayer Perceptron
(MLP), Support Vector Machine (SVM), Logistic Regression (LR), Decision Trees (DT)
are methods for supervised learning.

On the other hand, in unsupervised problems, no target variable is available and the
goal is to find information within the data. For example, some unsupervised
approaches are:

e Clustering, aimed at organizing data in homogeneous groups.

e Outlier detection, that are devoted at finding configurations that deviate from
standard behaviour.

e One-class classification, whose goal is finding a classification model when only
data of one class are available. For example, data about failures could not be
yet available in historical data in a predictive maintenance application.

e Sequence Analysis and Anomaly Detection, aimed at analysing time
sequences to detect frequent or uncommon patterns that could be related to
regular or anomalous behaviours.

In general, these approaches could be used in association with the analysis of audio
and video streams. As a matter of fact, the analysis of video and audio could generate
features that can be used as an input of supervised or unsupervised tasks.

Moreover, it is worth noting that some techniques belonging to this class also allow
the generation of intelligible models, according to the Explainable AI (XAI) paradigm,
enabling applications where the understandability is a key feature.
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Figure 8 — FRACTAL cognitive agent and the corresponding node architecture.

Building upon the architecture described in section 5.1, the FRACTAL framework
supports common Al workflows related to distributed learning and decision-making.
In more detail, a FRACTAL cognitive agent (figure 8) interacts with other system
components, devices and data sources through the services provided by the platform
middleware. In its operation, it uses and exports both internal and external interfaces
for connecting to its sensors and actuators and to external services and data sources,
for operational control (e.g., setting the agent goals), and for sharing its results,
knowledge and data. The agent architecture is internally composed of software
components with varying roles, such as modules for interactions, decision making,
implementing and evaluating the selected actions and interactions.

Device node Edge node Cloud node
Goal Sensor Actuator Goal Sensor Actuator Goal Sensor Actuator
API API API AP| API API API API API
Component | [ Component | [ Component
Manager | | Manager | | Manager

comporl  Agey compot| Age
compd Agent compg  Agent B
gen

Agent
component

Figure 9 — Agent components and APIs. Active component shown in blue.

To facilitate orchestration of the operations towards optimal Quality of Service and
performance, the run-time deployment of each software component must be decided.
To this end, the agent architecture must consider the application requirements. For
example, some processing-heavy components (e.g., the learning element) could be
run on a nearby edge node or on the cloud, while others may run on-device (see
figure 9). As a result, the edge-cloud framework provides component online
deployment (including offloading and migration), management and monitoring
functionalities.
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On the one hand, the framework enhances the adaptivity of the individual nodes in
response to the dynamics of the environment, the state of the platform, and
application requirements, by allowing control of its communication-computation
trade-off (e.g. latency vs. data transmission vs. computational load). On the other
hand, such a framework increases operational complexity significantly and introduces
a need for (partially) autonomous decision-making by the components. Figure 10
further illustrates the related horizontal offloads and vertical migrations.
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= OoOCOm
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Figure 10 - Hierarchical component transfer framework.

For those of the agent components, which encompass learning and decision-making
elements, the framework requires data and knowledge sharing and collaboration
across the platform. For example, some components may employ a federated
learning schema (see figure 11), where a number of edge nodes, coordinated by a
cloud node, collaboratively build a shared understanding (e.g., a model). The
architecture, and largely the framework, must thus allow the online sharing of data,
results and knowledge, all the while monitoring and evaluating the operation and
environments of each component taking part in the learning.
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Figure 11 - Federated leaning in a FRACTAL system.

Further, while an agent makes partially autonomous decisions, a humber of use cases
also call for collaboration and co-operation (e.g. through swarm intelligence) as
distributed decision-making, targeting operational efficiency and effectiveness of the
system. To facilitate such a multi-agent system, the agent must support sharing of
both data and knowledge, leading to complex interactions between the agents and
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other system components (figure 12). Such an integrated architecture is also
required to support the top-down/bottom-up control in the operational framework,
further specified in T5.4.
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Figure 12 - Distributed decision-making in a FRACTAL system.

