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Abstract: 

D2.2 “Methodologic Framework (a)” introduces an initial methodological framework 

specification. It is presented as a compositional workflow, which introduces the 

interactions of FRACTAL building blocks towards the integration of the FRACTAL 

computing node and the use cases. Following this global picture, the deliverable 

focuses on methodologies for several important topics for the project: AI and safe 

autonomous decisions, certification of safety-related products and integration of 

FRACTAL platforms. 
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Table 1 – Document history 

To cope with the high number of contributors, this document has been edited online. 

The Microsoft Sharepoint solution has been selected to keep information under EU 

legislation. This solution offers a reduced feature set compared to a “regular” Word 

editor. For instance, we have not been able to build a table of references and have 

instead used footnotes. 
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2 Summary 

The task T2.2 is described in FRACTAL DoA as “For the integration of the FRACTAL 

platform in an industrial environment, an important aspect is to describe (1) how it 

should be used and (2) how this usage helps to qualifications and certification of 

products developed using it, including safety-critical products.” 

Accordingly, D2.2 “Methodologic Framework (a)” introduces an initial methodological 

framework specification. It is presented as a compositional workflow, which 

introduces the interactions of FRACTAL building blocks towards the integration of the 

FRACTAL computing node and the use cases. 

Following this global picture, the deliverable focuses on methodologies for several 

important topics for the project: 

- AI and safe autonomous decisions 

- Certification of safety-related products 

- Integration of FRACTAL platforms 

A list of abbreviations is available at the end of the document. 

An update, D2.4 “Methodologic Framework (b)”, is planned at M30 (2023-02-28). 
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3 Introduction 

This deliverable provides an initial methodological framework specification. The aim 

of this framework is to identify the key enabling technologies with their supporting 

methodology and tools. 

Development of the FRACTAL node product and its sub-products (or sub-

components) will be supported by this workflow. 

This document is structured into 4 main sections. First the overall workflow of the 

project will be presented in section 4. Then sub-workflows/methodologies for “AI and 

Safe Autonomous Decisions” are presented in section 5, for the “Certification of 

Safety Related products” in section 6 and for the “integration of FRACTAL platforms” 

in section 7. 

Different WPs provide or use components for composition. This requires prior 

alignment of what is provided and what is expected: functional boundaries, 

interfaces, and other necessary information. Collaboration within the workflow 

includes handover of these artifacts between stakeholders and workflow steps while 

ensuring, managing, and maintaining composability during the workflow. 
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4 Workflow of the project 

The FRACTAL platform specifications (see deliverable D2.1 for more details), as 

shown in Figure 1, define what the framework should provide (i.e. components, tools, 

methodology and workflow) to be key enabling technologies (KETs) for the FRACTAL 

node. To limit the scope and better target the domains considered in the project, the 

use cases specifications are used as inputs. The final specifications should also 

consider the extensibility and usage of the framework in related domains of 

application. 

The composition workflow (described in Figure 1) is the activity of putting together 

building blocks. The workflow defines the steps and order to bring together all 

participants. It must address their individual needs for system composition (see 

Figure 3). 

Figure 3 shows the overall workflow to capture requirements during the FRACTAL 

project. First, the different demonstrators are specified (i.e. scenarios, features, and 

functional and non-functional requirements) in “Integration and verification” (WP7) 

and “Case Studies” (WP8). The demos’ requirements are then analyzed to get a 

unified list of requirements and key enabling technologies that are going to be 

developed during the project. These are identified into “Specifications & 

Methodology” (WP2). Third, the identified key technologies are characterized and 

decomposed into the technical work packages: the “node architecture & building 

blocks” (WP3), “Safety, security and low power techniques” (WP4), “AI & safe 

autonomous decisions” (WP5), and “CPS communications framework” (WP6). At the 

same time WP4, WP5 and WP6 can decompose requirements received from WP7 and 

WP8 and realize they need to add extra requirements into WP3. 
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Figure 1 – Requirements workflow in FRACTAL project 

Upon reception of external requirements, each Work Package works its internal 

requirement list and develop its “products”. Work Package’s tasks and their 

dependencies become visible in workflows like the one in Figure 2. These workflows 

also make clear dependencies among Work Packages. 

