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Abstract: 

D2.4 “Methodologic Framework (b)” introduces a methodological framework 

specification. It is presented as a compositional workflow, which introduces the 

interactions of FRACTAL building blocks towards the integration of the FRACTAL 

computing node and the use cases. Following this global picture, the deliverable 

focuses on methodologies for several important topics for the project: AI and safe 

autonomous decisions, safety design, integration of FRACTAL platforms and 

security analysis. 
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Table 1 – Document history 

To cope with the high number of contributors, this document has been edited online. 

The Microsoft Sharepoint solution has been selected to keep information under EU 

legislation. This solution offers a reduced feature set compared to a “regular” Word 

editor. For instance, we have not been able to build a table of references and have 

instead used footnotes. 
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2 Summary 

The task T2.2 is described in FRACTAL DoA as “For the integration of the FRACTAL 

platform in an industrial environment, an important aspect is to describe (1) how it 

should be used and (2) how this usage helps to qualifications and certification of 

products developed using it, including safety-critical products.” 

Accordingly, D2.4 “Methodologic Framework (b)” introduces a methodological 

framework specification. It is presented as a compositional workflow, which 

introduces the interactions of FRACTAL building blocks towards the integration of the 

FRACTAL computing node and the use cases. 

Following this global picture, the deliverable focuses on methodologies for several 

important topics for the project: 

- AI and safe autonomous decisions 

- Safety design 

- Integration of FRACTAL platforms 

- Security analysis 

A list of abbreviations is available at the end of the document. 
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3 Introduction 

This deliverable provides a methodological framework specification. The aim of this 

framework is to identify the key enabling technologies with their supporting 

methodology and tools. 

Development of the FRACTAL node product and its sub-products (or sub-

components) are supported by this workflow. 

This document is structured into 5 main chapters. First the overall workflow of the 

project is presented in chapter 4. Then sub-workflows/methodologies for “AI and Safe 

Autonomous Decisions” are presented in chapter 5, for the “Safety Design” in chapter 

6, for the “integration of FRACTAL platforms” in chapter 7. The development of the 

risk analysis in WP4 is presented in chapter 8. 

Different WPs provide or use components for composition. This requires prior 

alignment of what is provided and what is expected: functional boundaries, 

interfaces, and other necessary information. Collaboration within the workflow 

includes handover of these artifacts between stakeholders and workflow steps while 

ensuring, managing, and maintaining composability during the workflow. 
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4 Workflow of the project 

The FRACTAL platform specifications (see deliverables D2.1 and D2.3 for more 

details)define what the framework should provide (i.e. components, tools, 

methodology and workflow) to be key enabling technologies (KETs) for the FRACTAL 

node. To limit the scope and better target the domains considered in the project, the 

use cases specifications are used as inputs. The final specifications should also 

consider the extensibility and usage of the framework in related domains of 

application. 

4.1 Capturing Requirements 

Figure 1 shows the overall workflow used to capture requirements during the 

FRACTAL project. First, the different demonstrators have been specified (i.e. 

scenarios, features, and functional and non-functional requirements) in “Integration 

and verification” (WP7) and “Case Studies” (WP8). The demos’ requirements have 

been then analysed to get a unified list of requirements and key enabling technologies 

that are being developed during the project. These have been identified into 

“Specifications & Methodology” (WP2). Third, the identified key technologies have 

been characterized and decomposed into the technical work packages: the “node 

architecture & building blocks” (WP3), “Safety, security and low power techniques” 

(WP4), “AI & safe autonomous decisions” (WP5), and “CPS communications 

framework” (WP6). At the same time WP4, WP5 and WP6 have decomposed 

requirements received from WP7 and WP8 and have realized what they needed to 

further extend the list of requirements for WP3. 
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Figure 1 – Requirements workflow in FRACTAL project 

Upon reception of external requirements, each Work Package works its internal 

requirement list and develop its “products”.  

4.2 FRACTAL Features 

There are many definitions of Feature, coming from the Software Product Line (SPL) 

community. Using the most notable definition from FODA1: A "feature" is defined 

as a "prominent or distinctive user-visible aspect, quality, or characteristic 

of a system". SPLs refer to engineering techniques for creating a portfolio of similar 

systems from a shared set of assets (components) using a common means of 

production. This portfolio of similar systems is called a Family of Products. 

Using the analogy of a car, the family of that car model is composed of the different 

versions and variations of the given car model (style, colour, engine, etc.) produced 

in the car product line. When a user wants to buy a car, (s)he has to select among 

the distinct features available. For instance, he may choose the version, the engine, 

the colour, the air conditioning system, the transmission, etc. Sometimes some 

selections force the selection of another feature. For instance, a given car style can 

 

1 Kang, K.C. and Cohen, S.G. and Hess, J.A. and Novak, W.E. and Peterson, A.S., "Feature-oriented domain 
analysis (FODA) feasibility study", Technical Report CMU/SEI-90-TR-021, SEI, Carnegie Mellon University, 
November 1990 
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force a given engine and restrict the number of other options available. That is, 

features can have distinct values and also have relationships/dependencies. Even, 

some features can be optional (e.g. sunroof). Here, the user must be able to 

understand the features in a model to be able to configure a valid product. The car 

seller helps the user to understand the given options to configure a valid car to be 

produced. 

In the context of FRACTAL, a FRACTAL Feature is a distinguishing characteristic 

of FRACTAL, visible to users that will configure FRACTAL for their use cases. 

FRACTAL Features can describe functional characteristics (hardware, software), non-

functional characteristics (performance or other criteria) or even other parameters 

(cost, max weight). A Feature Model is a hierarchical diagram that visually 

depicts the features of a solution in groups of increasing levels of detail. Feature 

Models are compact representations of all the products in a Family in terms of 

features and provide a great way to summarize the features that will be included in 

a solution and how they are related in a simple visual manner. 

Summarizing, the FRACTAL Feature Model describes the variability in FRACTAL’s 

family of products in terms of FRACTAL Features. Use Cases represent variants 

of FRACTAL products, this is, specific product realizations. 

Based on the concepts described in FRACTAL Document of Agreement and the needs 

and requirements captured from the Use Cases, a FRACTAL Feature Model has been 

built (and is maintained alive as those needs evolve). This FRACTAL Feature Model 

has been introduced in D2.3 as a tree representation with increasing levels of detail. 

On the first level, FRACTAL high level features are defined (see figure 2). 

 

Figure 2 – FRACTAL High Level Features 

A short definition of these features follows: 
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• Adaptability: Ability to adapt system behaviour to surrounding scenario. 

• Context-awareness: Ability to detect and react to context and surroundings. 

• Openness: FRACTAL Core should be Open to be used, and mainly based on 

open-source licenses. 

• Safety: Be resilient to internal failures. 

• Security: Be resilient to external attacks and menaces. 

• Reliability: The system should behave consistently well. 

• Low Power: Ability to support low power scenarios. 

• Fractality: Ability to support fractal configurations, which can be seen as the 

organization of nodes in distinct layers and the communication/connectivity 

involved. 

FRACTAL Use Case requirements (see Use Case requirements defined in D2.3) have 

been used to guide the feature model construction. For instance, based on the 

requirement: 

REQ_UC4_06 - the edge node shall provide dedicated HW accelerator to process the 

CNN layers (Yolo) of AI inference. 

The following features have been defined: 

• Adaptability -> AI -> HW -> AI ML Accelerator 

• Adaptability -> AI -> SW -> Inference -> Location -> Edge Node 

• Adaptability -> AI -> SW -> Learning/Training -> Algorithm -> Yolo 

• Adaptability -> AI -> SW -> Learning/Training -> Algorithm -> CNN 

Using another example from other UC, based on the requirement: 

REQ_UC6_14 - The edge node shall acquire images from at least one HD camera. 

The following features have been defined: 

• Context Awareness -> Sensors -> HD Camera 

The lower the level of the feature in the tree, the higher the detail. For instance, 

figure 3 partially presents the Adaptability feature subtree: 
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Figure 3 – FRACTAL Adaptability partial subtree 

Adaptability is considered as the ability to adapt system behaviour. System behaviour 

can be adapted by (1) extending the system through port connections or extending 

the software stack; (2) introducing AI that deals with adaptation; (3) orchestrating 

the data on which adaptation is based; (4) orchestrating the services executed on 

FRACTAL nodes or (5) changing the operation mode of the system based on a certain 

detected condition. 

4.3 FRACTAL Product Composition 

Technical Work Packages (WP3-6) implement the shared set of components (building 

blocks) required to produce the Use Case variants. WP3 provides the node definition 

and platform. WP4, WP5 and WP6 add their products on top of the results of WP3 

(see figure 4). In particular, WP3 provides the hardware and software components 

(aka primitives) and platform nodes that allow building complex services and 

properties. On top of this in WP4, WP5 and WP6 aim on smartly combining them in 

accordance with specific UC goals. The first global integration attempt is performed 

in the verification phase WP7 that helps fine tune all products and then everything 

should be ready to the final validation in WP8. 
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Figure 4 – FRACTAL products composition workflow 

To ease FRACTAL Product composition, the components developed in the technical 

WPs have been associated with the corresponding features it implements (defined in 

D2.3) and in which architectural layer it operates. In FRACTAL, three main 

architectural layers have been identified: 

• Node Layer: References node base infrastructure layer, be it a device (low-

level SW & HW) or the cloud itself. 

• Orchestration Layer: Executed over the node layer, provides a standardized 

execution environment to FRACTAL Nodes as containers and defines the 

FRACTAL Distributed System (how nodes and concrete containerized services 

are added/removed/configured). Containers provide a base standard for the 

development and distribution of application logic to FRACTAL Nodes. 

• Application Layer: Specific application logic is built as services in containers 

and deployed over nodes. Services make use of the specific Node Layer 

offerings if needed (e.g., HW Acceleration, Diverse redundancy libraries, etc.). 

This layer includes data ingestion, federated data collection, data pre-

processing, edge ML API, etc. 

Use Cases have selected the specific features they are interested in from the FRACTAL 

Feature model. The specific valid selection of features by a Use Case is called Bill of 

Features. 

By doing so, through the component relationship, Use Cases select the list of 

FRACTAL components they are interested in. Finally, a FRACTAL Production plan will 
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be in place, which given a Platform (selected on the specific bill of features) and the 

set of selected components, defines how to build the FRACTAL product (see figure 

5). 

 

Figure 5 – FRACTAL production plan 

Section 7.1 “Operational integration” presents this composition workflow exemplified 

on a given Use Case. 
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5 Methodology and workflow for AI and safe 

autonomous decision 

This chapter looks at the AI building blocks in WP5, focusing especially on the 

FRACTAL autonomous decision framework (section 5.1), the FRACTAL service 

architecture and middleware (section 5.2), and a common framework and format for 

FRACTAL inference models (section 5.3). Further, the chapter looks at AI functionality 

required by the use cases, concentrating in particular on UC2 (Automotive air path 

control) (section 5.4) and UC6 (Intelligent Totem) (section 5.5). 

5.1 AI and autonomous decision framework 

The FRACTAL AI framework aims at integrating the AI functionalities to allow 

advanced prediction capabilities in the FRACTAL node. The framework has been 

developed keeping in mind the requirements from the use cases but ensuring the 

correct degree of generality and flexibility. The FRACTAL node must be able to take 

decisions in an autonomous way. This means that while data are measured from the 

field, the FRACTAL node must be able to analyse the data and make all the inferences 

needed to make the right decision in real time, without the need of communicating 

with external server. Notice that, when talking about AI, we need always to 

distinguish between the training phase and the inferencing phase. In the first one, 

historical data are used to train the AI models while in the second one the already 

built models are used to make predictions and decisions about the new incoming 

data. 

Since in the studied use cases the system’s behaviour is not changing with high 

frequency, it is not necessary to perform the training phase very often and, above 

all, to have a response quickly. Usually, the training phase is done once or is updated 

on a regular basis if the system is supposed to undergo some changes in the 

behaviour. So, two different scenarios are considered: 

• For the first tests, pretrained models are deployed on the edge node. These 

models are either already available in literature or obtained training the data 

coming from the first tests. 

• The training is done periodically. In this case (see figure 6) data are 

automatically transferred to a cloud service (via 5G or Wi-Fi connection) where 

they are stored in a database and used for building a model. Task 5.2 and the 

related deliverables developed the cloud framework for treating data and 

performing AI processing. The model is then sent back to the device where it 

is used for subsequent elaborations. Notice that in this case the network is 

not a bottleneck since FRACTAL node can continue its processing even without 

the generation and the transferal of new model. So, if for some reason the 

connection is not guaranteed the system can go on working. 
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Since it could be unfeasible (due to huge amount of produced data) or inappropriate 

(for example for security or privacy reasons) to send all the data in FRACTAL also the 

possibility of using Federated Learning approaches has been studied. According to 

Federated Learning also the training phase is done on edge nodes. Each node uses 

the available data to build a local model. All the models can be further processed by 

a supervisor to improve their quality, but, nonetheless, each node is independent and 

can also use the model generated on its own data. 

In any case the inferencing phase is performed on the FRACTAL node since the 

decisions should be taken very quickly, which is not in line with sending data over 

the internet. Moreover, the system should work also without connection, so the node 

must be autonomous in taking decisions. 

So, the FRACTAL node is equipped with a layer able to perform some basic pre-

processing operations on the data and an AI module able to use already built models 

to make decisions about new incoming data. The elaboration must be very quick 

because in some use cases, decisions are expected to take place within 100 ms. 

Moreover, the module is able to do some aggregation on the data; in this way, data 

could be sent in an easier way to a cloud service where the AI models could be 

updated. 