In addition to placing and allocating the application components, the distributed Al
framework must also cater for the flow of data used to build those models. Indeed,
the middleware has to provide interfaces for application components to publish data
sets or streams as well as to subscribe to them, while keeping track of the placement
of both: if a component is offloaded or migrated, its pub/sub endpoint has to move
accordingly.

Moreover, taking into consideration the dynamic nature of the edge-cloud computing
continuum, at times the streams have to be routed anew due to link capacity changes
between components. Finally, the data streams themselves can also change in
volume and velocity, requiring a reconsideration of the stream routing.

Optimally, the framework thus considers simultaneously the communication,
computation as well as data-related resources while orchestrating the distribution of
Al models in the computing continuum.
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5.3 Use of LEDEL

WP5
Design of DL models for Use of the LEDEL to | UC 7: DNN for obstacle WPS8
the use cases of Fractal develop Al tools/models detection and online path
creation from LIDAR data uc#..
WP4

LEDEL as a Service in a ] KP| measurement
Example use cases I

Fractal node

WP3 [ Testing & Validation of LEDEL with Fractal use cases ]
1

. Adaptation of the EDDL to be
iRy En WSy | LEDEL to run on RISC-V |

1
LEDEL Use of trained models in | Testing with Fractal
Low Energy DEep Learning Library production environments use cases

L
A

: ONNX format for

. : importing trained
[ Model training on x86 CPUs + GPUs ] ------------------------- Neural Networks
By using the By using By using By using other toolkits can be used constrained
EDDL PyTorch TF+KERAS to use ONNX to export trained networks
!
L /
ONNX compatibility not OnnxRT must be used
100% guaranteed to check compatibility
when using

TF+KERAS

Figure 13 - Development stages of LEDEL in FRACTAL

EDDL (https://github.com/deephealthproject/eddl, European Distributed Deep
Learning Library) is a Deep Learning (DL) toolkit designed and developed to provide
support to design and train Deep Neural Networks (DNNs) on single computer nodes
and on hybrid HPC + Big Data computing architectures. EDDL is ready to leverage
hardware accelerators, such as GPUs and many-core CPUs. It also uses the ONNX
standard format (https://onnx.ai) to import/export DNNs. Thus, trained DNNs can be
used on production environments to infer/predict. LEDEL (Low Energy EDDL) is the
adaptation of the EDDL to run on Low Energy hardware. Trained DNNs using the
EDDL are easily employed to infer/predict in production environments working with
the LEDEL. In figure 13 we can observe different tools provided by EDDL.

LEDEL is about to be ready to run on Edge computing hardware that has been
developed in FRACTAL. This hardware has limited computing capabilities but is more
powerful than existing low energy hardware so far. Thus, thanks to LEDEL, not only
is it possible to make decisions based on simple conditions, but more complex
decisions based on indicators provided by more sophisticated algorithms running on
the edge are feasible to be made as well. As an example, we are able to evolve from
simple presence detectors to decide whether to switch on lights, to much more
complex scenarios where the number of people in a room and the distance between
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individuals is computed every few seconds in order to adapt room conditions such as
light intensity, cooling and heating, only switching on the required lights, etc.

The tasks involving the LEDEL in the FRACTAL project are shown in figure 13 and
defined as follows.

- EDDL adaptation to run on RISC-V based hardware in the NOEL-V processor
model proposed (WP3, T3.5).

- In order to check the correct execution of the LEDEL as a software service in
a FRACTAL node, an example of a use case from the DeepHealth project has
been adapted and tested for its correct behaviour (WP4, T4.1). To emulate
the FRACTAL node, a simulated environment has been built using an/the Isar
of Siemens [ 1. The model has been
trained outside the node, imported into an ONNX file and transferred into the
emulated node. Finally, the net from the ONNX has been loaded into a
program implemented using LEDEL and checked for its proper behaviour
(check D4.2 for further detail)

- The work carried out in WP5 corresponds to the investigation of different
models that could be used in a FRACTAL node, considering its dependencies,
like OpenCV to execute TinyYolo, or different techniques and implementation
approaches, such as network configuration, and layers and changing among
different learning techniques like reinforcement learning.