 

Figure 2 – Example of workflow 

Finally, as detailed in Figure 3, WP3 will provide the node definition and platform. 

WP4, WP5 and WP6 will add their products on top of the results of WP3. In particular, 

WP3 provides the hardware and software components (aka primitives) and platform 

nodes that allow building complex services and properties atop in WP4, WP5 and WP6 
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by smartly combining them in accordance with specific goals. If any problem arises 

in the integration of WP4/WP5/WP6 with WP3 products it will be solved at this stage. 

The first global integration attempt will be done in the verification phase WP7 that 

will help fine tune all products and then everything should be ready to the final 

validation on WP8. 

 

Figure 3 – FRACTAL products composition workflow 
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5 Methodology and workflow for AI and safe 

autonomous decision 

This chapter looks at the AI building blocks in WP5, focusing especially on the 

FRACTAL autonomous decision framework (section 5.1), the FRACTAL service 

architecture and middleware (section 5.2), and a common framework and format for 

FRACTAL inference models (section 5.3). Further, the chapter will look at AI 

functionality required by the use cases, concentrating in particular on UC2 

(Automotive air path control) (section 5.4) and UC6 (Intelligent Totem) (section 5.5). 

5.1 AI and autonomous decision framework 

The FRACTAL AI framework aims at integrating the AI functionalities to allow 

advanced prediction capabilities in the Fractal node. Even if use cases will be a 

guidance in the development of the AI tools, the whole framework will be planned 

and developed to be adapted in any context. In general, when talking about AI, a 

distinction is needed between the training phase and the inferencing phase. In the 

first one, historical data are used to train the AI models while in the second one the 

already built models are used to make predictions and decisions about the new 

incoming data. 

If the system’s behavior is not changing with high frequency, it is not necessary to 

perform the training phase very often and, above all, to have a response quickly. 

Usually, the training phase is done once or is updated on a regular basis if the system 

is supposed to undergo some changes in the behavior. So, two different scenarios 

will be considered: 

• The training is done offline. Data are transferred manually on some database 

and the model are trained starting from them. Then the model is manually 

transferred in the Fractal node where it is supposed to be executed for the 

inferencing phase. This is probably the approach that will be used for the first 

tests of the FRACTAL node since it allows a quick implementation of the 

models in the device. 

• The training is done periodically. In this case (see Figure 4) data are 

automatically transferred to a cloud service (via 5G or Wi-Fi connection) where 

they are stored in a database and used for building a model. Since it could be 

unfeasible (due to huge amount of produced data) or inappropriate (for 

example for security or privacy reasons) to send all the data the FRACTAL will 

probably be equipped with an aggregation layer able to do some basic 

processing on the data, to aggregate data and reduce the amount of data to 

be sent over the network. The model is then sent back to the device where it 

is used for subsequent elaborations. Notice that in this case the network is 

not a bottleneck since FRACTAL node can continue its processing even without 
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the generation and the transferal of new model. So, if for some reason the 

connection is not guaranteed the system can go on working. 

It is possible to imagine also that the training could be performed on the FRACTAL 

node, but usually the computational resources needed for training a model fit better 

with a cloud environment. 

As regards the inferencing phase, this is performed on the FRACTAL node since the 

decisions should be taken very quickly, which is not compatible with sending data 

over the internet. Moreover, the system should work also without connection, so the 

node must be autonomous in taking decisions. 

So, the FRACTAL node will be equipped with a layer able to perform some basic 

preprocessing operations on the data and an AI module able to use already built 

models to make decisions about new incoming data. The elaboration must be very 

quick because in some use cases, decisions are expected to take place within 100 

ms. Moreover, the module will be able to do some aggregation on the data; in this 

way, data could be sent in an easier way to a cloud service where the AI models 

could be updated. 

 

Figure 4 – Functioning of the online training for the FRACTAL node 

AI module will include these components that could be activated according to the 

specific applications: 

• Video analysis 

• Supervised and unsupervised learning 
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5.1.1 Video analysis 

Video Content Analysis deals with the extraction of information from images and 

video. Such information can be used for further processing done in “high-level” 

applications that collect and correlate data from heterogeneous sensors. Modern 

Video Content Analysis (VCA) systems are based on AI approaches: after a proper 

training phase, they can understand how to analyse and detect relevant information 

inside images and video streams. 