 

Figure 6 – Functioning of the online training for the FRACTAL node 

The AI model that is implemented in the FRACTAL node according to the needs of the 

use cases: 

• Video analysis 

• Audio stream analysis 



 

Project FRACTAL 

Title Methodological Framework (b) 

Del. Code D2.4 

 

  
 Copyright © 2023 FRACTAL Project Consortium 18 of 74 

 

• Supervised and unsupervised learning 

• Time series analysis 

5.1.1 Video analysis 

Video Content Analysis deals with the extraction of information from images and 

video. Such information can be used for further processing done in “high-level” 

applications that collect and correlate data from heterogeneous sensors. Modern 

Video Content Analysis (VCA) systems are based on AI approaches: after a proper 

training phase, they can understand how to analyse and detect relevant information 

inside images and video streams. 

The first step needed to build an AI-based VCA system is to define exactly the kind 

of information to be recognized and detected. There are different possible tasks: 

• Classification: assignment of images to different classes or groups, according 

to their content. 

• Tagging (or labelling): it is a classification task more complex with respect to 

the previous one; multiple labels can be associated to an image as the VCA is 

able to recognize multiple “scenarios” or “concepts” in it. A practical example 

can be useful to explain differences: classification can distinguish between 

images collected indoor or outdoor while tagging can add multiple labels to 

the same images like outdoor, city, road intersection or indoor, house, 

bedroom for example. 

• Detection/Segmentation: both previous tasks are focused on detecting the 

presence of one or more reference target (object, person, a scenario etc.) in 

an image or a video. Detection and segmentation can also infer the location 

of such target(s) inside the image. In particular: 

o Detection process generates as output a bounding box that surround 

each target detected, 

o Segmentation process detects the shape of each target as it performs 

a pixel-based decision (i.e., each pixel can be assigned to background 

or to a specific target). 

During FRACTAL, and in particular in Use Case 6, detection and/or segmentation 

tasks play a crucial role, as they are extremely useful to the FRACTAL node to 

understand its surrounding environment. As a matter of fact, targets detection and 

localization enable further processing like for example counting the number of 

persons and or reference objects within a specific area. Also target tracking is a quite 

relevant function in the scope of FRACTAL, in particular for those applications related 

to safety and security control. 

VCA, as any other AI system, is based on a training phase in which the system learns 

to detect and recognize a target. In general, the training can be supervised or 

unsupervised. For the VCA, training is supervised, meaning that the system learns 

how to perform the detection through a set of labelled (annotated) images. Basically, 

such annotated dataset (e.g., a large number of images with a person inside) is the 
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input for the training phase; after the training phase, the output is a model that, at 

runtime, can be used to perform the task (in this case people detection). 

Such training phase has a relevant impact on VCA performance, that is dramatically 

affected by the training set characteristics. In particular, this dataset must include 

an adequate number of images, it must be accurate, meaning that images used for 

training should be similar to those analysed at runtime, but at the same time, it must 

be representative of all the different alternatives that are possible at runtime. 

Overfitting and underfitting are two typical problems of AI-based VCA system: the 

model achieves poor classification/detection performance after training. In particular, 

overfitting means that there are too many parameters in the model and a high 

variability of the classification. Therefore, the model is too complex and sensitive to 

training dataset (high variance). On contrary, underfitting means that there are few 

parameters in the model and a high classification discrepancy (high bias). In other 

words, underfitting can be explained as the model is too simple and therefore unable 

to provide good results during prediction; overfitting is when the model is too good 

to be true, as it performs very well analysing training data but it is completely unable 

to be generalized and therefore achieve very poor results on runtime prediction. 

As previously said, the training phase and therefore the training set play a crucial 

role in the VCA system performance. A limited amount of data for training, in this 

case annotated images, is one of the worst scenarios concerning an AI-based VCA 

system. Data augmentation is a useful technique to overcomes this problem. It 

consists in a manipulation of available images in order to increase artificially the 

dimension of the dataset. For example, some pictures in the database can be 

transformed by rotating, flipping them or by modify colour, contrast or brightness. 

Recently has been emerging a new approach for data augmentation based on the use 

of Generative Adversarial Network (GAN). Such particular type of Neural Network is 

here mentioned as it is quite relevant in the AI framework for the VCA. Moreover, it 

is taken in deep consideration during the next phases of FRACTAL, in particular in 

WP5. Several details are included in the deliverable D5.1 and D5.3. 

Most methods for object detection are essentially based on CNN. Convolutional Neural 

Network is a specialized kind of neural network for processing data with a known 

grid-like topology, like images or time series. For our purpose we focus particularly 

on images. These are the most common methods: 

Regional Proposals: These methods are organised in two phases: in the first phase, 

a convolutional NN is used to identify the regions where a certain target object could 

be found; in the second phase, a more precise NN is trained to confirm or not the 

presence of the object. Relatively heavy approach, but one that can achieve very 

high accuracies. The first network does a coarse skimming while the second can be 

very precise in identifying real targets. The most used NN architectures are: R-CNN 

, Fast R-CNN, Faster R-CNN, and cascade R-CNN. 
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Single Shot Detector (SSD): It presents an object detection model using a single 

deep neural network combining regional proposals and feature extraction. A set of 

default boxes over different aspect ratios and scales is used and applied to the feature 

maps. As these feature maps are computed by passing an image through an image 

classification network, the feature extraction for the bounding boxes can be extracted 

in a single step. Scores are generated for each object category in every of the default 

bounding boxes. In order to better fit the ground truth boxes adjustment offsets are 

calculated for each box. 

You Only Look Once (YOLO): It is a fast real-time multi-object detection algorithm 

that utilizes a single convolutional network for object detection. Unlike other object 

detection algorithms that sweep the image bit by bit, the algorithm takes the whole 

image and reframes the object detection as a single regression problem, straight 

from image pixels to bounding box coordinates and class probabilities. In more 

details, it takes an image input, splits it up on a SxS grid, passes it through a neural 

network to create bounding boxes and class predictions to determine the final 

detection output. It is first trained multiple instances over an entire dataset before 

being tested on real-life images and video. The advantage of these networks is that 

they are (relatively) fast, work on a single frame and can recognise objects of very 

different scales. 

Typically CNN is a sequence of different types of layers. The input to the CNN is a 

pixel array of an input image. The intermediate results obtained are a set of feature 

maps. The outputs obtained are in the form of conditional probability for a given set 

of inputs. Highest probability for a choice depicts the confidence of the network in 

that output. 

 

Figure 7 – Object detection example using CNN approach 

The CNN-based object detection requires a high volume of parameters and 

calculations to extract features in the image and make predictions about the objects. 

To meet this requirement, many researchers adopt high-performance devices, such 

as graphics processing units (GPUs), central processing units (CPUs), field-

programmable gate arrays (FPGAs), and application-specific integrated circuits 

(ASICs), to build onboard real-time systems. It is difficult for CPUs to take full 

advantage of parallel computing to meet real-time processing. They are rarely used 

as CNN implementation platforms. While the computing performance of GPUs is 

fantastic, the high-power consumption hinders their usage in the onboard system 

with limited resources and power budgets. FPGAs and ASICs have the advantages of 
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high performance and energy efficiency. Thus, taking these low-power devices as 

hardware implementation platforms for CNNs has become a research hotspot. 

However, ASICs require a long development period and high costs to be designed. 

Therefore, owing to the advantages of the short development period, energy 

efficiency, and reconfigurability, FPGAs are the ideal implementation platforms for 

CNNs. Therefore, if the FPGA can be used to implement the target detection 

algorithm, the hardware volume can be greatly reduced, and the implementation 

speed is fast, the flexibility is high, and the power consumption is low. 

5.1.2 Supervised and unsupervised learning 

Besides the analysis of video and audio streams, other AI tasks could be implemented 

in the FRACTAL AI framework. In this subsection a short overview of more traditional 

machine learning applications that could be used to analyse data deriving from use 

cases. The methods introduced here deal with structured data, i.e. that can be 

organized in tables. Usually, a distinction is done between supervised and 

unsupervised methods. Supervised methods assume that data are somehow labelled 

either in a natural way or because some human has labelled them manually. This 

label is the target of supervised methods since they aim at building a model able to 

predict the value of the target starting from a set of inputs. According to the type of 

target, classification or regression problems could be defined. Multilayer Perceptron 

(MLP), Support Vector Machine (SVM), Logistic Regression (LR), Decision Trees (DT) 

are methods for supervised learning. 

On the other hand, in unsupervised problems, no target variable is available and the 

goal is to find information within the data. For example, some unsupervised 

approaches are: 

• Clustering, aimed at organizing data in homogeneous groups. 

• Outlier detection, that are devoted at finding configurations that deviate from 

standard behaviour. 

• One-class classification, whose goal is finding a classification model when only 

data of one class are available. For example, data about failures could not be 

yet available in historical data in a predictive maintenance application. 

• Sequence Analysis and Anomaly Detection, aimed at analysing time 

sequences to detect frequent or uncommon patterns that could be related to 

regular or anomalous behaviours. 

In general, these approaches could be used in association with the analysis of audio 

and video streams. As a matter of fact, the analysis of video and audio could generate 

features that can be used as an input of supervised or unsupervised tasks. 

Moreover, it is worth noting that some techniques belonging to this class also allow 

the generation of intelligible models, according to the Explainable AI (XAI) paradigm, 

enabling applications where the understandability is a key feature. 
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5.2 Distributed AI and the AI services in the middleware 

 

Figure 8 – FRACTAL cognitive agent and the corresponding node architecture. 

Building upon the architecture described in section 5.1, the FRACTAL framework 

supports common AI workflows related to distributed learning and decision-making. 

In more detail, a FRACTAL cognitive agent (figure 8) interacts with other system 

components, devices and data sources through the services provided by the platform 

middleware. In its operation, it uses and exports both internal and external interfaces 

for connecting to its sensors and actuators and to external services and data sources, 

for operational control (e.g., setting the agent goals), and for sharing its results, 

knowledge and data. The agent architecture is internally composed of software 

components with varying roles, such as modules for interactions, decision making, 

implementing and evaluating the selected actions and interactions. 

 

Figure 9 – Agent components and APIs. Active component shown in blue. 

To facilitate orchestration of the operations towards optimal Quality of Service and 

performance, the run-time deployment of each software component must be decided. 

To this end, the agent architecture must consider the application requirements. For 

example, some processing-heavy components (e.g., the learning element) could be 

run on a nearby edge node or on the cloud, while others may run on-device (see 

figure 9). As a result, the edge-cloud framework provides component online 

deployment (including offloading and migration), management and monitoring 

functionalities. 
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On the one hand, the framework enhances the adaptivity of the individual nodes in 

response to the dynamics of the environment, the state of the platform, and 

application requirements, by allowing control of its communication-computation 

trade-off (e.g. latency vs. data transmission vs. computational load). On the other 

hand, such a framework increases operational complexity significantly and introduces 

a need for (partially) autonomous decision-making by the components. Figure 10 

further illustrates the related horizontal offloads and vertical migrations. 

 

Figure 10 – Hierarchical component transfer framework. 

For those of the agent components, which encompass learning and decision-making 

elements, the framework requires data and knowledge sharing and collaboration 

across the platform. For example, some components may employ a federated 

learning schema (see figure 11), where a number of edge nodes, coordinated by a 

cloud node, collaboratively build a shared understanding (e.g., a model). The 

architecture, and largely the framework, must thus allow the online sharing of data, 

results and knowledge, all the while monitoring and evaluating the operation and 

environments of each component taking part in the learning. 

 

Figure 11 – Federated leaning in a FRACTAL system. 

Further, while an agent makes partially autonomous decisions, a number of use cases 

also call for collaboration and co-operation (e.g. through swarm intelligence) as 

distributed decision-making, targeting operational efficiency and effectiveness of the 

system. To facilitate such a multi-agent system, the agent must support sharing of 

both data and knowledge, leading to complex interactions between the agents and 
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other system components (figure 12). Such an integrated architecture is also 

required to support the top-down/bottom-up control in the operational framework, 

further specified in T5.4. 

 

Figure 12 – Distributed decision-making in a FRACTAL system. 

In addition to placing and allocating the application components, the distributed AI 

framework must also cater for the flow of data used to build those models. Indeed, 

the middleware has to provide interfaces for application components to publish data 

sets or streams as well as to subscribe to them, while keeping track of the placement 

of both: if a component is offloaded or migrated, its pub/sub endpoint has to move 

accordingly. 

Moreover, taking into consideration the dynamic nature of the edge-cloud computing 

continuum, at times the streams have to be routed anew due to link capacity changes 

between components. Finally, the data streams themselves can also change in 

volume and velocity, requiring a reconsideration of the stream routing. 

Optimally, the framework thus considers simultaneously the communication, 

computation as well as data-related resources while orchestrating the distribution of 

AI models in the computing continuum. 
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5.3 Use of LEDEL 

 

Figure 13 – Development stages of LEDEL in FRACTAL 

EDDL (https://github.com/deephealthproject/eddl, European Distributed Deep 

Learning Library) is a Deep Learning (DL) toolkit designed and developed to provide 

support to design and train Deep Neural Networks (DNNs) on single computer nodes 

and on hybrid HPC + Big Data computing architectures. EDDL is ready to leverage 

hardware accelerators, such as GPUs and many-core CPUs. It also uses the ONNX 

standard format (https://onnx.ai) to import/export DNNs. Thus, trained DNNs can be 

used on production environments to infer/predict. LEDEL (Low Energy EDDL) is the 

adaptation of the EDDL to run on Low Energy hardware. Trained DNNs using the 

EDDL are easily employed to infer/predict in production environments working with 

the LEDEL. In figure 13 we can observe different tools provided by EDDL. 

LEDEL is about to be ready to run on Edge computing hardware that has been 

developed in FRACTAL. This hardware has limited computing capabilities but is more 

powerful than existing low energy hardware so far. Thus, thanks to LEDEL, not only 

is it possible to make decisions based on simple conditions, but more complex 

decisions based on indicators provided by more sophisticated algorithms running on 

the edge are feasible to be made as well. As an example, we are able to evolve from 

simple presence detectors to decide whether to switch on lights, to much more 

complex scenarios where the number of people in a room and the distance between 

https://github.com/deephealthproject/eddl
https://onnx.ai/
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individuals is computed every few seconds in order to adapt room conditions such as 

light intensity, cooling and heating, only switching on the required lights, etc. 