- Finally, SML is providing support to check the integration of the LEDEL in the
FRACTAL platform and guarantying a good performance and a proper
behaviour in UC7.

In conclusion, LEDEL is almost ready, as a service offered in a FRACTAL node, to be
able to perform more complex calculations (i.e., to run more sophisticated
algorithms). The goal is to develop an API that provides deep learning functionalities
that are devoted to face the deployment on low energy computing infrastructures.
LEDEL is already accessible in the FRACTAL project repository
(

) and a very complete tutorial with examples and docker files are
presented in order to make it easy for FRACTAL partners to use it in their use cases.

5.4 Advanced control strategies in the automotive domain

Existing automotive control strategies are fully reliant on model-based control
strategies. These techniques imply a high calibration effort and the ability to perform
self-learning through observations is very limited. This use case therefore contributes
to integrate the environmental influences and changes as a fundamental part of the
system, among other benefits, like potentially increased product quality and
increased efficiency for the development of customized controllers. The FRACTAL
nodes are crucial to the implementation of this use case.

The FRACTAL framework shall demonstrate the following objectives:
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e Inference of data-driven models aimed at improved energy efficiency and
reduction of environmental pollutants on the FRACTAL node

e Online self-adaptation algorithms of the initial state model, to react to
variations regarding the environment and different driver behaviours

e Freeze frame data collection and connection to the cloud for re-training
purposes

In figure 14 an overview of the planned (implementation) interactive environment
schema can be seen. Three different model operations can be differentiated. Firstly,
the model inference of the initial state Al-based model, as a result from the model
development process, which is implemented to replace the conventional control
strategy. Secondly, the model adaption during the vehicle in-use phase, to cover the
model blind spots coming from the limitations of the input data used for model
training and to have the possibility to adjust to vehicle specific parameters. The
adaptation algorithm would compare the output of the model inference with the
measured data and in case of a deviation, learn and preserve the additional
information. Thirdly, a cloud connection is established to utilize the potentials of
crowdsourcing and the access to extensive information from other drivers/vehicles,
with the overall target to optimize the control strategy from many different aspects
(e.g., changes in environmental conditions, variability, coverage of different
operation modes, etc.). Since this task comprises the use of big data, a
computationally heavy training infrastructure is needed and would therefore require
cloud computing for the execution.

Cloud

Data
Collection Retraining

Vehicle 1 Vehicle 2 Vehicle 3

Edge node
Data preprocessing
Inference

Edge node
Data preprocessing
Inference

Figure 14 - Overview of FRACTAL framework needed for Automotive implementation

5.5 Image classification

Modern deep learning architectures achieves state-of-the-art performances on vision
tasks such as image classification, tracking and segmentation; nevertheless, the
adoption of these approaches into critical domains is still limited. Two key aspects
limiting the diffusion of these approaches are the limited interpretability of the
learned models and the lack of specific guidelines to efficiently and effectively perform
the optimization of their hyper-parameters.
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Within the scope of the FRACTAL project the methodological approach taken for this
task is twofold. From one hand, it pursues the adoption of state-of-the-art explainers,
specific algorithms that provide human-interpretable explanations about the model
predictions. One of such explainers that has gained much attention for vision tasks
is LIME (Local Interpretable Model-Agnostic Explanations). Roughly speaking, LIME
takes as input the learned deep network and the image to classify; as output, it
provides the classification of the image along with the image enriched with patches:
the patches highlight the areas that most contributed to the classification of the
image. Since the patches are visual, they are, usually, very-well interpretable by
human users.

On the other hand, the idea of incorporating the optimization of important pre-
processing hyper-parameters into the training and the test phases is promoted. Both
these aspects are demonstrated in the context of a clinical application, diabetic
retinopathy detection.