The first step needed to build an AI-based VCA system is to define exactly the kind 

of information to be recognized and detected. There are different possible tasks: 

• Classification: assignment of images to different classes or groups, according 

to their content. 

• Tagging (or labelling): it is a classification task more complex with respect to 

the previous one; multiple labels can be associated to an image as the VCA is 

able to recognize multiple “scenarios” or “concepts” in it. A practical example 

can be useful to explain differences: classification can distinguish between 

images collected indoor or outdoor while tagging can add multiple labels to 

the same images like outdoor, city, road intersection or indoor, house, 

bedroom for example. 

• Detection/Segmentation: both previous tasks are focused on detecting the 

presence of one or more reference target (object, person, a scenario etc.) in 

an image or a video. Detection and segmentation can also infer the location 

of such target(s) inside the image. In particular: 

o Detection process generates as output a bounding box that surround 

each target detected, 

o Segmentation process detects the shape of each target as it performs 

a pixel-based decision (i.e., each pixel can be assigned to background 

or to a specific target). 

During FRACTAL, and in particular in Use Case 6, detection and/or segmentation 

tasks will play a crucial role, as they are extremely useful to the FRACTAL node to 

understand its surrounding environment. As a matter of fact, targets detection and 

localization enable further processing like for example counting the number of 

persons and or reference objects within a specific area. Also target tracking is a quite 

relevant function in the scope of FRACTAL, in particular for those applications related 

to safety and security control. 

VCA, as any other AI system, is based on a training phase in which the system learns 

to detect and recognize a target. In general, the training can be supervised or 

unsupervised. For the VCA, training will be supervised, meaning that the system 

learns how to perform the detection through a set of labelled (annotated) images. 

Basically, such annotated dataset (e.g., a large number of images with a person 

inside) is the input for the training phase; after the training phase, the output is a 

model that, at runtime, can be used to perform the task (in this case people 

detection). 
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Such training phase has a relevant impact on VCA performance, that is dramatically 

affected by the training set characteristics. In particular, this dataset must include 

an adequate number of images, it must be accurate, meaning that images used for 

training should be similar to those analysed at runtime, but at the same time, it must 

be representative of all the different alternatives that will be possible at runtime. 

Overfitting and underfitting are two typical problems of AI-based VCA system: the 

model achieves poor classification/detection performance after training. In particular, 

overfitting means that there are too many parameters in the model and a high 

variability of the classification. Therefore, the model is too complex and sensitive to 

training dataset (high variance). On contrary, underfitting means that there are few 

parameters in the model and a high classification discrepancy (high bias). In other 

words, underfitting can be explained as the model is too simple and therefore unable 

to provide good results during prediction; overfitting is when the model is too good 

to be true, as it performs very well analysing training data but it is completely unable 

to be generalized and therefore achieve very poor results on runtime prediction. 

As previously said, the training phase and therefore the training set play a crucial 

role in the VCA system performance. A limited amount of data for training, in this 

case annotated images, is one of the worst scenarios concerning an AI-based VCA 

system. Data augmentation is a useful technique to overcomes this problem. It 

consists in a manipulation of available images in order to increase artificially the 

dimension of the dataset. For example, some pictures in the database can be 

transformed by rotating, flipping them or by modify colour, contrast or brightness. 

Recently has been emerging a new approach for data augmentation based on the use 

of Generative Adversarial Network (GAN). Such particular type of Neural Network is 

here mentioned as it is quite relevant in the AI framework for the VCA. Moreover, it 

will be taken in deep consideration during the next phases of FRACTAL, in particular 

in WP5. Several details will be included in the deliverable D5.1 and D5.3. 