The tasks involving the LEDEL in the FRACTAL project are shown in figure 13 and 

defined as follows. 

- EDDL adaptation to run on RISC-V based hardware in the NOEL-V processor 

model proposed (WP3, T3.5). 

-  In order to check the correct execution of the LEDEL as a software service in 

a FRACTAL node, an example of a use case from the DeepHealth project has 

been adapted and tested for its correct behaviour (WP4, T4.1). To emulate 

the FRACTAL node, a simulated environment has been built using an/the Isar 

of Siemens [https://github.com/siemens/isar-riscv]. The model has been 

trained outside the node, imported into an ONNX file and transferred into the 

emulated node. Finally, the net from the ONNX has been loaded into a 

program implemented using LEDEL and checked for its proper behaviour 

(check D4.2 for further detail) 

- The work carried out in WP5 corresponds to the investigation of different 

models that could be used in a FRACTAL node, considering its dependencies, 

like OpenCV to execute TinyYolo, or different techniques and implementation 

approaches, such as network configuration, and layers and changing among 

different learning techniques like reinforcement learning. 

- Finally, SML is providing support to check the integration of the LEDEL in the 

FRACTAL platform and guarantying a good performance and a proper 

behaviour in UC7. 

 In conclusion, LEDEL is almost ready, as a service offered in a FRACTAL node, to be 

able to perform more complex calculations (i.e., to run more sophisticated 

algorithms). The goal is to develop an API that provides deep learning functionalities 

that are devoted to face the deployment on low energy computing infrastructures. 

LEDEL is already accessible in the FRACTAL project repository 

(https://github.com/project-fractal/WP3/tree/main/Components/WP3T35-

03%20LEDEL) and a very complete tutorial with examples and docker files are 

presented in order to make it easy for FRACTAL partners to use it in their use cases. 

5.4 Advanced control strategies in the automotive domain 

Existing automotive control strategies are fully reliant on model-based control 

strategies. These techniques imply a high calibration effort and the ability to perform 

self-learning through observations is very limited. This use case therefore contributes 

to integrate the environmental influences and changes as a fundamental part of the 

system, among other benefits, like potentially increased product quality and 

increased efficiency for the development of customized controllers. The FRACTAL 

nodes are crucial to the implementation of this use case. 

The FRACTAL framework shall demonstrate the following objectives: 

https://github.com/siemens/isar-riscv
https://github.com/project-fractal/WP3/tree/main/Components/WP3T35-03
https://github.com/project-fractal/WP3/tree/main/Components/WP3T35-03
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• Inference of data-driven models aimed at improved energy efficiency and 

reduction of environmental pollutants on the FRACTAL node 

• Online self-adaptation algorithms of the initial state model, to react to 

variations regarding the environment and different driver behaviours 

• Freeze frame data collection and connection to the cloud for re-training 

purposes 

In figure 14 an overview of the planned (implementation) interactive environment 

schema can be seen. Three different model operations can be differentiated. Firstly, 

the model inference of the initial state AI-based model, as a result from the model 

development process, which is implemented to replace the conventional control 

strategy. Secondly, the model adaption during the vehicle in-use phase, to cover the 

model blind spots coming from the limitations of the input data used for model 

training and to have the possibility to adjust to vehicle specific parameters. The 

adaptation algorithm would compare the output of the model inference with the 

measured data and in case of a deviation, learn and preserve the additional 

information. Thirdly, a cloud connection is established to utilize the potentials of 

crowdsourcing and the access to extensive information from other drivers/vehicles, 

with the overall target to optimize the control strategy from many different aspects 

(e.g., changes in environmental conditions, variability, coverage of different 

operation modes, etc.). Since this task comprises the use of big data, a 

computationally heavy training infrastructure is needed and would therefore require 

cloud computing for the execution. 

 

Figure 14 – Overview of FRACTAL framework needed for Automotive implementation 

5.5 Image classification 

Modern deep learning architectures achieves state-of-the-art performances on vision 

tasks such as image classification, tracking and segmentation; nevertheless, the 

adoption of these approaches into critical domains is still limited. Two key aspects 

limiting the diffusion of these approaches are the limited interpretability of the 

learned models and the lack of specific guidelines to efficiently and effectively perform 

the optimization of their hyper-parameters. 
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Within the scope of the FRACTAL project the methodological approach taken for this 

task is twofold. From one hand, it pursues the adoption of state-of-the-art explainers, 

specific algorithms that provide human-interpretable explanations about the model 

predictions. One of such explainers that has gained much attention for vision tasks 

is LIME (Local Interpretable Model-Agnostic Explanations). Roughly speaking, LIME 

takes as input the learned deep network and the image to classify; as output, it 

provides the classification of the image along with the image enriched with patches: 

the patches highlight the areas that most contributed to the classification of the 

image. Since the patches are visual, they are, usually, very-well interpretable by 

human users. 

On the other hand, the idea of incorporating the optimization of important pre-

processing hyper-parameters into the training and the test phases is promoted. Both 

these aspects are demonstrated in the context of a clinical application, diabetic 

retinopathy detection. 

More specifically, suppose that the processing pipeline use some pre-processing 

algorithm A to perform a given step of pre-processing. Suppose also that A requires 

as input some parameter p besides the image to process; and suppose also that p 

must be specified on a per-image basis. A typical approach to this problem, is to 

perform some expensive grid-search procedure, image-per-image, to find each time 

the best value for p according to some mathematical criterion. This results in an 

extremely time-consuming approach that is not even necessary correlated with good 

predictive performances. Indeed, the existing optimality criteria for A might be not 

connected with its role in the prediction pipeline. To overcome these limitations, it is 

possible to learn the best parameters to use at training time. In particular, the 

predictive model is trained jointly with another deep learning architecture – in an 

end-to-end fashion – whose sole role is, given an image x, to predict the best value 

p(x) for the parameter of A to use. The image is then pre-processed using A 

parametrized by p(x). This approach has two advantages, first at test time, given an 

image, predicting the parameter to use for A requires only a feedforward step which 

is typically faster than performing a grid search. Second, the parameter of A is 

optimized to obtains the best predictive accuracy, as one would expect. In order to 

learn both networks, the models are connected together through a differentiable 

layer (e.g., the Gumbel soft-max activation) which allows for the backpropagation of 

the gradients. In this way, both models are optimized to reach the best predictive 

accuracy. 

Diabetic retinopathy (DR) is a dangerous disease that can lead ultimately to 

blindness. A timely diagnosis of this pathology is fundamental to limit its consequence 

on the patient. Recent research studies have shown the potential benefits of adopting 

deep learning methods to support the specialist in the analysis process. In particular, 

those methods have achieved nearly human performances in the task of classifying 

certain levels of retinopathy. 

However, such algorithms mostly act as black boxes taking as input a high-resolution 

image of the eye fundus, and producing as outputs a prediction on the level (if 
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present) of retinopathy affecting the patient. The black-box nature of these methods 

limits their usability as support tools from the specialist that has no clues to 

understand the factors that caused the model to output a certain prediction. 

Moreover, updating and tuning these algorithms for the specific cameras is a timely 

consuming and poorly defined process due to the lack of well-defined mathematical 

objectives. An important example of this issue is given by the image equalization 

algorithms, that turned out to be fundamental to obtains good performances in this 

task. These algorithms, most prominently CLAHE, require the user to provide one or 

more parameters that control their behaviour. Unfortunately, it is not clear how one 

should choose these parameters, and current solutions are often based on expensive 

greed search procedures. The proposed methodology is used in the context of a 

methodological study described in D5.6. In figure 15, a DR detector enriched with 

the LIME explainer is shown. An image is given an input to the processing pipeline 

and, and explanation about its prediction is built according by LIME. In figure 16 

instead the end-to-end approach to the image equalization problem is shown. Here 

the image is given in input to the first network, that predict the parameter of CLAHE 

(the image equalization algorithm); then the image is equalized by CLAHE with the 

predicted parameter, and finally is given in input to the second network for the DR 

detection. 

 

Figure 15 – Image classification with explanations, an example in the context of DR detection 

 

Figure 16 – End-to-end learning for hyper-parameters optimization, and example in the context of DR 
detection. 
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6 Measures and strategies for safety design 

To build the safety concept for a FRACTAL system, a number of safety-related 

properties need to be built bottom up. Generally, these properties relate to the ability 

of the system and its components to detect, manage and/or tolerate faults and or 

behaviour beyond the intended functionality. This chapter covers those aspects for 

the different components in the form of safety measures and strategies. In particular, 

approaches are presented to deal with faults for the computation of an application 

(diverse redundancy), timing interference across applications, communication across 

nodes, AI-related processes and time-triggered NoC. 

Note for the reader: the D2.2 sections “6.1 Guidance to define a methodology for a 

safety-related development (ISO61508) tailored to an R&D cooperative project” and 

“6.3 Certification of VERSAL platform and related applications” have moved to D2.5 

“Safety-critical applications regulations compliance handbook”. 

6.1 Diverse redundancy 

Fault detection in a FRACTAL system architecture can be efficiently provided bottom-

up. This implies that appropriate safety measures need to be deployed along with 

computation means. Safety measures for the highest criticality functionalities (e.g. 

ASIL C and D) include some form of diverse redundancy so that a single fault, despite 

affecting all redundant elements, cannot lead to exactly the same error, which might 

escape detection. 

Common Cause Failures (CCFs), in automotive terminology, are those failures caused 

by a single fault that makes safety measures, such as redundancy, ineffective. For 

instance, two identical cores executing the same task redundantly fully synchronized 

have the same state, and upon a common fault (e.g. a voltage drop) could experience 

the same error. To avoid CCFs, safety-related systems implement redundancy with 

some form of diversity so that the risk of experiencing identical errors in redundant 

elements is residual. In the case of storage, this is usually achieved using Error 

Detection Codes, in the case of communications using Cyclic Redundancy Check 

codes, and in the case of computation, using some form of lock-stepped execution 

where two or more identical cores execute identical software but with some 

staggering (i.e. time shift) so that cores' state is sufficiently diverse. 

Therefore, platforms intended to run functionalities with high integrity requirements 

need some form of lock-stepping support. This can be achieved with tight lock-

stepping, where only one redundant core is visible at software level and the others 

can only work in lock-step mode, as done, for instance, by the Infineon AURIX 

microcontrollers for the automotive domain. 

Tight lock-stepping at core level can be implemented with different flavours. For 

instance, one could compare the outcome of each instruction or even each pipeline 
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stage every cycle2. However, the most effective solution has been shown to compare 

only off-core activity (e.g. requests visible in the interconnect) to reduce the 

overheads while avoiding any visible impact due to errors. 

While this solution is highly effective to attain diverse redundancy, it is inflexible since 

it does not allow using the cores independently to run different tasks. An alternative 

is using light lock-stepping, where redundancy is created and managed at software 

level, and independent cores are used enforcing staggering with SW-only means, as 

illustrated in figure 17. 

 

Figure 17 – Schematic of the SW-only lightweight lock-step. 

SW-only diverse redundancy builds upon the creation of redundant processes at 

software level, so that both of them receive the same – redundant – input data and 

return their results for comparison in a safe CPU. Without loss of generality, this 

discussion focuses on dual-core lock-step, which is the common approach in many 

domains, including automotive. 

The methodology builds on the use of three threads (see figure 17): 

• Monitor. The monitor is the one spawning the redundant computation threads 

(head and trail), and monitoring and enforcing staggering between them. 

• Head thread. The head thread executes the functionality without any specific 

control for the sake of achieving diverse redundancy. 

• Trail thread. The trail thread executes the functionality redundantly with 

some staggering (delay) with respect to the head thread. Therefore, if the 

staggering at any point is too short, it is stalled for a while. 

 

2 A more detailed analysis of the different alternatives can be found here: C. Hernandez and J. Abella, 

"Timely Error Detection for Effective Recovery in Light-Lock-step Automotive Systems," in IEEE 

Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 34, no. 11, pp. 1718-

1729, Nov. 2015, doi: 10.1109/TCAD.2015.2434958. 
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Since the monitor lacks any form of redundancy, it needs to run in a native lock-

stepped core, which may be in a separate microcontroller, or may also be in the same 

microcontroller. The monitor spawns the head and trail threads into two other cores, 

which do not implement tight lock-stepping support. Then, the monitor performs the 

following steps periodically every Tcheck cycles: 

1. Collects the instructions executed count (IC) from both threads, so IChead 

and ICtrail. 

2. Computes the difference between both counters and compares it against a 

threshold Istagger. 

a. If the head thread is sufficiently ahead from the trail one, then both 

threads continue the execution. Formally, execution continues 

normally if (IChead - ICtrail) > Istagger. 

b.  Else, if the trail thread is too close to the head one, then the monitor 

stalls the trail thread during the next monitoring period (so Tcheck 

cycles). Formally, the trail thread is stalled if (IChead - ICtrail) <= 

Istagger. 

3. Finally, the monitor sleeps until the remaining time until elapsing Tcheck 

cycles. 

This mechanism guarantees that the trail thread cannot catch up with the head thread 

as long as the instruction threshold Istagger is large enough so that, even if the 

head thread stalls completely and the trail thread executes at the maximum possible 

speed, the trail thread cannot catch up with the head thread since one monitoring 

period until the next one. This implies that executing a Istagger instructions must 

require at least Tcheck plus the time to detect that the current staggering is too low 

and stalling the trail thread. 

In the context of automotive systems, as well as in other domains, as long as faults 

are managed short enough after their occurrence, only single-point faults need being 

considered. Single-point faults are those faults caused by a single event even if such 

event can lead to multiple errors. This is explicitly covered in ISO 26262, part 5, 

clause 7.4.3.3: “Evidence of the effectiveness of safety mechanisms to avoid single-

point faults shall be made available”. 