More specifically, suppose that the processing pipeline use some pre-processing
algorithm A to perform a given step of pre-processing. Suppose also that A requires
as input some parameter p besides the image to process; and suppose also that p
must be specified on a per-image basis. A typical approach to this problem, is to
perform some expensive grid-search procedure, image-per-image, to find each time
the best value for p according to some mathematical criterion. This results in an
extremely time-consuming approach that is not even necessary correlated with good
predictive performances. Indeed, the existing optimality criteria for A might be not
connected with its role in the prediction pipeline. To overcome these limitations, it is
possible to /earn the best parameters to use at training time. In particular, the
predictive model is trained jointly with another deep learning architecture - in an
end-to-end fashion — whose sole role is, given an image x, to predict the best value
p(x) for the parameter of A to use. The image is then pre-processed using A
parametrized by p(x). This approach has two advantages, first at test time, given an
image, predicting the parameter to use for A requires only a feedforward step which
is typically faster than performing a grid search. Second, the parameter of A is
optimized to obtains the best predictive accuracy, as one would expect. In order to
learn both networks, the models are connected together through a differentiable
layer (e.g., the Gumbel soft-max activation) which allows for the backpropagation of
the gradients. In this way, both models are optimized to reach the best predictive
accuracy.

Diabetic retinopathy (DR) is a dangerous disease that can lead ultimately to
blindness. A timely diagnosis of this pathology is fundamental to limit its consequence
on the patient. Recent research studies have shown the potential benefits of adopting
deep learning methods to support the specialist in the analysis process. In particular,
those methods have achieved nearly human performances in the task of classifying
certain levels of retinopathy.

However, such algorithms mostly act as black boxes taking as input a high-resolution
image of the eye fundus, and producing as outputs a prediction on the level (if
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present) of retinopathy affecting the patient. The black-box nature of these methods
limits their usability as support tools from the specialist that has no clues to
understand the factors that caused the model to output a certain prediction.
Moreover, updating and tuning these algorithms for the specific cameras is a timely
consuming and poorly defined process due to the lack of well-defined mathematical
objectives. An important example of this issue is given by the image equalization
algorithms, that turned out to be fundamental to obtains good performances in this
task. These algorithms, most prominently CLAHE, require the user to provide one or
more parameters that control their behaviour. Unfortunately, it is not clear how one
should choose these parameters, and current solutions are often based on expensive
greed search procedures. The proposed methodology is used in the context of a
methodological study described in D5.6. In figure 15, a DR detector enriched with
the LIME explainer is shown. An image is given an input to the processing pipeline
and, and explanation about its prediction is built according by LIME. In figure 16
instead the end-to-end approach to the image equalization problem is shown. Here
the image is given in input to the first network, that predict the parameter of CLAHE
(the image equalization algorithm); then the image is equalized by CLAHE with the
predicted parameter, and finally is given in input to the second network for the DR
detection.
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Figure 15 - Image classification with explanations, an example in the context of DR detection

Figure 16 - End-to-end learning for hyper-parameters optimization, and example in the context of DR
detection.
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To build the safety concept for a FRACTAL system, a number of safety-related
properties need to be built bottom up. Generally, these properties relate to the ability
of the system and its components to detect, manage and/or tolerate faults and or
behaviour beyond the intended functionality. This chapter covers those aspects for
the different components in the form of safety measures and strategies. In particular,
approaches are presented to deal with faults for the computation of an application
(diverse redundancy), timing interference across applications, communication across
nodes, Al-related processes and time-triggered NoC.

Note for the reader: the D2.2 sections “6.1 Guidance to define a methodology for a
safety-related development (ISO61508) tailored to an R&D cooperative project” and
“6.3 Certification of VERSAL platform and related applications” have moved to D2.5
“Safety-critical applications regulations compliance handbook”.

6.1 Diverse redundancy

Fault detection in a FRACTAL system architecture can be efficiently provided bottom-
up. This implies that appropriate safety measures need to be deployed along with
computation means. Safety measures for the highest criticality functionalities (e.g.
ASIL C and D) include some form of diverse redundancy so that a single fault, despite
affecting all redundant elements, cannot lead to exactly the same error, which might
escape detection.