5.1.2 Supervised and unsupervised learning 

Besides the analysis of video and audio streams, other AI tasks could be implemented 

in the FRACTAL AI framework. In this subsection a short overview of more traditional 

machine learning applications that could be used to analyse data deriving from use 

cases. The methods introduced here deal with structured data, i.e. that can be 

organized in tables. Usually, a distinction is done between supervised and 

unsupervised methods. Supervised methods assume that data are somehow labelled 

either in a natural way or because some human has labelled them manually. This 

label is the target of supervised methods since they aim at building a model able to 

predict the value of the target starting from a set of inputs. According to the type of 

target, classification or regression problems could be defined. Multilayer Perceptron 

(MLP), Support Vector Machine (SVM), Logistic Regression (LR), Decision Trees (DT) 

are methods for supervised learning. 
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On the other hand, in unsupervised problems, no target variable is available and the 

goal is to find information within the data. For example, some unsupervised 

approaches are: 

• Clustering, aimed at organizing data in homogeneous groups. 

• Outlier detection, that are devoted at finding configurations that deviate from 

standard behaviour. 

• One-class classification, whose goal is finding a classification model when only 

data of one class are available. For example, data about failures could not be 

yet available in historical data in a predictive maintenance application. 

• Sequence Analysis and Anomaly Detection, aimed at analysing time 

sequences to detect frequent or uncommon patterns that could be related to 

regular or anomalous behaviours. 

In general, these approaches could be used in association with the analysis of audio 

and video streams. As a matter of fact, the analysis of video and audio could generate 

features that can be used as an input of supervised or unsupervised tasks. 

Moreover, it is worth noting that some techniques belonging to this class allow also 

the generation of intelligible models, according to the Explainable AI (XAI) paradigm, 

enabling applications where the understandability is a key feature. 

5.2 Distributed AI and the AI services in the middleware 

 

Figure 5 – FRACTAL cognitive agent and the corresponding node architecture. 

A FRACTAL cognitive agent (Figure 5) interacts with other system components, 

devices and data sources through the services provided by the platform middleware. 

In its operation, it uses and exports both internal and external interfaces for 

connecting to its sensors and actuators and to external services and data sources, 

for operational control (e.g., setting the agent goals), and for sharing its results, 

knowledge and data. The agent architecture is internally composed of software 

components with varying roles, such as modules for interactions, decision making, 

implementing and evaluating the selected actions and interactions. 
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Figure 6 – Agent components and APIs. Active component shown in blue. 

To facilitate orchestration and choreography of the operations towards optimal 

Quality of Service and performance, the run-time deployment of each software 

component must be decided. To this end, the agent architecture with regard to the 

application requirements must be considered. For example, some processing-heavy 

components (e.g., the learning element) could be run on a nearby edge node or on 

the cloud, while others may run on-device (see Figure 6). As a result, the edge-cloud 

framework provides component online deployment (including offloading and 

migration), management and monitoring functionalities. 

On one hand, the framework enhances the adaptivity of the individual nodes in 

response to the dynamics of the environment, the state of the platform, and 

application requirements, by allowing control of its communication-computation 

tradeoff (e.g. latency vs. data transmission vs. computational load). On the other 

hand, such a framework increases operational complexity significantly and introduces 

a need for (partially) autonomous decision-making by the components. Figure 7 

further illustrates the related horizontal offloads and vertical migrations. 

 

Figure 7 – Hierarchical component transfer framework. 

For those of the agent components, which encompass learning and decision-making 

elements, the framework requires data and knowledge sharing and collaboration 

across the platform. For example, some components may employ a federated 

learning schema (see Figure 8), where a number of edge nodes, coordinated by a 

cloud node, collaboratively build a shared understanding (e.g., a model). The 
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architecture, and largely the framework, must thus allow the online sharing of data, 

results and knowledge, all the while monitoring and evaluating the operation and 

environments of each component taking part in the learning. 

 

Figure 8 – Federated leaning in a FRACTAL system. 

Further, while an agent makes partially autonomous decisions, a number of use cases 

also call for collaboration and co-operation (e.g. through swarm intelligence) as 

distributed decision-making, targeting operational efficiency and effectiveness of the 

system. To facilitate such a multi-agent system, the agent must support sharing of 

both data and knowledge, leading to complex interactions between the agents and 

other system components (Figure 9). Such an integrated architecture is also required 

to support the top-down/bottom-up control in the operational framework, further 

specified in T5.4. 