Hence, the following scenarios are possible for single-point faults: 

• The fault affects one or the two computing threads (head and/or trail). Since 

they have intrinsic diversity due to the proposed mechanism, if the fault leads 

to errors, those will be detected by the monitor and properly managed with 

the corresponding system level recovery solution implemented (e.g., re-

execution). 

• The fault affects only the monitor. The monitor runs on a native lock-stepping 

computing core, so, if the fault leads to an error, it will be detected and 

managed as needed at system level. In this case, the execution of the threads 

is correct. Hence, one may simply use the result of the head thread since it 
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will match the one of the trail thread even if staggering is not preserved since 

the fault only affected the monitor. Since the fault affecting the monitor will 

be detected if it leads to an error, we can just compare the result of both 

threads to validate that they match. Note that the single-fault assumption 

guarantees that this later comparison is fault free. 

• The fault affects all components (monitor, head thread and tail thread). In 

this case, the monitor detects it failed, and the outcomes of both threads 

mismatch. Hence, we can proceed as in the previous case but, in this case, 

the later comparison will detect a mismatch across the outputs of the head 

and trail thread, so system recovery actions can be taken then to manage the 

impact of the fault on the monitor as well as on the computing threads. 

Overall, if a single-point fault leads to errors in any of the computing components or 

the monitor, those errors will be properly detected and reported so that system level 

recovery actions can be taken. 

6.2 Management of timing interference 

Safety-related systems, as part of their development process, must adhere to specific 

verification and validation (V&V) processes, and include safety measures to deal with 

random hardware faults that may occur in the field. This is achieved by means of 

observability and controllability knobs. Those knobs have already been deployed in 

mono-core SoCs. However, MPSoCs pose a number of challenges related to 

performance interference in the hardware shared resources across tasks running in 

different cores. Such interference must be properly accounted for and mitigated to 

meet performance-related safety requirements in line with safety standards 

specifications. In the context of FRACTAL, since such interference emanates at node 

level, that is the scope where safety measures and V&V means have been deployed 

for efficiency reasons3 (e.g., to stop excessive interference immediately rather than 

awaiting for software layers to react too late when further interferences has 

occurred). 

Commercial safety-related MPSoCs, such as, for instance, the Infineon AURIX 

processor family, include limited features to monitor and mitigate multicore timing 

interference. Typically, those MPSoCs include some form of Statistics Unit (SU) 

capable of tracking access counts, number of instructions executed of different types, 

as well as aggregated stall cycles in some buffers and queues. Those MPSoCs may 

also include powerful debug facilities such as Aurora, Lauterbach and CodeWarrior, 

 

3 J. Cardona, C. Hernandez, J. Abella and F. J. Cazorla, "Maximum-Contention Control Unit (MCCU): 
Resource Access Count and Contention Time Enforcement," 2019 Design, Automation & Test in Europe 
Conference & Exhibition (DATE), Florence, Italy, 2019, pp. 710-715, doi: 
10.23919/DATE.2019.8715155. 
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which allow collecting detailed information about events in the MPSoC. Unfortunately, 

those SUs and debug facilities have some limitations: 

• It is generally hard – if at all possible – discriminating how much interference 

each core creates on each other core since stall cycles, if available, are 

provided in an aggregated manner. 

• The MPSoC may lack means to exercise control over multicore timing 

interference. 

• Despite debug facilities are powerful, they are normally only usable during the 

development process given the fact that they require specific equipment and 

software for their use. Hence, safety measures to be used during operation 

cannot exploit those facilities. 

Specific SUs can be tailored to deal with those challenges and meet the requirements 

of safety-related systems in terms of multicore timing interference, both during V&V 

and during operation. In particular, a timing-interference aware SU would allow 

implementing appropriate safety measures if it provides the following features: 

1. Interference monitoring. Monitoring the amount of delay experienced by each 

task due to interference, and being able to identify the particular task causing 

such interference is particularly relevant to optimize the system during design 

and verification, and to diagnose deadline overruns in the field. 

2. Interference quota enforcing. Those deadline overruns can be simply avoided 

if means are deployed to set quotas on how much interference each task can 

create on each other task. 

Those features allow implementing both, reactive mechanisms and diagnostics by 

monitoring interference, as well as proactive mechanisms based on quotas to avoid 

effects due to undesired timing behaviour. Overall, those mechanisms are the basis 

to mitigate interference so that freedom from interference, as requested in some 

safety standards (e.g., ISO26262), is achieved to a sufficient extent (e.g., upper-

bounding potential interference). 

Timing interference generally manifests in the on-chip interconnection networks since 

all data sent to/from the cores needs to traverse those networks. Hence, SUs for 

timing interference monitoring and control must likely be deployed along with those 

interconnection networks. Since those interconnects use standard interfaces, such as 

AMBA AHB/ACE/AXI, SUs may be easier to integrate and reuse if they comply with 

those protocols. 

In the context of FRACTAL, if the MPSoC includes a centralized interconnect managing 

all on-chip traffic from cores (e.g., a bus), a single SU may suffice. Alternatively, if 

distributed interconnects are deployed (e.g. NoCs) so that no single location drives 

all core-related traffic, we may need to set up multiple SUs to be able to monitor and 

control all on-chip traffic. Those SUs may further require some post-processing of the 

information collected in a distributed manner to gain global knowledge about how 
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multicore timing interference is occurring. Alternatively, a single SU can be deployed 

as long as it can monitor multiple NoCs simultaneously. 

It is also common experiencing multicore interference in other components apart 

from the NoC, such as, for instance, shared caches and shared memory controllers. 

If such interference does not manifest in the form of backpressure in the NoC, just 

observing the NoC may not be enough to accurately measure all interference. In this 

case, the SU may need being extended to consider additional events such as core 

stall signals, and queue occupancy signals in caches and memory controllers. In any 

case, simple logic monitoring those signals in the SU can determine what core is 

delaying what other cores so that interference can be monitored and ascribed with 

sufficiently high precision. 

6.3 Reliable communication 

FRACTAL systems rely on inter-node and intra-node communications. To satisfy 

safety requirements, on-chip communication networks or interconnects may rely on 

state of the practice protection mechanisms such as Error Correction Codes (ECC), 

replication or monitoring. 

ECC is usually required for data links. The choice for the actual ECC implementation, 

(e.g. SECDED or parity) depends on the implementation costs and the actual safety 

need. For instance, fail-safe applications or applications with long fault tolerance time 

intervals can use simple parity bits while more stringent applications requiring fail-

operational capabilities may also require redundancy bits with correction capabilities 

such as SECDED (single error correction double error detection). 

Hardware replication. Hardware replication (e.g. duplication) might be also needed 

in addition to ECC to achieve the highest integrity levels. Implementing redundancy 

at the core level with software only means is not sufficient to protect the system from 

random faults. Actually, without a hardware mechanism that prevents cores and 

other IO to write to arbitrary locations faults affecting a core or I/O can introduce 

undesired memory corruptions. Thus, the software redundancy mechanism of the 

NOEL-V FRACTAL node requires having a memory protection unit (MMU) like the one 

present in the NOEL-V. Unfortunately, accelerators are not covered by the MMU and 

memory isolation properties are preserved in our platform using two physically 

different memory spaces for the accelerators and cores. 

Hardware monitors. Shall be integrated with the interconnect to allow built-in self-

test (BIST) and error reporting capabilities. This is usually a requirement that 

expands all integrity levels and it is aimed to ensure safe operation during the lifetime 

of an application. In the context of highly complex SoC platforms (e.g. multicores) 

these monitors should also have the capability to track software timing information. 

Existing monitors in the NOEL-V FRACTAL platform ensure that requests targeting a 

specific device (e.g. memory) have the permission rights to access such device. 

Different IDs are assigned to specific masters/tasks in the SoC so that safety-relevant 
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and non-safety relevant worlds can be built. Such scheme can also be used to by the 

AXI and AHB traffic monitors to propagate contention information to the edge SafeSU. 

Additionally, specific software-based tests are used to test the functionality of the 

different SoC devices. These tests are currently used for validation purposes but can 

also be leveraged for runtime verification. 

For off-chip communications, applications safety shall be supported only if the 

underlying off-chip communication is based on a safety-critical infrastructure (e.g. 

Time-sensitive networking). However, other than such safety-critical communication 

infrastructure, a fail-safe mechanism is also considered for the FRACTAL 

communication. That is, the node needs to remain safe (i.e. transition to a safe state) 

if the communication with other nodes is down. However, data integrity and 

authenticity conveyed by the FRACTAL communication are secure features that are 

also important for safety, not to make any decision based on flawed information. 

6.4 Artificial intelligence 

The utilization of artificial intelligence (AI) techniques in the context of FRACTAL 

applications with safety requirements are constrained. In general, the utilization of 

AI does not involve tasks of the system mapped to a certain criticality level. For 

instance, following ISO26262 nomenclature AI tasks are restricted to QM (quality 

management) functionalities only. That is, functions without safety relevance and 

that only require standard Quality Management processes. Otherwise, safety 

violations in absence of HW or SW failures that are a consequence of limitations in 

the algorithms, sensors or actuators must be also considered as defined in the 

ISO/DIS 21448: Safety of Intended Functionality (SOTIF) automotive sector 

standard. 

Even in this constrained scenario, the deployment of AI techniques in platforms that 

involve critical functionalities (e.g. mixed criticality systems) is challenging. The 

reason is that sharing the same CPU between critical and non-critical tasks requires 

ensuring the existence of partitioning mechanisms (provided by Linux or a 

hypervisor) to allow AI related tasks not to interfere with critical tasks (neither at the 

functional nor at the temporal level). The NOEL-V FRACTAL node supports the H 

extension for hypervisors and partitioning hypervisors like Jailhouse or Xtratum have 

been successfully ported to this platform in the context of the SELENE and DE-RISC 

H2020 projects. Additionally, since accelerators are memory intensive the execution 

time of critical tasks co-running in the platform can be significantly affected by such 

timing interference. To solve this, we have leveraged the end-to-end QoS capabilities 

of this platform that allow us to establish contention quotas that also account for the 

contention caused by the accelerators. Additionally, if FRACTAL platforms make use 

of AI outputs to improve non-safety properties like quality of service (QoS), energy 

or availability, the AI system shall provide a measure of uncertainty in all the 

decisions to get an estimate of the QoS that these systems based on AI are able to 

provide. The robustness of a redundant AI acceleration scheme was analysed in D4.4. 
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In summary, for FRACTAL systems, the safety of the platform should not depend on 

the output of the artificial intelligence algorithms. Involving AI in the decisions that 

may affect the safety of an application is however mandatory to achieve fully 

autonomous certified applications. Unfortunately, this technology, while being 

currently a hot research topic, is not expected to be available in the near future for 

critical industrial domains. 

6.5 Time-triggered NoC 

Safe-on-chip communication is required when transferring critical messages within 

an SoC. An NoC is a good candidate for on-chip communication when the number of 

processors increases within the chip since it provides high bandwidth and scalability 

and supports parallel communication. For critical safety systems, the on-chip 

communication needs to provide deterministic communication in order to satisfy the 

real-time system’s behaviour. 

Time-Triggered communication is a good candidate for safety-critical multi-core 

architecture. In Time-Triggered communication, the Network Interface of the NoC 

has the capability to inject the messages from the core using a predefined schedule 

that is computed offline. Having this full control of injection time for each message 

within the NoC reduces the risk of message collision and reduces the jitter within the 

NoC. 

In summary, for FRACTAL on-chip communication, using a Time-Triggered NoC helps 

the systems to meet the deadlines when message exchange is needed between cores 

since it provides deterministic communication and low jitter compared to a generic 

NoC. 

6.5.1 Adaptability techniques for Time-Triggered NoC 

The static allocation in time-triggered systems offers significant benefits for the 

safety arguments of dependable systems, such as avoiding resource conflict within 

the NoC. However, adaptation is a key factor for fault recovery in FRACTAL on-chip 

communication. 

Adaptation using multiple schedules allows the NoC to adapt based on every 

predefined scenario (for example, when a fault occurs in one particular core, the 

systems should be able to switch from one schedule to another and remove the faulty 

core within the new schedule, to avoid the propagation of the fault within the chip, 

and allow the entire systems to work even if in the presence of fault). 

The TTNoC performs three operations before switching from one schedule to another 

when a context event occurs, as described in the following items: 

- Context monitor that monitors the presence of faults reported in each core. 

- Context Agreement that propagates the local fault to all cores within the chip, 

so each core has the state knowledge of all cores. 
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- Adaptation: After the context agreement, each processing element within the 

NoC has the state of each core. The state of all the cores in the multicore on 

a chip is known as a global context event. Based on the global context event, 

the adaptive scheduler generates a new schedule, and this new schedule is 

used to reconfigure the NoC in order to maintain the safe operation of the 

multicore on a chip. 

In summary, adaptability in the TTNoC can provide fault tolerance and increased 

reliability for various workloads and applications running on the chip. The ability to 

switch between schedules allows for greater flexibility and adaptability to different 

context events and situations that may arise, regardless of the specific application 

being executed. Overall, this can lead to more efficient and robust operation of the 

chip and the applications running on it. 
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7 Methods for the integration on FRACTAL platforms 

This chapter introduces methods that are used to integrate use cases on FRACTAL 

platforms in WP7 and WP8. Some sections are specific to a use case. 

WP7 integrates the FRACTAL building blocks, technologies and methods. The 

FRACTAL features cognitive awareness, cloud connectivity, adaptability, security and 

low power guide the integration and verification activities. The verification task 

assesses the metrics regarding these quality attributes and set up a coordination task 

to gather and analyses the insights and KPIs of the various FRACTAL nodes. 

WP8 aims at homogenizing the requirements from use case providers to provide a 

unique framework for dealing with all the real-world situations considered in the use 

cases in term of Fractality. The objective of this work package is to define the needs 

of the use cases by identifying domain-specific requirements and assess at the end 

of the project whether the technical objectives of the project have been reached. 