Common Cause Failures (CCFs), in automotive terminology, are those failures caused
by a single fault that makes safety measures, such as redundancy, ineffective. For
instance, two identical cores executing the same task redundantly fully synchronized
have the same state, and upon a common fault (e.g. a voltage drop) could experience
the same error. To avoid CCFs, safety-related systems implement redundancy with
some form of diversity so that the risk of experiencing identical errors in redundant
elements is residual. In the case of storage, this is usually achieved using Error
Detection Codes, in the case of communications using Cyclic Redundancy Check
codes, and in the case of computation, using some form of lock-stepped execution
where two or more identical cores execute identical software but with some
staggering (i.e. time shift) so that cores' state is sufficiently diverse.

Therefore, platforms intended to run functionalities with high integrity requirements
need some form of lock-stepping support. This can be achieved with tight lock-
stepping, where only one redundant core is visible at software level and the others
can only work in lock-step mode, as done, for instance, by the Infineon AURIX
microcontrollers for the automotive domain.

Tight lock-stepping at core level can be implemented with different flavours. For
instance, one could compare the outcome of each instruction or even each pipeline
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stage every cycle?. However, the most effective solution has been shown to compare
only off-core activity (e.g. requests visible in the interconnect) to reduce the
overheads while avoiding any visible impact due to errors.

While this solution is highly effective to attain diverse redundancy, it is inflexible since
it does not allow using the cores independently to run different tasks. An alternative
is using light lock-stepping, where redundancy is created and managed at software
level, and independent cores are used enforcing staggering with SW-only means, as
illustrated in figure 17.
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Figure 17 - Schematic of the SW-only lightweight lock-step.

SW-only diverse redundancy builds upon the creation of redundant processes at
software level, so that both of them receive the same - redundant - input data and
return their results for comparison in a safe CPU. Without loss of generality, this
discussion focuses on dual-core lock-step, which is the common approach in many
domains, including automotive.

The methodology builds on the use of three threads (see figure 17):

e Monitor. The monitor is the one spawning the redundant computation threads
(head and trail), and monitoring and enforcing staggering between them.

e Head thread. The head thread executes the functionality without any specific
control for the sake of achieving diverse redundancy.

e Trail thread. The trail thread executes the functionality redundantly with
some staggering (delay) with respect to the head thread. Therefore, if the
staggering at any point is too short, it is stalled for a while.

2 A more detailed analysis of the different alternatives can be found here: C. Hernandez and J. Abella,
"Timely Error Detection for Effective Recovery in Light-Lock-step Automotive Systems," in IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 34, no. 11, pp. 1718-
1729, Nov. 2015, doi: 10.1109/TCAD.2015.2434958.
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Since the monitor lacks any form of redundancy, it needs to run in a native lock-
stepped core, which may be in a separate microcontroller, or may also be in the same
microcontroller. The monitor spawns the head and trail threads into two other cores,
which do not implement tight lock-stepping support. Then, the monitor performs the
following steps periodically every Tcheck cycles:

1. Collects the instructions executed count (1c) from both threads, so IChead
and ICtrail.

2. Computes the difference between both counters and compares it against a
threshold Istagger.

a. If the head thread is sufficiently ahead from the trail one, then both
threads continue the execution. Formally, execution continues
normally if (IChead - ICtrail) > Istagger.

b. Else, if the trail thread is too close to the head one, then the monitor
stalls the trail thread during the next monitoring period (so Tcheck
cycles). Formally, the trail thread is stalled if (IChead - ICtrail) <=
Istagger.

3. Finally, the monitor sleeps until the remaining time until elapsing Tcheck
cycles.

This mechanism guarantees that the trail thread cannot catch up with the head thread
as long as the instruction threshold Istagger is large enough so that, even if the
head thread stalls completely and the trail thread executes at the maximum possible
speed, the trail thread cannot catch up with the head thread since one monitoring
period until the next one. This implies that executing a Istagger instructions must
require at least Tcheck plus the time to detect that the current staggering is too low
and stalling the trail thread.

In the context of automotive systems, as well as in other domains, as long as faults
are managed short enough after their occurrence, only single-point faults need being
considered. Single-point faults are those faults caused by a single event even if such
event can lead to multiple errors. This is explicitly covered in ISO 26262, part 5,
clause 7.4.3.3: “Evidence of the effectiveness of safety mechanisms to avoid single-
point faults shall be made available”.