 

Figure 9 – Distributed decision-making in a FRACTAL system. 
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5.3 Use of LEDEL 

 

Figure 10 – Development stages of LEDEL in Fractal 

EDDL (https://github.com/deephealthproject/eddl, European Distributed Deep 

Learning Library) is a Deep Learning (DL) toolkit designed and developed to provide 

support to design and train Deep Neural Networks (DNNs) on single computer nodes 

and on hybrid HPC + Big Data computing architectures. EDDL is ready to leverage 

hardware accelerators, such as GPUs and many-core CPUs. It also uses the ONNX 

standard format (https://onnx.ai) to import/export DNNs. Thus, trained DNNs can be 

used on production environments to infer/predict. LEDEL (Low Energy EDDL) will be 

the adaptation of the EDDL to run on Low Energy hardware, so that trained DNNs 

using the EDDL will be easily used to infer/predict on production environments using 

the LEDEL. In the picture above we can observe different tools provided by EDDL. 

LEDEL will be ready to run on Edge computing hardware being developed in FRACTAL. 

Hardware with limited computing capabilities, but more powerful than existing low 

energy hardware so far. Thus, thanks to LEDEL, not only will it be possible to make 

decisions based on simple conditions, but more complex decisions based on indicators 

provided by more sophisticated algorithms running on the edge will be feasible to be 

made. As an example, we will be able to evolve from simple presence detectors to 

decide whether to switch on lights, to much more complex scenarios, where the 

number of people in a room and the distance between individuals will be computed 

every few seconds in order to adapt room conditions as light, cooling/heating system, 

switch on only the required lights, etc. 

https://github.com/deephealthproject/eddl
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The tasks to accomplish that are shown in Figure 10 are defined as follows. 

- EDDL will be adapted to run on RISC-V based hardware in the NOEL-V 

processor model proposed (WP3, T3.5). 

-  In order to check the correct execution of the LEDEL as a software service in 

a Fractal node, an example of a common object detection algorithm, like Tiny-

YOLO, will be implemented (WP4, T4.1). 

- Correspondingly, LEDEL will need a data model definition to be used (WP6), 

that will take into consideration dependencies and requirements of other 

components developed in WP5 of the Fractal project. 

- Finally, SML will provide support to check the integration of the LEDEL in the 

Fractal platform and guarantee a good performance and a proper behaviour 

in those use cases that require it. 

 In conclusion, LEDEL as a service will be offered in a FRACTAL node for it to be able 

to perform more complex calculations (i.e., to run more sophisticated algorithms). 

The goal is to develop an API that provides deep learning functionalities that are 

devoted to face the deployment on low energy computing infrastructures. LEDEL will 

be accessible in order to make it easy to Fractal partners to use it in their use cases. 

5.4 Advanced control strategies in the automotive domain 

Existing automotive air-path control strategies are fully reliant on model-based 

control strategies. These techniques imply a high calibration effort and the ability to 

perform self-learning through observations is very limited. This use case will, 

therefore, contribute to integrate the environmental influences and changes as a 

fundamental part of the system, among other benefits, like potentially increased 

product quality and increased efficiency for the development of customized air-path 

controllers. The FRACTAL nodes are crucial to the implementation of this use case.  

The FRACTAL framework shall demonstrate the following objectives: 

• Inference of data-driven models aimed at improved energy efficiency and 

reduction of environmental pollutants on the FRACTAL node 

• Online self-adaptation algorithms of the initial state model, to react to 

variations in the combustion engines and different driver behaviors 

• Freeze frame data collection and connection to the cloud for re-training 

purposes 

• Identification of potential cyber-security breaches through anomaly detection 

In Figure 11 an overview of the planned (implementation) interactive environment 

schema can be seen. Three different model operations can be differentiated. Firstly, 

the model inference of the initial state AI-based model, as a result from the model 

development process, which will be implemented to replace the conventional air path 

control. Secondly, the model adaption during the vehicle in-use phase, to cover the 

model blind spots coming from the limitations of the input data used for model 

training and to have the possibility to adjust to vehicle specific parameters. The 
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adaptation algorithm would compare the output of the model inference with the 

measured data and in case of a deviation, learn and preserve the additional 

information. Thirdly, a cloud connection will be established to utilize the potentials of 

crowdsourcing and the access to extensive information from other drivers/vehicles, 

with the overall target to optimize the control strategy from many different aspects 

(e.g., changes in environmental conditions, variability, coverage of different 

operation modes, etc.). Since this task comprises the use of big data, a 

computationally heavy training infrastructure is needed and would therefore require 

cloud computing for the execution. 