Moreover, WP8 ensures that developments in the field of: 

• Artificial Intelligence and Autonomous Decisions 

• Safety and security insurance 

• Low power and high performance on the edge implementation 

To do this, a coordination process between use case providers, technology providers 

and integrators are needed to ensure that the development activities are in the 

direction of fulfilling the pillars of the project. 

7.1 Operational integration 

To be able to fulfil FRACTAL’s goals in the market, FRACTAL must be viewed as a 

minimal viable product and this project must define the characteristics of that product 

and how it is built and delivered. Chapter 4 has introduced FRACTAL Features and 

their relationship with FRACTAL components developed by the distinct partners and 

that UCs use. 

On the other side, the distinct use cases provide a focus on the variability that a 

FRACTAL node must support. By the end of the project, a FRACTAL node should be 

be constructed to support the FRACTAL Features that each use case (WPs 7 and 8) 

brings to light. Operational Integration refers to the process that must be undertaken 

to build the FRACTAL node that an end user wants. This section presents the specific 

workflow for a given use case as an example (the use case is simplified for a better 

understanding of the process). 

The first thing that a given use case needs to do is to identify the features the use 

case is interested in. As an example, a given use case pretends to build a device that 

will be deployed on a machine on the field. The machine is fully powered and thus 
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the device will not have problems with the power supply. The device will control how 

the machine works and adapt its behaviour based on the current context where the 

machine is working. The device will receive data from the machine and its sensors, 

analyse it and if needed adapt the behaviour. The device will be able to communicate 

to the cloud. The adaptation engine will be AI based and the models will be trained 

on the cloud and updated in the device when required. 

Let’s start with feature selection: 

• PLATFORM -> VERSAL will be selected as the more powerful platform used in 

FRACTAL. 

• FRACTALITY -> ORCHESTRATION -> DATA as data will be orchestrated from 

the devices into the cloud. 

• ADAPTABILITY -> DATA ORCHESTRATION -> PROCESSES -> INGESTION as 

data ingestion processes will apply on the cloud. 

• ADAPTABILITY -> DATA ORCHESTRATION -> DATA SET -> STORAGE as the 

data will need to be stored on the cloud. 

• ADAPTABILITY -> DATA ORCHESTRATION -> DATA SET -> VERSION 

CONTROL as the data sets for AI training will be versioned. 

• FRACTALITY -> ORCHESTRATION -> MODEL as the built models will be 

orchestrated and version controlled. 

• ADAPTABILITY -> AI -> HW -> AI/ML ACCELERATOR as the acceleration from 

the Versal board will be used. 

• ADAPTABILITY -> AI -> SW -> INFERENCE -> MODEL FORMAT -> VERSAL as 

the Versal model for deployment will be used. 

• FRACTALITY -> ORCHESTRATION -> SERVICES as the analysis engine will be 

containerized. 

• ADAPTABILITY -> DATA ORCHESTRATION -> DATA PROCESSES -> 

TRANSFORMATION since the data will be analysed and transformed on the 

device. 

• ... 

Notice that in this process the selection of a FRACTAL feature can force the 

selection/removal of another feature. For instance, a feature of Low Power 

consumption may exclude the Versal Platform (feature dependencies and 

constraints). 

In order to be able to select the features, understanding of the goal of the features 

is required, thus a FRACTAL-skilled interpreter should be in place (as a seller to 

describe option when buying a car). 

The bill of features corresponds to all the features that have been selected. It may 

also be represented with a pruned tree (see figure 18). 
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Figure 18 – Sample bill of features 

Given a valid “Bill-of-Features", the process to build the FRACTAL node should start. 

First, a set of components has been selected following the FRACTAL Feature – 

component map defined in D2.3 and also crossing it with the selected platform. For 

the given example, the following components have been selected: 

Component ID Component Name Related Features 

WP3T34-03 Versal Model deployment 

layer 

ADAPTABILITY -> AI -> HW 

-> AI /ML ACCELERATOR 

WP5T52-01-01 Cloud Data Ingestion 

Service 

ADAPTABILITY -> DATA 

ORCHESTRATION -> 

PROCESSES -> INGESTION 

WP5T52-02-01 Cloud Raw data Object 

storage service 

ADAPTABILITY -> DATA 

ORCHESTRATION -> DATA 

SET -> STORAGE 

FRACTALITY -> 

ORCHESTRATION -> DATA 

WP5T52-04-05 Cloud Datasets version 

control 

ADAPTABILITY -> DATA 

ORCHESTRATION -> 

DATASET -> VERSION 

CONTROL 

FRACTALITY -> 

ORCHESTRATION -> DATA 
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Component ID Component Name Related Features 

WP5T52-04-03 Cloud S3 compatible data 

storage 

ADAPTABILITY -> DATA 

ORCHESTRATION -> 

DATASET -> STORAGE 

FRACTALITY -> 

ORCHESTRATION -> DATA 

WP5T52-04-07 Images repository FRACTALITY -> 

ORCHESTRATION -> 

SERVICES 

WP6T61-02 Edge API FRACTALITY -> 

ORCHESTRATION -> 

SERVICES 

...   

Table 2 – Selecting Components from FRACTAL Features 

Note that these features are not related to use case business needs. Those needs are 

covered by use case specific components that are integrated in the FRACTAL 

Platform. Thus, we have FRACTAL Base Components (or building blocks) and use 

case specific components that deal with the specific business logic for the use case. 

In FRACTAL, these components can be integrated in two ways: 

• System specific libraries integrated in the OS of the node 

• Container based services, which may include system specific libraries to 

access specific functionalities, that may be executed on the node or on the 

cloud. 

Having this in mind, the following diagram describes FRACTAL product construction. 

 

Figure 19 – Sample FRACTAL construction process for Versal 
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Construction process is separated in two parts: FRACTAL Node and FRACTAL Cloud. 

For the node, first the node HW platform has to be constructed and its corresponding 

OS built adding the corresponding selected system libraries (low level components). 

Then the FRACTAL Distributed System must be added, which includes the container 

runtime and orchestration capabilities (which may themselves be containers). Finally 

Use Case specific services are added as containers managed through the FRACTAL 

Distributed System. 

For the cloud, the same implies. First a base cloud configuration is executed over 

which the cloud services are added as containers (both FRACTAL and Use Case 

specific cloud services). 

Containers play a crucial role on FRACTAL’s architecture, being able to produce 

application logic that can be executed over different hardware platforms or even the 

cloud, being able to load balance its execution depending on use case needs. 

With this process, the industrialization and productization of FRACTAL is achieved, 

enabling companies to sell products that conform to FRACTAL for any other use case. 

Following sections detail construction specifics. 

7.2 SW integration (PULP, VERSAL), RTOS for PULP 

The purpose of this task was to expand the FRACTAL framework to support also the 

extremely limited nodes. This opens a huge area of new business cases, especially 

at the consumer sector. 

Focus on work at low-end nodes was to introduce and demonstrate APIs, where 

higher levels of FRACTAL integrate smoothly. This task specially focuses to introduce 

Posix compatibility on low-end nodes. 

The secondary focus was the integration of Asymmetric Multi Processing (AMP), so 

the Linux capable nodes can benefit RTOS low-energy and real-time features — 

resulting simpler node electronics and smaller energy budget. Unfortunately, this part 

was not utilized by any UC. However, while UCs move closer to commercial product 

the need will arise (after the project). 

Major part of the work was utilizing and modifying existing Nuttx background and 

publishing the results to the Nuttx forum (e.g., over the years the Nuttx Pulpissimo 

support was deprecated). 

Another part was the integration of the Pulpissimo FPGA implementation and other 

used RISC-V low-end targets (see section 7.2.1). 

The AMP implementation task was mainly developing and utilizing Nuttx background. 

Results were published back to Nuttx. Work in this task, was very hardware 

dependent. The implementation was demonstrated at yet another RISC-V platform 

(see section 7.2.2). 
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7.2.1 Posix compatible RTOS integration to the PULP 

Background: 

In FRACTAL the general (low risk – fast to deliver) approach is to integrate the 

middleware layers (by WP4 and WP5) top of the Linux operating system. For use-

cases this offers a simple and powerful system to implement the application logic. 

Also, the acceleration/protection functions that physical HW offers are easy to 

integrate to the Linux low-level layers. The drawback is that Linux requires adequate 

amount of processing power and energy. Due high-power nature Versal platform this 

is not issue as such, but in low-end nature of PULP it limits the options. 

On this task a Posix compatible OS (Nuttx) is integrated to PULP. From software point 

of view, this is limited – less memory, no supervisor abstractions, it lacks high-level 

languages such as Java and Python. However, unlike most of the Realtime operating 

systems (RTOS) it has Posix threads and sockets, standard C-APIs and standard dev-

tools. Most of the cases source-code developed to the Linux can just be compiled in. 

As a result, the Nuttx is compatible with a FRACTAL subset. In its scope, it does not 

require any special porting for the FRACTAL SW. 

As a result, this offers a mechanism to push certain Factual applications to the 

extreme low-power – low-cost targets. 

Development of Pulpissimo requires special tools. Xilinx tools are needed for loading 

the system binary file from ETH Zürich to the Genesys2 FPGA board. Due instruction 

extensions the Pulpissimo RISC-V requires a special version of GCC C-compiler. 

Integrating the Nuttx RTOS to Pulpissimo requires mainly work on DMA and interrupt 

processing. Also, the existing binary file supports just one serial port, so assignment 

of console and logs to that. 

Results are published at Nuttx official git-repository. 

Due to limited peripheral support and low system clock (10MHz) of Pulpissimo 

Gensys2 FPGA implementation, the further FRACTAL connectivity development was 

implemented at ESP32-based RISC-V platform that had more integrated peripherals 

I.e. Wi-Fi, that Nuttx IP-stack can easily utilize. 

Together with UC3 – that was developing Pulpissimo FPGA further, this was too 

agreed. They demonstrated their system as two. One demonstrating FRACTAL secure 

AI FPGA implementation based on Pulp and second demonstrating FRACTAL 

connectivity with ESP32 based RISC-V top of Nuttx RTOS. 

Nuttx was not ported to UC3 FPGA, due the FPGA processor peripherals and modem 

change at next phase when final ASIC is developed. 

For similar reasons the AMP (see next subsection) was implemented on Microchip 

ICICLE platform. 
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7.2.2 Asymmetric Linux-RTOS multiprocessing to the FRACTAL 

project 

In symmetric multiprocessing (SMP) all processor cores are utilized by same 

operating system. In asymmetric case (AMP) cores are utilized by different operating 

systems. There are some benefits of this sort of systems. Here are briefly the two 

cases: 

First: The Real time matter. Linux as such is not a real-time operating system. At 

certain stage – that is not fixed – Linux begin to lose real time deadlines (Practical 

tests have demonstrated that response jitter below 1ms is intolerable). One solution 

to solve this issue, is the Real time version(s) of Linux. There the certain parts of 

kernel are modified for real time purposes. Drawback on this is that these changes 

are branches of the main line Linux. While the Linux evolves, the compatibility of this 

branch weakens and over time the new feature backporting becomes more difficult. 

This yields to practical problems – typically related to security and compatibility. 

Another solution is to have a parallel real time operating system (RTOS). This RTOS 

process the real time tasks, while Linux is the actual computing platform. And, having 

this RTOS running on same processor chip, eases the system design. 

Second: The low power operation. Linux is a complex system that requires complex 

HW to run – lot of moving parts that consume energy. Driving system to standby and 

woke up on event is a better solution, however the woke up takes in average more 

energy than normal operation and often the woke-up events require only little 

processing or even are false. Again, obvious solution is to introduce a second low-

power OS that stays awake, while Linux is standby. This OS can verify the woke-up 

events and some cases process them. And in cases where “The Force” is needed, 

RTOS can woke-up Linux OS and delegate the event. Like the above case, the system 

design is easier, when the low-power OS and application OS are in same physical 

chip. 

Two cases above and combination of them are valuable tools for certain application 

types in FRACTAL context. In task we seek to run Nuttx (RTOS) in one core and Linux 

in other cores. The Posix compatibility offers yet another potential compatibility 

benefit: Due both OSes are in same processor context; they may share same 

security, data and even binaries. 

Challenges on this task are related to the context switching, security and shared 

resources matters below the OSes. 

As in previous task the implementation was done according to the spiral model. At 

first an adequately good platform is selected, where some version of previous task 

Nuttx implementation is integrated together with some Linux. The second target is a 

FRACTAL improved version of that. And so on. 
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Security features, low-power operation, application requirements need to be 

collaborated with other FRACTAL partners. This can be also in focus of Versal 

platform. 

AMP communication between Linux and NuttX is possible via Remote Processor 

Messaging (RPMsg). Both operating systems support RPMsg over VirtIO. Basically, 

shared memory with proper notification mechanisms is the foundation for this AMP 

mechanism. 

It's even possible to use multiple RPMsg channels. For example, Linux may talk to 

two different operating systems. However, support for this kind of features is very 

limited at the moment. A part of this work is available at commit: 

https://github.com/apache/nuttx/commit/3afc83abc7887b0371a1a6501a056641c5f

5ff3 on NuttX operating system. 

Moreover, the hardware has likely a fixed set of peripherals, and thus not all the 

operating systems can use them simultaneously. Especially NuttX has a number of 

RPMsg drivers: block drivers, network drivers and serial drivers just to name a few. 

Those drivers may be accessed from a remote processor. For example, NuttX may 

have complete control over a network driver, but Linux may still use it via the RPMsg 

based AMP system. RPMsg drivers are less common in Linux than in NuttX. 

7.3 Electronic System-Level HW/SW co-design 

Systems based on heterogeneous parallel architectures (Heterogeneous Parallel 

Systems - HPSs) have been recently exploited for a wide range of application 

domains, especially in the System-on-Chip (SoC) form factor (e.g., Xilinx 

ZYNQ/VERSAL and Altera Cyclone V SoC families). Such systems can include several 

processors, memories, and a set of physical links among them. By definition, the set 

of processors in the same architecture is heterogeneous. This implies that it is 

possible to exploit, at the same time, the following processing classes4: 

• General-Purpose Processors (GPP): x86/x64, ARM, MicroBlaze, NiosII, Leon3, 

etc. 