Hence, the following scenarios are possible for single-point faults:

e The fault affects one or the two computing threads (head and/or trail). Since
they have intrinsic diversity due to the proposed mechanism, if the fault leads
to errors, those will be detected by the monitor and properly managed with
the corresponding system level recovery solution implemented (e.g., re-
execution).

e The fault affects only the monitor. The monitor runs on a native lock-stepping
computing core, so, if the fault leads to an error, it will be detected and
managed as needed at system level. In this case, the execution of the threads
is correct. Hence, one may simply use the result of the head thread since it
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will match the one of the trail thread even if staggering is not preserved since
the fault only affected the monitor. Since the fault affecting the monitor will
be detected if it leads to an error, we can just compare the result of both
threads to validate that they match. Note that the single-fault assumption
guarantees that this later comparison is fault free.

e The fault affects all components (monitor, head thread and tail thread). In
this case, the monitor detects it failed, and the outcomes of both threads
mismatch. Hence, we can proceed as in the previous case but, in this case,
the later comparison will detect a mismatch across the outputs of the head
and trail thread, so system recovery actions can be taken then to manage the
impact of the fault on the monitor as well as on the computing threads.

Overall, if a single-point fault leads to errors in any of the computing components or
the monitor, those errors will be properly detected and reported so that system level
recovery actions can be taken.

6.2 Management of timing interference

Safety-related systems, as part of their development process, must adhere to specific
verification and validation (V&V) processes, and include safety measures to deal with
random hardware faults that may occur in the field. This is achieved by means of
observability and controllability knobs. Those knobs have already been deployed in
mono-core SoCs. However, MPSoCs pose a number of challenges related to
performance interference in the hardware shared resources across tasks running in
different cores. Such interference must be properly accounted for and mitigated to
meet performance-related safety requirements in line with safety standards
specifications. In the context of FRACTAL, since such interference emanates at node
level, that is the scope where safety measures and V&V means have been deployed
for efficiency reasons? (e.g., to stop excessive interference immediately rather than
awaiting for software layers to react too late when further interferences has
occurred).

Commercial safety-related MPSoCs, such as, for instance, the Infineon AURIX
processor family, include limited features to monitor and mitigate multicore timing
interference. Typically, those MPSoCs include some form of Statistics Unit (SU)
capable of tracking access counts, number of instructions executed of different types,
as well as aggregated stall cycles in some buffers and queues. Those MPSoCs may
also include powerful debug facilities such as Aurora, Lauterbach and CodeWarrior,

3 ]. Cardona, C. Hernandez, J. Abella and F. J. Cazorla, "Maximum-Contention Control Unit (MCCU):
Resource Access Count and Contention Time Enforcement," 2019 Design, Automation & Test in Europe
Conference & Exhibition (DATE), Florence, Italy, 2019, pp. 710-715, doi:
10.23919/DATE.2019.8715155.
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which allow collecting detailed information about events in the MPSoC. Unfortunately,
those SUs and debug facilities have some limitations:

e Itis generally hard - if at all possible — discriminating how much interference
each core creates on each other core since stall cycles, if available, are
provided in an aggregated manner.

e The MPSoC may lack means to exercise control over multicore timing
interference.

e Despite debug facilities are powerful, they are normally only usable during the
development process given the fact that they require specific equipment and
software for their use. Hence, safety measures to be used during operation
cannot exploit those facilities.

Specific SUs can be tailored to deal with those challenges and meet the requirements
of safety-related systems in terms of multicore timing interference, both during V&V
and during operation. In particular, a timing-interference aware SU would allow
implementing appropriate safety measures if it provides the following features:

1. Interference monitoring. Monitoring the amount of delay experienced by each
task due to interference, and being able to identify the particular task causing
such interference is particularly relevant to optimize the system during design
and verification, and to diagnose deadline overruns in the field.

2. Interference quota enforcing. Those deadline overruns can be simply avoided
if means are deployed to set quotas on how much interference each task can
create on each other task.