 

Figure 11 – Overview of FRACTAL framework needed for Automotive implementation 

5.5 Image recognition (iris diagnosis using AI algorithms) 

At this time, existing models for the fundus image analysis to detect diseases and 

malformations are still being tested. These techniques imply a human intervention in 

the pre-processing phase, and a high calibration effort for the fundus segmentation. 

This experimentation, therefore, wants to provide a tool to study how machine 

learning (from now ML) techniques can support the ophthalmology sector in the 

analysis of the ocular fundus, and at the same time seeks to evaluate the 

performance and accuracy by comparing the results obtained with those of other 

accredited research studies. 

The following objectives should be demonstrated: 

• Implementation of an image acquisition system provided by a camera module. 

• Implementation of a Deep Learning process able to obtain an automatic image 

pre-processing feature. 

• Implementation of a classification system. 

• Implementation of a ML environment able to perform: 

o An extensive performance evaluation. 
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o An hyperparameter optimization session. 

• Implementation of a functionality for tracking the pupil and iris. 

In Figure 12, an overview of the planned architecture schema can be seen. 

 

Figure 12 – Iris diagnosis: Overview of the functionality 

As shown in the Figure 12, we have divided the system architecture into seven blocks: 

Block Name Description 

Input Public dataset for Eye tracking: The system should be able to 

analyse the images of a biomedical dataset that contain 

information on malformations and / or pathologies already 

diagnosed. 

Camera module: System should integrate with an infrared 

camera to perform eye tracking. 

Public Dataset for fundus: The system should be able to 

analyse the images of a biomedical dataset that contain 

information on malformations and / or pathologies already 

diagnosed. 
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Block Name Description 

Image 

Acquisition 

This block should be able to do: 

• Image size normalization. 

• Discard any images that cannot be used. 

• Distinguish image type (for fundus or eye tracking). 

• Transfer the data to the next block. 

Pre-Processing This block should be able to do: 

• Identify the iris. 

• Extract the iris image. 

• Identify the pupil. 

• Extract the iris pupil. 

• Trace the path of the veins. 

• Identify the points of intersection of the veins. 

• Extract the image of the surroundings of the 

intersection points of the veins. 

• Transfer the data to the next block. 

Classification This block should be able to do: 

• Group images into two subgroups (test and training). 

• Classification of images to detect malformations and / 

or pathologies. 

• Transfer the data to the next block. 

Neural Network This block should be able to analyse the data collected to 

obtain a cognitive model that allows the optimization of the 

results collected in subsequent iterations. 

Optimization This block should be able to analyse the output data in order 

to optimize the accuracy and the computational process in the 

testing phase. 

Matching This block should be able to analyse the output data in order 

to compare the results and performances obtained. 

Table 2 – Image Recognition for Iris Diagnosis - Definition Table 

The results of this experimentation will be compared with those published in research 

articles consistent with the purpose of FRACTAL nodes performing eye analysis to 

evaluate the performance, accuracy and integrability of the system with embedded 

solutions. 
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6 Methodology for the certification of safety-related 

products 

This chapter proposes methods tailored to the FRACTAL project to anticipate the 

certification of safety-critical use cases. 

This chapter starts with an introduction to get more acquainted with safety standards 

(section 6.1.1) and derives guidance to anticipate the certification of safety-critical 

use cases (section 6.1.2). 

The section 6.2 addresses functional safety for certain critical building blocks of the 

FRACTAL project, with topics traditionally addressed in functional safety (redundancy, 

mitigation of timing interferences) and topics that are quite novel in the safety 

domain: fractal communications and artificial intelligence. 