• Application-Specific Processors (ASP): Digital Signal Processor (DSP), 

Graphics Processing Unit (GPU), Network Processor (NP), Artificial Intelligence 

Processor (AIP), etc. 

• Single-Purpose Processors (SPP): AES encoder/decoder, JPEG 

encoder/decoder, UART/SPI/I2C controllers, AI engines; in general, every ad-

hoc developed digital HW component (a.k.a. co-processors or accelerators). 

 

4 Frank Vahid and Tony Givargis. 2001. Embedded System Design: A Unified Hardware/Software 

Introduction. John Wiley & Sons, Inc. 

https://github.com/apache/nuttx/commit/3afc83abc7887b0371a1a6501a056641c5f5ff3
https://github.com/apache/nuttx/commit/3afc83abc7887b0371a1a6501a056641c5f5ff3
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Finally, such processors can be adopted in the form of soft, hard or fuse (i.e., 

hardwired) IP cores or as discrete integrated circuits (IC) mainly depending on the 

final system form factor (i.e., on-chip, on-FPGA, on-board) and scope (complete 

product or platform). 

HPSs are often used to implement Dedicated Systems (DS). DSs are digital electronic 

systems with an application-specific HW/SW architecture. They are specifically 

designed to satisfy a priori known application requirements, both functional (F) and 

not functional (NF). A DS could be then embedded in a more complex system and/or 

it could be subjected to hard/soft real-time constraints. When DSs are based on HPS 

they are called Dedicated Heterogeneous Parallel Systems (D-HPS). 

Apart from possible differences in terminology and composition, for this kind of 

systems one consideration is always true: they are so complex that the adopted 

HW/SW Co-Design Methodology plays a major role in determining the success of a 

product. Moreover, in order to cope with such a complexity, the selected methodology 

should allow the designer to start working at the so-called Electronic System-Level 

(ESL) of abstraction. This means to be able to start the design activities from an 

executable model of the system behaviour based on a given Model of Computation 

(MoC) that would be unifying for HW and SW, and that could be described by means 

of a proper specification/modelling language. In fact, in the past years, a remarkable 

number of research works have focused on the system-level HW/SW co-design of D-

HPS. In such works, the most critical issues have been always related to the System 

Specification and Design Space Exploration activities. In the first activity, the 

designer models the behaviour of the desired system (specifying also possible NF 

requirements), the available basic HW components, and the target HW architecture. 

The second activity is then related to the approach, automated or not, used to find 

the best HW/SW partitioning and mapping for the final system implementation. The 

main differences among the various approaches are related to the different amounts 

of information and actions that are directly requested to the designer and that are so 

heavily influenced by his/her experience. In particular, a lot of approaches explicitly 

require as input the HW architecture to be considered for mapping purposes. Very 

few others try to fully addresses the problem of both to “automatically suggest an 

HW/SW partitioning of the system specification” and to “map the partitioned entities 

onto an automatically defined heterogeneous parallel architecture”. In the context of 

the latest category, during other ECSEL RIA projects (e.g., MegaM@RT2, AQUAS, 

FITOPTIVIS, COMP4DRONES), it has been defined and improved a model-based ESL 

HW/SW co-design methodology (and related prototypal toolchain), called 

HEPSYCODE5, targeting heterogeneous parallel dedicated systems. HEPSYCODE 

reference ESL HW/SW co-design flow is briefly described in the following, together 

with a proposal about possible adaptation/integration opportunities of HEPSYCODE in 

the context of the FRACTAL project. 

 

5 http://www.hepsycode.com 

http://www.hepsycode.com/
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Figure 20 – The reference ESL HW/SW co-design flow 
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7.3.1 Reference ESL HW/SW Co-Design Flow 

The HEPSYCODE ESL HW/SW co-design flow is shown in figure 20: it shows the main 

co-design steps and the related items that are briefly described in the following 

paragraphs. More details about the whole methodology can be found in 6,7,8,9. 

7.3.1.1 System Behaviour Specification 

The entry point of the reference co-design flow is the System Behaviour Specification 

(SBS). It is composed of System Behaviour Model (SBM), Reference Inputs (RI), and 

Non-Functional Constraints (NFC). 

SBM represents the behaviour of the system to be implemented, i.e., the functional 

requirements. It is based on a CSP-like (Concurrent Sequential Processes) MoC10,11 

and described by means of the SystemC language12. 

RI is a set of input-output tuple pairs, possibly timed, that represents the expected 

outputs from the SBM when specific inputs are provided to it. RI is of critical 

importance since it has to be as much as possible representative of the actual 

operating conditions of the system (a.k.a. Golden Inputs). 

NFC represents requirements related to aspects orthogonal to the behaviour. In fact, 

they specify a set of constraints that have to be satisfied while still following a correct 

behaviour. They are currently related to one or more of the following issues: 

• Timing Performance Constraints 

o Time-To-Completion constraint (TTC) 

▪ Time allowed to complete the processing related to RI 

 

6 L. Pomante. “System-level design space exploration for dedicated heterogeneous multi-processor 

systems”. IEEE Int. Conf. on Application-specific Systems, Architectures and Processors, 2011. 

7 L. Pomante, D. Sciuto, F. Salice, W. Fornaciari, C. Brandolese. Affinity-Driven System Design Exploration 

for Heterogeneous Multiprocessor SoC. IEEE Transactions on Computers, vol. 55, no. 5, May 2006. 

8 Pomante, L., Muttillo, V., Santic, M., Serri, P. SystemC-based electronic system-level design space 

exploration environment for dedicated heterogeneous multi-processor systems. Microprocessors and 

Microsystems, 72, 2020. 

9 Ciambrone, D., Muttillo, V., Pomante, L., Valente, G. HEPSIM: An ESL HW/SW co-simulator/analysis tool 

for heterogeneous parallel embedded systems, 2018. 7th Mediterranean Conference on Embedded 

Computing, MECO 2018 - Including ECYPS 2018, Proceedings. 

10 C.A.R. Hoare. Communicating sequential processes. Communications of the ACM, 21(8):666–676, 

August 1978. 

11 http://www.usingcsp.com 

12 SystemC, http://www.accellera.org 

http://www.usingcsp.com/
http://www.accellera.org/
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o Time-To-Reaction (TRC) 

▪ Time allowed to complete the processing related to specific 

processes of the SBM 

• Energy Consumption Constraints 

o Energy-To-completion (ETC) 

▪ Energy consumption allowed to complete the processing related 

to RI 

• Mixed-Criticality Constraints 

o Isolation 

▪ Do not map processes with different criticalities on the same 

processor 

o Isolation with hypervisor technologies (HPV) 

▪ Do not map processes with different criticalities on the same 

HPV-based SW partition 

• Architectural Constraints 

o Set of available processors and physical links 

o Min and max number of available processors and physical links 

instances 

o Available area (for PCB/ASIC) or an equivalent metric for FPGA 

o Reference template architecture 

▪ HW 

• Distributed/shared memory 

• Homo/heterogeneous mono/multi-core processors 

▪ SW 

• Available (hyper)scheduling policies. 

7.3.1.2 Technologies Library 

In order to list and describe the basic HW elements available to automatically build 

the final architecture, a proper Technologies Library (TL) provides a characterization 

of available processors, memories and physical links. Such a library contains 

information like processing classes (i.e. only GPP, DSP, and SPP), operating 

frequencies, maximum load (for GPP and DSP classes), capacity (for SPP and 

memories), max bandwidth (for physical links), relative cost (considering the cost 

related to obtain a component and/or the effort needed to use it), and so on. Such 

information is then exploited during the different steps of the co-design flow. 

7.3.1.3 Functional Simulation 

The first step of the proposed co-design flow is the Functional Simulation where SBM 

is simulated to check its correctness with respect to RI. Such a simulation allows also 

to consider timed inputs, i.e., there is a concept of simulated time, but it doesn’t 

consider the time needed to execute computation and communication (i.e., 0 

simulated time). If SBM is not correct (i.e., wrong outputs or critical conditions such 

as deadlocks) it should be properly modified and simulated again. The early detection 

of anomalous behaviours allows the designer to correct the specification avoiding a 

late discovery of problems that could lead to time-consuming design loops. 
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7.3.1.4 Co-Analysis and Co-Estimation 

This step aims at extracting as much as possible information about the system by 

analysing the SBM while considering the provided TL. This step is composed of Co-

Analysis and Co-Estimation activities. 

During Co-Analysis, SBM is analysed to evaluate three metrics: Affinity, 

Communication and Concurrency. The first one represents how much a process is 

suitable to be executed on a specific processor class (i.e., GPP, ASP, SPP). The second 

one is the evaluation of the number of bits that the different processes pairs have 

exchanged during the simulation. The third is related to how much concurrency has 

been found during the simulation in the activities of processes and channels. 

Co-Estimation provides a set of estimations about Timing, Energy, Size, Load and 

Bandwidth. Timing is related to the estimation of the number of clock cycles needed, 

by each processor in the TL, to execute each single statement composing the SBM 

processes13. Energy is related to the estimation of the Joule consumed, by each 

processor in the TL, to execute each single statement composing the SBM 

processes14. Size represents the number of ROM/RAM bytes needed for SW 

implementations and equivalent gates (or similar metrics for FPGA) for HW ones15. 

Finally, by exploiting Timing data and considering the TTC constraint, it is also 

possible to estimate the Load associated with the execution of the SBM processes 

when mapped on a single instance of each processor in TL, and the Bandwidth needed 

to the different processes to communicate while fulfilling the TTC constraint. The 

extraction of these data from the SBM is an important step that allows, during the 

following design space exploration, the identification of the number and type of 

processors and physical links needed to satisfy the NFC. 

7.3.1.5 Design Space Exploration 

Finally, the reference co-design flow reaches the Design Space Exploration (DSE) 

step that is constituted of two iterative activities: “HW/SW Partitioning, Architecture 

Definition and Mapping”, and “Timing/Energy HW/SW Co-Simulation”. All the data 

(i.e., metrics and estimations) extracted in the previous steps are then used to drive 

the DSE by considering all the NFC. The “HW/SW Partitioning, Architecture Definition 

and Mapping” activity is based on a genetic algorithm that allows exploring the design 

space looking for feasible mapping/architecture items suitable to satisfy imposed 

 

13 V. Muttillo, G. Valente, L. Pomante, V. Stoico, F. D’Antonio, and F. Salice, “CC4CS: an Off-the-Shelf 

Unifying Statement-Level Performance Metric for HW/SW Technologies”, In Companion of the 2018 

ACM/SPEC Int. Conf. on Performance Engineering (ICPE '18). 

14 V. Muttillo, P. Giammatteo, V. Stoico, L. Pomante. An Early-Stage Statement-Level Metric for Energy 

Characterization of Embedded Processors. Microprocessors and Microsystems, 2020. 

15 Brandolese, C.; Fornaciari, W.; Salice, F. An area estimation methodology for FPGA based designs at 

systemc-level. Design Automation Conference, 2004. Proceedings. 41st, 2004 Page(s):129 – 132). 



 

Project FRACTAL 

Title Methodological Framework (b) 

Del. Code D2.4 

 

  
 Copyright © 2023 FRACTAL Project Consortium 52 of 74 

 

constraints. Then, the “Timing/Energy HW/SW Co-Simulation” activity considers 

suggested mapping/architecture items to actually check for Timing/Energy NFC 

satisfaction. If the suggested mapping/architecture item does not meet such 

constraints, the designer should perform again the DSE by changing some exploration 

parameters, by modifying the starting SBM, by enriching the TL with new elements, 

or by relaxing some constraints. 

7.3.1.6 Algorithm-Level Flow 

When the mapping/architecture item proposed by the DSE step is satisfactory, it is 

possible to implement the system. For this, the SW-mapped processes are typically 

transformed in C/C++ code, with the support of a possible embedded and/or real-

time OS, while the HW-mapped ones are transformed in synthesizable HDL code or 

implemented by means of existing COTS component depending on the final system 

form factor. It is worth noting that such transformations are done automatically or 

manually depending on the language and the coding style adopted to describe the 

SBM. This step is fully based on existing commercial algorithm-level methodologies 

and tools. 

7.3.2 HEPSYCODE in the FRACTAL project 

Given the ever-increasing opportunities provided by the advancement in the HW/SW 

technologies, there is a strong need for ESL methodologies and tools able to keep as 

much as possible smaller the design-productivity gap in the field of HW/SW dedicated 

systems. According to this scenario, the HEPSYCODE methodology, briefly described 

in the previous sub-section, has been customized to consider some of the platform 

related to FRACTAL (i.e., ZYNQ Ultrascale+ and VERSAL) and exploited to support 

UC6 development. As detailed below, the customization and the analysis performed 

during UC6 development are the most relevant contributions. 

In order to early support the FRACTAL designer during the mapping of a set of 

functionalities on UC6 FRACTAL node, and during the related FRACTAL node 

customization, the following ESL activities have been performed: 

• ESL modelling of the Totem Node behaviour (SBM), by considering as RI the 

ideal scenario described in D8.2 (sec. 5.2.2). Such a modelling has been done 

by referring to a CSP-like MoC and by using the SystemC modelling language. 

• Analysis of UC6 requirements (see D8.2 – sec. 5.1) to identify the NFCs 

relevant for the HEPSYCODE methodology. In particular, REQ_UC6_26 has 

been considered to set TRC = 1 sec as the maximum time that shall elapse 

from the moment a user is in front of a Totem and the moment the Totem 

start to be reactive in a tailored way. 

• Enrichment of the TL to consider specific ZYNQ Ultrascale+ and VERSAL 

components: ARM core (GPP), Xilinx DPU (ASP), and FPGA (SPP). 