Those features allow implementing both, reactive mechanisms and diagnostics by
monitoring interference, as well as proactive mechanisms based on quotas to avoid
effects due to undesired timing behaviour. Overall, those mechanisms are the basis
to mitigate interference so that freedom from interference, as requested in some
safety standards (e.g., 1S026262), is achieved to a sufficient extent (e.g., upper-
bounding potential interference).

Timing interference generally manifests in the on-chip interconnection networks since
all data sent to/from the cores needs to traverse those networks. Hence, SUs for
timing interference monitoring and control must likely be deployed along with those
interconnection networks. Since those interconnects use standard interfaces, such as
AMBA AHB/ACE/AXI, SUs may be easier to integrate and reuse if they comply with
those protocols.

In the context of FRACTAL, if the MPSoC includes a centralized interconnect managing
all on-chip traffic from cores (e.g., a bus), a single SU may suffice. Alternatively, if
distributed interconnects are deployed (e.g. NoCs) so that no single location drives
all core-related traffic, we may need to set up multiple SUs to be able to monitor and
control all on-chip traffic. Those SUs may further require some post-processing of the
information collected in a distributed manner to gain global knowledge about how
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multicore timing interference is occurring. Alternatively, a single SU can be deployed
as long as it can monitor multiple NoCs simultaneously.

It is also common experiencing multicore interference in other components apart
from the NoC, such as, for instance, shared caches and shared memory controllers.
If such interference does not manifest in the form of backpressure in the NoC, just
observing the NoC may not be enough to accurately measure all interference. In this
case, the SU may need being extended to consider additional events such as core
stall signals, and queue occupancy signals in caches and memory controllers. In any
case, simple logic monitoring those signals in the SU can determine what core is
delaying what other cores so that interference can be monitored and ascribed with
sufficiently high precision.

6.3 Reliable communication

FRACTAL systems rely on inter-node and intra-node communications. To satisfy
safety requirements, on-chip communication networks or interconnects may rely on
state of the practice protection mechanisms such as Error Correction Codes (ECC),
replication or monitoring.

ECC is usually required for data links. The choice for the actual ECC implementation,
(e.g. SECDED or parity) depends on the implementation costs and the actual safety
need. For instance, fail-safe applications or applications with long fault tolerance time
intervals can use simple parity bits while more stringent applications requiring fail-
operational capabilities may also require redundancy bits with correction capabilities
such as SECDED (single error correction double error detection).

Hardware replication. Hardware replication (e.g. duplication) might be also needed
in addition to ECC to achieve the highest integrity levels. Implementing redundancy
at the core level with software only means is not sufficient to protect the system from
random faults. Actually, without a hardware mechanism that prevents cores and
other 10 to write to arbitrary locations faults affecting a core or I/O can introduce
undesired memory corruptions. Thus, the software redundancy mechanism of the
NOEL-V FRACTAL node requires having a memory protection unit (MMU) like the one
present in the NOEL-V. Unfortunately, accelerators are not covered by the MMU and
memory isolation properties are preserved in our platform using two physically
different memory spaces for the accelerators and cores.

Hardware monitors. Shall be integrated with the interconnect to allow built-in self-
test (BIST) and error reporting capabilities. This is usually a requirement that
expands all integrity levels and it is aimed to ensure safe operation during the lifetime
of an application. In the context of highly complex SoC platforms (e.g. multicores)
these monitors should also have the capability to track software timing information.
Existing monitors in the NOEL-V FRACTAL platform ensure that requests targeting a
specific device (e.g. memory) have the permission rights to access such device.
Different IDs are assigned to specific masters/tasks in the SoC so that safety-relevant
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and non-safety relevant worlds can be built. Such scheme can also be used to by the
AXI and AHB traffic monitors to propagate contention information to the edge SafeSU.
Additionally, specific software-based tests are used to test the functionality of the
different SoC devices. These tests are currently used for validation purposes but can
also be leveraged for runtime verification.