Finally, the section 6.3 explains how to leverage VERSAL primitives for safety-critical 

applications1. 

With a few tens of pages, we cannot claim to present a full-fledged methodology to 

build a certified product when the certification evidence of cars or trains requires 

several thousands of pages. However, we think these recommendations can help 

ease the future integration of FRACTAL technologies into safety-critical end-products. 

6.1 Guidance to define a methodology for a safety-related 

development (ISO61508) tailored to an R&D 

cooperative project 

6.1.1 Introduction to safety standards 

IEC 615082 is the main European standard for functional safety. It provides a generic 

approach to all activities related to the safety lifecycle of safety-related 

Electrical/Electronic/Programmable Electronic (E/E/PE) systems that will be used to 

perform safety functions. 

6.1.1.1 Functional safety 

According to the IEC 61508 standard, functional safety3 is the subset of the overall 

safety relating to equipment and its control system which depends on the correct 

 

1 Per the preparation of D2.1 specifications, it turned out that the RISC-V based nodes will seldom be used 
by safety-critical applications. 

2 IEC 61508-1 Functional safety of electrical/electronic/programmable electronic safety-related systems - 
Part 1: General requirements, 2011 

3 MTL application note, Functional safety, An introduction to Functional safety and the IEC 61508 series, 
2002 
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operation of its safety related system which implements the required safety function. 

Functional safety ensures that there are no unacceptable risks and addresses the 

ability of safety-related systems to perform their safety functions as intended. 

6.1.1.2 Objectives and application domain of the IEC 61508 standard 

IEC 61508 standard was first published in the period 1998-2000. The standard was 

updated and improved with a second version in 2011. The general objective of this 

standard is to permit the development of E/E/PE safety related systems that will 

perform safety functions in accordance with the specification. For this, the standard 

proposes an operational approach to harness the E/E/PE safety-related system, 

starting from the study of the safety requirements and taking into account all stages 

of the system lifecycle. 

The first intention of the working group was to produce a generic standard to be used 

as the basis for drafting other product and application sector international standards. 

However, in practice, IEC 61508 is used directly by industries. 

6.1.1.3 General structure of the standard 

In order to cover all aspects related to E/E/PE systems, the general structure of 

standard 61508 is organized in 7 parts (the references to the different parts can be 

found in the referenced IEC document4). The parts 1, 2, 3 and 4 are normative, while 

the parts 5, 6 and 7 are only informative, offering advice and guidance to apply the 

normative parts. The part 1 sets the requirements for the certification documentation 

and the way to be compliant with the standard. It also defines the technical 

requirements and the associated management and assessment for achieving safety 

throughout the entire lifecycle of the system, see Figure 13. The parts 2 and 3 cover 

the requirements for the development of E/E/PE hardware and for the software 

development while the part 4 provides the definitions used in the standard. 

 

4 IEC Functional safety Essential to overall safety, 2019; https://www.iec.ch/basecamp/functional-safety-
essential-overall-safety 

https://www.iec.ch/basecamp/functional-safety-essential-overall-safety
https://www.iec.ch/basecamp/functional-safety-essential-overall-safety
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Figure 13 – IEC 61508 safety life cycle model 

6.1.1.4 Risk reduction 

The safety assessment in the IEC 61508 standard is based on risk analysis and risk 

reduction. In the risk analysis, hazardous events are identified and the necessary 

risks reduction for these events are determined. After the specification of the risks 

reduction, the safety requirements will be provided with an associated Safety 

Integrity Level (SIL) for each safety function and will be implemented into one or 

more safety-related systems to mitigate the identified risk. The SIL5 indicates a level 

of safety integrity (between 1 and 4) and its value depends on the level of risk 

reduction required by the analysis. The SIL may be defined as a measurement of 

operational safety that determines the recommendations related to the integrity of 

the safety features to be assigned to E/E/PE systems. 

The standard considers that the risk values are always approximate and the actual 

reduction obtained by risk reduction measures can never be determined with 

precision and cannot be zero, see Figure 14. 