• Timing HW/SW co-estimations, related to the added TL components, in order 

to annotate the SBM with information about timing performances of different 

“SBM to components” mappings. 
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• Timing HW/SW Co-Simulations to verify which mapping/architecture items are 

suitable to implement SBM while satisfying TRC. It is worth noting that, since 

the Architectural Constraints impose the use of a predefined SoC, the DSE has 

been limited to co-simulation issues. 

As main results, by considering the Data Flow Diagram (DFD) shown in figure 21 

(adapted from the one in D8.2- sec. 5.2.3 and used to create the SBM), it has been 

possible to early verify that the mapping shown in figure 22 (i.e., the one finally 

selected for UC6, see D8.2 - sec. 5.2.1) is able to satisfy TRC. 

 

Figure 21 – Totem Node DFD 

 

Figure 22 – Totem Node Architecture and Mapping 

Moreover, it has been also possible to verify that, by offloading additional instances 

of GC and AE to available nodes in the surrounding, it would be possible also to 

manage more complex scenarios (e.g., multiple persons in front of the same camera, 

multi-touchscreen totem) by still satisfying TRC. 
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Summarizing, by exploiting an ESL approach, combined with timing estimations 

related to single components, it has been possible to early verify timing performances 

of several mappings, finally identifying the most suitable ones without the need to 

completely perform time consuming integration activities at lower levels of 

abstraction. Finally, as a more general result, the HEPSYCODE methodology has been 

customized to consider some of the platforms related to FRACTAL and so it could be 

potentially exploited to support other UCs and the whole FRACTAL approach. 

7.4 Methodologies for VERSAL platform 

The heterogenous nature of the Versal ACAP devices resemble one readily available 

example of a platform to scale the FRACTAL nodes as described in the earlier 

chapters. The capabilities support the features to implement components way into 

the AI techniques required for Video analysis as presented in chapter 5. Even the 

orchestration and separation methods required for the safety and reliability 

requirements, chapter 6, are available to add to the node design. 

To cater consistent integration of components on the different processing elements, 

the AMD-Xilinx Vitis toolchain is deployed. This is not a monolithic approach to deliver 

a closed node artifact but instead lends to a modularity that is beneficial for the use 

cases’ requirement-driven selection of actually used features from the catalogue. Part 

of the integration work within FRACTAL also provides increased visibility into the 

toolchain applicability and best practices to enable efficient work on the Versal 

platform. 

Versal ACAP based designs are based on this design flow to define the hardware 

features as well as the software ecosystem for the heterogenous processing system. 

These tools provide for basic platform creation as well as accelerator-based design 

and the application on either bare metal or OS support packages. 

While the efficient design creation is typically ramped through authorized training 

partners of AMD-Xilinx, there are substantial tutorials available from 

https://github.com/Xilinx to get an overview of the basic design steps. 

For most part the FRACTAL designs utilize the VCK190 development kit to derive the 

components or apply required use case integration steps. Along WP3 a base platform 

component has been derived where a FRACTAL node should be based on. The use 

case specific features and requirements yield a further selection of components, that 

require additional integration of hardware and / or software components. The tools 

are available to cover these integration steps, also along the Application Acceleration 

Development (UG139316). The typical steps are shown here: 

 

16 https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/Building-and-Packaging-the-
System 

https://github.com/Xilinx
https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/Building-and-Packaging-the-System
https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/Building-and-Packaging-the-System
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Figure 23 – Basic platform design flow 

Extend the basic static platform: to cater for design specific elements, like support 

for proprietary FMC cards, an existing platform can be extended by re-inserting it 

into the Vivado flow to add to or adapt the initial bit stream. Some of the components 

of the technical work packages use this methodology to encapsulate the contribution. 

Specifically additions for safety setups or additional separation between the 

heterogenous cores are benefitting from this approach. 

Extend the design with accelerators: the basic provided platform allows for 

software defined extensions that manifest as hardware kernels. Such approaches are 

highly adaptable for fast design turn around and dynamic workload support. Typically 

the components for pre- and post-processing of AI workloads utilize this design 

methodology, where the respective kernels are often implemented by high level 

synthesis (HLS). 

Integrate software and drivers: The Vitis toolchain allows for development of 

setup or control flow software directly within the same workspace as the hardware 

development described above. The components that are using this flow target any of 

the heterogenous processor cores or even full OS- based application. 

While the higher level software components for use case applications running on the 

FRACTAL node microservice based framework are supported within these IDE 
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workspaces, such software development is also available from the PetaLinux17 tools, 

and any build system of own definition can be used. 

7.5 Methodologies for PULP platform 

The Parallel Ultra Low Power (PULP) platform is a RISC-V based open-source platform 

for energy efficient computing. While there are multiple PULP systems with different 

capabilities, within the FRACTAL project the reference PULP system is the PULPissimo 

system available under: 

https://github.com/pulp-platform/pulpissimo 

The platform is fairly mature and has been used as part of various ASIC tape-outs so 

far and comes with FPGA images for popular XILINX boards such as the Genesys II, 

allowing partners to hit the ground running. As part of FRACTAL, the goal was to 

improve and adapt this basis system for several use cases with additional capabilities 

developed by FRACTAL partners as part of technical developments WP4, 5 and 6. 

 

Figure 24 – PULPissimo block diagram 

Specific improvements to the PULP platform supported through the involvement in 

FRACTAL have been: 

 

17 https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842250/PetaLinux 

https://github.com/pulp-platform/pulpissimo
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842250/PetaLinux


 

Project FRACTAL 

Title Methodological Framework (b) 

Del. Code D2.4 

 

  
 Copyright © 2023 FRACTAL Project Consortium 57 of 74 

 

• The ISA extensions for low-precision training on RISC-V cores. These include 

8- and 16-bit floating point units that can perform dot product operations and 

accumulate on 16- and 32-bit registers. 

• On-demand grouping of RISC-V cores in many-core architectures to improve 

reliability. This way a three-core system can either operate in high-

performance mode where each core contributes to computation, or the three 

can be grouped together to work as a triple redundant mode. 

• Adding specialized ML accelerators optimized for temporal convolutional 

networks quantized to ternary values to be used as part of a dynamic vision 

sensor. 

• Developing systematic fixes to timing-channels in our processor cores, which 

introduces a fence.t instruction. 

• Working on fine-grained power gating techniques to reduce the leakage power 

of many-core architectures. 

In addition to these specific contributions, there were many improvements and fixes 

in the open-source repositories improving the general quality and availability of the 

PULP platform for all partners. 

From the onset, the positioning of the PULP platform has been complimentary to the 

XILINX Versal platform. While Versal is addressing high performance, industrial 

maturity and established processor cores, for FRACTAL, PULP was designed to 

address low power IoT operation, with a flexible and open architecture allowing 

partners to easily integrate changes to the platform using an open-source ISA. 

The training videos and material available on the PULP platform site under: 

https://pulp-platform.org/pulp_training.html 

For example, the following (3.5h) training video explains the design and features of 

PULPissimo: 

https://www.youtube.com/watch?v=27tndT6cBH0 

There are several different ways in how changes to PULPissimo as part of 

developments in FRACTAL have been implemented: 

• Adapting software to be compatible with PULPissimo. In addition to 

FreeRTOS and seL4 there have been successful ports of various other 

operating systems and libraries. PULP based systems rely on standard 

GCC/LLVM based SW development flow and also include a custom software 

development kit. The following tutorial explains the PULP software 

development kit: 

https://youtu.be/Ydd9TlKQiO4 

• Adding accelerators and peripherals to the PULPissimo system to enhance 

its hardware capabilities. In addition to standardized AXI/APB compatible 

peripherals, PULPissimo also supports accelerators that can access a shared 

scratchpad memory with the RISC-V processor greatly reducing the overhead 

https://pulp-platform.org/pulp_training.html
https://www.youtube.com/watch?v=27tndT6cBH0
https://youtu.be/Ydd9TlKQiO4
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of data transfers. The following tutorial is on the HW/SW co-development 

needed for such modifications: 

https://youtu.be/B7BtaYh3VqI 

• Adding instruction set extensions to the RISC-V core in the system, which 

could improve the performance of the system significantly. RISC-V has a very 

clear methodology for such extensions, and ETH Zurich has significant 

experience with them. In fact, the default processor core in PULPissimo 

(RI5CY/CV32E40P) has already many extensions for digital signal processing. 

However, SW tools must be made aware of these modifications, so that code 

can be generated that maps to these additional instructions. 

Some FRACTAL partners have utilized sophisticated systems from the PULP platform 

like the HERO (heterogeneous Research Platform) or the 64-bit Ariane/CVA6 system 

with Linux support. ETH Zürich has guided partners that want to explore these 

options, but has concentrated its main effort around the PULPissimo. 

The flexibility offered by the platform and the experience of ETH Zurich on actual 

ASIC implementations of the platform has helped partners to assess the cost and 

benefit of various improvements and changes that are explored throughout FRACTAL. 

Such evaluations has provided value for partners even in cases where a direct use 

case implementation was not feasible due to technical reasons. 

7.6 Methodologies for hardware accelerators 

Naturally, Deep Neural Networks (DNN) perform many computations on a huge 

amount of input data for generation of the outcome. The use of classic general-

purpose computer designs has been shown to be not very efficient for execution of 

such networks due to the sequential concept of computation that these architectures 

apply. Therefore, building a specialized hardware that provides better performance 

and is energy efficient is required. 

However, DNNs are a central part of machine learning which means they must be 

trained before they infer. During the training phase the DNN’s parameters (weights 

and bias) are derived. As a process training is much more complex than inference, 

where inference computes the outputs based on the previously trained weights and 

biases. Since training of DNN is a onetime process and requires much more 

computation power it can be performed on high performance machines that have no 

restriction on energy consumption. On the other hand, inference is usually applied 

on many devices located near the sensors and runs repeatedly with different input 

data patterns. Thus, specialized hardware needs to be customized for inference 

execution to satisfy performance requirements and energy efficiency goals. 

The following subsections describe the methodology used for building and evaluation 

of the hardware accelerators in FRACTAL project. After listing the main components 

required for building of the hardware accelerator, the metrics that need to be 

observed for evaluation and optimization of the performance are described. All these 

https://youtu.be/B7BtaYh3VqI
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steps are performed with the help of Catapult High-Level Synthesis tool, which 

enables the hardware designer to evaluate performance parameters at an earlier 

stage of the design before generating the hardware implementation details. The tool 

itself has integrated features that makes the performance evaluation a 

straightforward process. Once the design satisfies the performance requirements 

defined in the project the High-Level Synthesis tool automatically generates the 

implementation outcome which can be for ASIC or FPGA technology. 

7.6.1 Hardware Accelerator Architecture for Deep Neural Network 

DNN accelerators typically consist of an array of processing elements (PE) and 

memory blocks interconnected by a Network on Chip (NoC). The PEs are simple 

Multiply-Accumulate (MAC) units capable to perform multiplication of inputs and 

weights and add the resulting products to the partial sum. 

Memory of hardware accelerators are organized hierarchically consisted of register 

files (RF), global buffers, and main memory. RFs are the smallest and fastest memory 

units located on PEs. They hold data immediately available to the MAC unit. The type 

of data stored in RF can be weights (weight stationary), partial sums (output 

stationary), or a combination of both types (row stationary). Which type of data is 

located on RF depends on the data flow model in use. There are hardware 

accelerators as well without RFs (no local reuses) in case the size of the chip area is 

critical. A global buffer is an intermediate memory layer located on-chip to hold 

fragments of the weights and inputs. Its location and size enable a global buffer to 

respond faster and efficiently when its content is reused by PEs. The last layer is the 

main memory, usually in form of off-chip DRAM memory, that holds all weights and 

input data. 

Hardware accelerators for DNN can either be implemented on Field Programmable 

Gate Arrays (FPGA) or as Application Specific Integrated Circuits (ASIC). FPGAs are 

used for development of prototypes since the design for such technology is simple 

and the time to develop the product is shorter. On the other hand, ASICs can be 

optimized for much more parameters, have lower energy consumption and better 

computation performance. However, for ASIC technology the production costs are 

much higher combined with longer development cycles compare to FPGA solution. 

7.6.2 Metrics for building optimized HW accelerator 

To build an efficient hardware accelerator for DNN it is important to take into 

consideration a set of metrics that are key for achieving an optimal solution. Mainly 

the efficiency of the accelerator is associated with the number of operations per Watt, 

but this metric is a composition of accuracy, throughput, latency, energy 

consumption, cost, flexibility, and scalability18. Accuracy indicates the quality of 

 

18 Vivienne Sze et al. „Efficient processing of deep neural Networks: A Tutorial and Survey” – Proceeding 
of the IEEE, Vol:105, Issue: 12, Dec 2017 
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inference outcome and should be high enough to perform correct classification. The 

accelerator should have capability to process enough data in a given period of time 

so its throughput can achieve real-time performance. Also, the time between input 

and output should be short if it is required to have low latency. When an accelerator 

is used within an edge device the power consumption and energy efficiency must be 

taken into consideration during design phase to ensure that the accelerator operates 

within the boundaries of the power envelope. It has been observed that frequent 

access to the main memory for data read/write is one of the main sources of energy 

consumption and compared to the demand of the various arithmetic operation 

performed in the accelerator it is few magnitudes higher. Cost is constrained by the 

required hardware volume and the size of the market. Obviously, it is important the 

designed hardware accelerator is attractive from a financial point of view. If the 

accelerator is more generic, it can execute a wider variety of different inference tasks, 

a feature which makes the accelerator more flexible. The last metric, scalability, 

refers to how well the accelerator can adopt from perspective of throughput and 

energy consumption when its number of components increases. Thorough upfront 

evaluation of all the mentioned metrics allows the hardware designer to evaluate if 

the accelerator is a beneficial and viable solution for a given application. 