For off-chip communications, applications safety shall be supported only if the
underlying off-chip communication is based on a safety-critical infrastructure (e.g.
Time-sensitive networking). However, other than such safety-critical communication
infrastructure, a fail-safe mechanism is also considered for the FRACTAL
communication. That is, the node needs to remain safe (i.e. transition to a safe state)
if the communication with other nodes is down. However, data integrity and
authenticity conveyed by the FRACTAL communication are secure features that are
also important for safety, not to make any decision based on flawed information.

6.4 Artificial intelligence

The utilization of artificial intelligence (AI) techniques in the context of FRACTAL
applications with safety requirements are constrained. In general, the utilization of
Al does not involve tasks of the system mapped to a certain criticality level. For
instance, following 1S026262 nomenclature Al tasks are restricted to QM (quality
management) functionalities only. That is, functions without safety relevance and
that only require standard Quality Management processes. Otherwise, safety
violations in absence of HW or SW failures that are a consequence of limitations in
the algorithms, sensors or actuators must be also considered as defined in the
ISO/DIS 21448: Safety of Intended Functionality (SOTIF) automotive sector
standard.

Even in this constrained scenario, the deployment of Al techniques in platforms that
involve critical functionalities (e.g. mixed criticality systems) is challenging. The
reason is that sharing the same CPU between critical and non-critical tasks requires
ensuring the existence of partitioning mechanisms (provided by Linux or a
hypervisor) to allow Al related tasks not to interfere with critical tasks (neither at the
functional nor at the temporal level). The NOEL-V FRACTAL node supports the H
extension for hypervisors and partitioning hypervisors like Jailhouse or Xtratum have
been successfully ported to this platform in the context of the SELENE and DE-RISC
H2020 projects. Additionally, since accelerators are memory intensive the execution
time of critical tasks co-running in the platform can be significantly affected by such
timing interference. To solve this, we have leveraged the end-to-end QoS capabilities
of this platform that allow us to establish contention quotas that also account for the
contention caused by the accelerators. Additionally, if FRACTAL platforms make use
of Al outputs to improve non-safety properties like quality of service (QoS), energy
or availability, the AI system shall provide a measure of uncertainty in all the
decisions to get an estimate of the QoS that these systems based on Al are able to
provide. The robustness of a redundant Al acceleration scheme was analysed in D4.4.

Copyright © 2023 FRACTAL Project Consortium 36 of 74



Project FRACTAL
| Title Methodological Framework (b)

Del. Code D2.4

In summary, for FRACTAL systems, the safety of the platform should not depend on
the output of the artificial intelligence algorithms. Involving Al in the decisions that
may affect the safety of an application is however mandatory to achieve fully
autonomous certified applications. Unfortunately, this technology, while being
currently a hot research topic, is not expected to be available in the near future for
critical industrial domains.

6.5 Time-triggered NoC

Safe-on-chip communication is required when transferring critical messages within
an SoC. An NoC is a good candidate for on-chip communication when the number of
processors increases within the chip since it provides high bandwidth and scalability
and supports parallel communication. For critical safety systems, the on-chip
communication needs to provide deterministic communication in order to satisfy the
real-time system’s behaviour.

Time-Triggered communication is a good candidate for safety-critical multi-core
architecture. In Time-Triggered communication, the Network Interface of the NoC
has the capability to inject the messages from the core using a predefined schedule
that is computed offline. Having this full control of injection time for each message
within the NoC reduces the risk of message collision and reduces the jitter within the
NoC.

In summary, for FRACTAL on-chip communication, using a Time-Triggered NoC helps
the systems to meet the deadlines when message exchange is needed between cores
since it provides deterministic communication and low jitter compared to a generic
NoC.

6.5.1 Adaptability techniques for Time-Triggered NoC

The static allocation in time-triggered systems offers significant benefits for the
safety arguments of dependable systems, such as avoiding resource conflict within
the NoC. However, adaptation is a key factor for fault recovery in FRACTAL on-chip
communication.

Adaptation using multiple schedules allows the NoC to adapt based on every
predefined scenario (for example, when a fault occurs in one particular core, the
systems should be able to switch from one schedule to another and remove the faulty
core 