7.6.3 High Level Synthesis to build HW accelerator 

Nowadays, hardware design processes have become quite complex and sometimes 

manual coding is even impossible due to increased complexity of the needed 

hardware solution. High-level synthesis (HLS) aims to generate synthesizable 

register transfer level (RTL) implementation of the hardware derived from its high-

level specification. Its goal is to automate all the intermediated processes performed 

between specification of the hardware and the RTL level. The approach raises the 

level of abstraction on functional and implementation details and thus eliminates all 

the steps that were performed manually in the past. The whole concept is like the 

approach of compiling high-level code into assembler one. HLS also makes the 

verification process faster compared to the time required to perform the same 

process on Register Transfer Level (RTL), which sometime can take so long that the 

process itself becomes impractical. By elimination of the manual steps and reduction 

of the verification time HLS brings a lot of benefits: 

• The automated generation of RTL implementation is less prone to errors due 

to the predefined rules applied for its generation. 

• Well-designed automation tool can generate RTL that outperforms in quality 

compared to human design RTL level. 

• Gives hardware designer more time to spend on design space exploration 

rather than on implementation. 

• HLS simulation runtime is few times faster than RTL simulation runtime. 

• HLS makes the design platform independent by enabling its implementation 

on a wide range of platforms. 
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The process of generating the RTL hardware description from its specification is a 

multi-level task19 as shown in figure 25. The process starts with describing the desired 

functionality of the hardware in a high-level language. The HLS tool takes the input, 

compiles it and generates a formal model. This model is then converted into a 

structured network of components (functional units, memories, controllers, and 

interfaces). During this stage the HLS firstly allocates the resources that are needed 

for computation. Next, the HLS schedules the execution order of derived operations. 

Thirdly, it binds the allocated resources to the corresponding operations derived from 

the formal model. These three tasks are interrelated and for optimal results they 

should be done in conjunction. The output is an RTL description of the hardware 

consisted of control and data path. It is important that HLS takes as input untimed 

high-level hardware description and transforms it into a fully timed hardware 

implementation. 

The most popular languages used in HLS tools for functional description are SystemC 

and C/C++. The resulting RTL description is generated in form of popular Hardware 

Description Languages (HDL) like VHDL or VERILOG. However, not all C/C++ code 

structures can be converted into an HDL. Usually, non-synthesizable segments of the 

code are sections used for system calls, input/output structures, and pointers. 

Therefore, it is required from the implementer to distinguish between code structures 

that can and cannot be synthetized. 

 

19 Philippe Coussy et al. “An Introduction to High-Level Synthesis” – IEEE Design & Test Computers, 2009 
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Figure 25 – HLS design flow 

Mainly, HLS generates the HDL based on a set of predefined transformation rules. 

However, these rules can be overruled with pragmas within the source code if a better 

outcome can be produced. The usual techniques used in HLS design for performance 

improvement of the hardware are pipelining, unrolling, and in-lining20. Pipelining 

enables parallel execution within the loop, unrolling generates more processing 

elements in parallel, while in-lining removes the hierarchy. All these techniques can 

be implemented in form of pragmas or within the HLS tool. 

7.7 Integration of Speech-based Signal Processing 

algorithms 

The number of connected devices has increased rapidly. The Internet of Things (IoT) 

framework and the diffusion of related enabling technologies, such as Device-to-

Device (D2D) communications, cloud and edge computing and big data analysis have 

strongly improved the feasibility of connecting and communicating through many 

mobile nodes, often in non-ideal environmental conditions. Moreover, the importance 

of audio speech processing is demonstrated by the use of this type of approach in a 

 

20 Adam Taylor “Porting Vivado HLS design to Catapult HLS Platform” – White paper 
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wide variety of commercial applications. This growing interest in speech and speaker 

recognition is witnessed by the widespread use of applications, such as speaker 

verification and authentication procedures, gender recognition and language 

recognition. 

Other common applications of speech processing techniques lie in the range of 

accessibility solutions: the most remarkable examples of this kind are the speech-to-

text and text-to-speech functionalities. Moreover, in numerous practical cases a 

speaker talks in an environment in which many smart devices (e.g., mobile phones) 

are present, for example during a seminar presentation, a conference call, or during 

a lecture in a classroom. 

For this reason, within the FRACTAL project, understanding audio context represents 

an important tool that can be extremely useful in several realistic scenarios. As the 

quality of audio signals is deeply influenced by the environmental conditions, an 

exhaustive study of the performances of the most common speech processing 

techniques in variable noise conditions and at different source-receiver distances is 

required. For this reason, many literature works address the issue of speech 

processing in challenging environmental conditions, proposing noise robust audio 

processing techniques, able to provide good performances even if noise is corrupting 

the audio signal. 

Our contribution within the FRACTAL project is to provide a useful tool for idiom 

recognition, in order to support the user in common use case applications. For 

instance, a totem node supporting users in public places could be used by people of 

different nationalities, and therefore a custom-tailored response to the user based on 

his/her native language would be beneficial for user experience and tool usability. 

Many techniques have been used to tackle the language recognition problem, among 

which the most widely used is certainly hotword-based recognition. This method is 

rather quick, matching the strict constraints of almost real-time applications, and 

also very effective in terms of system accuracy. The rationale is to collect a speech 

utterance, remove unnecessary silence and noise, and study the correlation in terms 

of signal features and characteristics, in order to match a pre-defined template signal. 

Such signal will be related to a specific language, thus allowing the system to interact 

with the user and select proper content based on the processing outcome. 

The main purpose of speech-based signal processing algorithms is to analyse audio 

signals and correlate them with a set of hotwords matching different languages. In 

this way a user speaking in his/her native language will be able to interact with smart 

systems in a transparent and easy way. 
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8 Security Risk Management Methodology 

This chapter is a summary of deliverables D4.1, sections 4.5.2 and 4.5.3, and D4.5, 

sections 4.4, 4.5, and 4.6. The methodology described in this section is the one that 

has been followed for the development of the risk analysis that is explained in chapter 

6 of deliverable D4.5 and for the development of the WP4T44-02 OS Security Layer 

component. 

For more information, check the sections referred above. 

8.1 Introduction to security in embedded systems 

The use of embedded systems for industrial applications in Industry 4.0 has grown 

in complexity, including increased connectivity for remote monitoring and 

management. However, this increased connectivity also poses a greater risk of 

attacks and intrusions, making it necessary to develop safe and reliable systems. 

Historically, embedded systems have focused on functionality and efficiency rather 

than security, leaving them vulnerable to attacks. The industry is responding by 

implementing the IEC 62443 standard, which sets requirements for the development 

life cycle of these systems and defines safe product development processes. During 

the design phase, security requirements must be established for later implementation 

and systems must be tested for cybersecurity. The IEC 62443-4 standard must be 

considered and used as a precedent for analysing system security requirements. 

8.2 Background on IEC 62443 

The IEC 62443 international series is the standard to consider when it comes to 

industrial cybersecurity, as it defines the development of secure industrial control 

systems. Developed by the International Electronic Commission, it is a precursor to 

the ISA99 standard of the International Society of Automation. 

It is structured in several documents which are classified in four main groups: 

• IEC 62443-1: General concepts, which presents the main concepts, terms and 

acronyms related to cybersecurity in an industrial environment. 

• IEC 62443-2: Policies and procedures, which describes how security should be 

managed within an organization and the requirements that security management 

systems must meet. 

• IEC 62443-3: Organization and distribution, which explains how a plant should 

be divided into zones with different levels of security, and their requirements and 

security systems. Four security levels are established, SL1, SL2, SL3 and SL4, 

which are applied according to the use to which the product is intended and define 

the cybersecurity functions implemented that make it more resistant to threats. 
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o IEC 62443-3-2 establishes the procedure to determine the zones, conduits, 

and risk assessment requirements. It defines five steps and the fifth one is to 

perform a detailed cyber security risk assessment process. For that, it 

proposes some possible risk assessment methodology, such as the ISO 27005 

which is the most common for cybersecurity applications. 

o IEC 62443-3-3: Establishes the security requirements for the system's 

architecture, design, and management, including the definition of the 

system's security zone and its relationship with other systems. 

• IEC 62443-4: Component development, which establishes the specifications that 

must be included in the components of the cybersecurity industry, and the 

development life cycle that must be followed to develop these components. 

o IEC 62443-4-1: Product development requirements, which defines the 

cybersecurity development life cycle that new industrial control systems must 

follow, although they can also be applied to existing systems. 

o IEC 62443-4-2: Security Requirements, which establishes the seven 

requirements that a cybersecure industrial control system must have. 

Depending on the security level that a component has, certain requirements 

must be met, where the highest level is the one that must meet all of them. 

8.3 Risk Management Methodology (ISO 27005) 

According to IEC 62443 establishes that any detailed risk assessment methodology 

can be followed as long as the selected methodology satisfies the risk assessment 

requirements such us the ISO/IEC 27005, which It is a systematic establishment, 

assessment and treatment process of all risks associated and/or related to a given 

scenario or purpose. 

The Risk Management process is divided in different stages, those are Context 

Establishment, Risk Assessment and Risk Treatment. 

Context Establishment is needed to determine the environment and conditions in 

which the risk assessment takes place. 

The STRIDE thread modelling is one widely used approach for identifying potential 

threats in the context establishment stage. This method involves considering six 

types of threats: Spoofing, Tampering, Repudiation, Information disclosure, Denial 

of service, and Elevation of privilege. 

Risk assessment process plays an important role in the cybersecurity management 

processes, since the identification and qualification of the security threats and risks 

is essential when it comes to the protection of assets. This task and responsibility 

shall be jointly addressed by all actors/entities involved in the cybersecurity 

management process of the system under consideration. For this purpose, three main 

activities are performed, Risk identification, Risk Estimation and Risk Evaluation. 
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From the risk assessment results, a risk treatment is generated. Risk Treatment is 

the process of selecting and implementing of measures to modify risk. Risk treatment 

measures can include avoiding, optimizing, transferring, or retaining risk21. It is a 

good part of the cybersecurity requirements to be met / developed in the product. 

8.4 STRIDE 

The STRIDE methodology is a tool created by Microsoft to identify potential threats 

related to computer security. It includes consideration of six types of threats 

represented by the acronym, Spoofing, Tampering, Repudiation, Information 

disclosure, Denial of service, and Elevation of privilege. Each letter represents a 

different type of threat that can be used to identify potential vulnerabilities in a 

system. In addition to these, the methodology also includes consideration of five 

other elements, External Entities, Process, Data flow and Data Store. 

External entities are actors or systems that interact with the system under 

consideration, such as users or other systems. Process represents the actions or 

activities that take place within the system, such as data processing and decision 

making. Data flow refers to the movement of data within the system, including input, 

output, and storage. Data Store represents the locations where data is stored and 

managed within the system, such as databases or file systems. Trust boundary refers 

to the point at which the system trusts the identity or actions of external entities and 

allows them access to resources or information. 

The goal of using the STRIDE methodology is to identify all potential threats and 

vulnerabilities in a system, by considering these six types of threats and five 

elements. Once identified, appropriate countermeasures can be put in place to 

mitigate the risk of a successful attack. This can include implementing security 

controls, such as firewalls, intrusion detection systems, and encryption, as well as 

developing security policies and procedures to help prevent and respond to potential 

attacks. 

8.5 Application of the methodology in the FRACTAL node 

The methodology described has been applied in the development of the WP4T44-02 

OS Security Layer component. This component implements the necessary security 

measures to protect the FRACTAL node and has been the result of the risk assessment 

process. 

Firstly, the different use cases in which one or several FRACTAL nodes are applied 

have been analysed and a set of assets have been obtained. From these assets, a 

risk analysis has been carried out. These assets have then been analysed following 

 

21 https://www.enisa.europa.eu/topics/threat-risk-management/risk-management/current-risk/risk-
management-inventory/rm-process/risk-treatment 

https://www.enisa.europa.eu/topics/threat-risk-management/risk-management/current-risk/risk-management-inventory/rm-process/risk-treatment
https://www.enisa.europa.eu/topics/threat-risk-management/risk-management/current-risk/risk-management-inventory/rm-process/risk-treatment
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the STRIDE methodology, resulting in a series of security countermeasures. These 

countermeasures have been implemented in a Yocto customization layer. 

This entire risk analysis process is described in detail in chapter 6 of Deliverable D4.5. 

In summary, the ISO 270005 methodology and the STRIDE process have been used 

to develop the WP4T44-02 OS Security Layer component. Likewise, this component 

is used on UC5. The applications, assets and risk analysis have been thoroughly 

described in the deliverable, ensuring that the necessary security measures are in 

place to protect the FRACTAL node. 
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9 Conclusions 

In this deliverable, first, we have introduced the workflow of the project from 

capturing requirements to FRACTAL features definition and product composition. 

Then we introduced the methodology and workflow for AI and Safe Autonomous 

decisions, from different perspectives, starting from the framework to the services, 

libraries, strategies and algorithms. 

This methodological framework also relates to the safety aspects to be considered in 

FRACTAL nodes, that can be addressed by a series of different safety standards 

depending on the target applications. Apart of the diversity of application specific 

standards to be considered we also have considered safety communications, safety 

aspects of Artificial Intelligence and how the building block approach can fit into the 

FRACTAL framework. 

Integration aspects have also been considered. For this purpose, the methods that 

are used to integrate the use cases into the FRACTAL platforms have been introduced. 

First the operational integration was explained with an example use case, from the 

selection of features to the selection of components and how the building process 

would be done. Then, the SW integration on the HW platforms, considering several 

aspects for each specific HW. 

Finally, an overview about the Risk Management Methodology that has been followed 

for the development of the risk analysis in WP4 is presented. where the need to 

develop secure and reliable systems is considered. In addition, the most important 

standards to be considered in these developments are presented. 

 A general methodology for FRACTAL system development has been presented here 

and has been used throughout the FRACTAL project. We described the overall 

workflow of the project with a focus on the identification of the key enabling 

technologies, the task of this deliverable, based on the use case descriptions. 
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