 

5 Felix Redmill, “Understanding safety integrity levels”, Measurement + Control, Volume 32, September 
1999 
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Figure 14 – Risk reduction principle 

The risk reduction is linked to the development of the safety functions following the 

safety standard and it is well described in6 and requires the following steps: 

• Identify and analyze risks 

• Determine the tolerability of each risk 

• Determine the risk reduction necessary for each intolerable risk 

• Specify the security requirements for each risk reduction and their SIL 

• Design and implement the safety-related function to meet security 

requirements 

• Validate the safety functions 

6.1.1.5 IEC 61508 a stand-alone standard and a basis for other standards 

IEC 61508 can be a stand-alone standard. It provides suppliers and users of safety 

equipment with a common framework for the design of products and systems for 

safety-related applications. All parts of IEC 61508 are suitable for direct use by the 

industry. 

IEC 61508 parts 1, 2, 3 and 4 are the basic IEC publications in the field of functional 

safety. One of the responsibilities of IEC technical committees is to base, wherever 

possible, the drafting of their own industrial or product standards on these four parts 

whenever E/E/PE safety related systems are within their scope. IEC 61508 is also the 

basis for other industry standards such as automation7, railway8 and automotive 

domains9 as shown in Figure 15. 

 

6 MTL application note, Functional safety, An introduction to Functional safety and the IEC 61508 series, 
2002. 

7 IEC 61511-SER Functional safety – Safety instrumented systems for the process industry sector, 2004. 

8 CENELEC EN 50126-1 Railway applications - The specification and demonstration of Reliability, 
Availability, Maintainability and Safety (RAMS), 2010. 

9 ISO 26262-2 Road vehicles — Functional safety — Part 2: Management of functional safety, 2018. 
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Figure 15 – Industry standards based on IEC 61508 

IEC 61508 has a strong impact on the development of E/E/PE systems and multi-

sector products concerned with safety. However, it should be noted that specific 

industry or product standards usually refer only to the specifications of the IEC 

61508, therefore the users will always need to consult IEC 61508. 

For the application domains addressed in FRACTAL, IEC 61508 forms the basis for: 

- ISO 26262 in the automotive sector, 

CENELEC EN 50126, 50128, 50129 and 50159 in the railway sector10. 

6.1.2 Guidance to apply safety standards in FRACTAL 

6.1.2.1 Introduction 

In the FRACTAL project, we have established a specific methodology derived from 

the functional safety standards that will give the system designer an early assurance 

of the reduction of systematic errors and the feasibility of functional, non-functional 

and safety specifications on some of the building blocks for use cases that require it. 

This confidence in the different building blocks of the system can be acquired and 

confirmed as they increase in maturity during or after FRACTAL. In order to guarantee 

the expected final safety level, the system “industrialization” project should adopt 

one of the recognized functional safety standards such as IEC 61508 in early stages. 

6.1.2.2 Methodology used in the FRACTAL project 

In this section, we present a simplified methodology, derived from the functional 

safety standards, which can be used by the FRACTAL partners. This methodology is 

available for use cases that are interested in increasing the level of confidence in the 

feasibility and viability of their building blocks that will be introduced in the 

industrialization phase of a system with operational safety constraints. 

6.1.2.3 Prerequisites of the methodology 

The methodology assumes the use of a system description method from systems 

engineering such as the hierarchical decomposition of a system in functional blocks 

or in building blocks. The following figure shows an example of the hierarchical 

 

10 RF 0015 Reference Document For The Certification Of The Safety Integrity Level Of Products Or Systems 
According To EN 50126, EN 50128, EN 50129, EN 50657, ISO 26262 and IEC EN 61508 standards, Certifer 
2019, 
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breakdown of a system into building blocks down to the basic building blocks which 

are considered as elementary building blocks. 

 

Figure 16 – Hierarchical breakdown of a system 

6.1.2.4 Best practices for the FRACTAL project 

Some best practices can be anticipated for safety-related building blocks and sub-

systems and then reused during the actual product certification. In the following, we 

provide a short set of recommendations and best practices to anticipate future safety 

certification that can be applied in the project: 

• Sort safety-critical UC requirements into three categories: 

o Functional requirements 

o Non-functional requirements 

o Safety requirements 

• Capture these requirements in a deliverable related to the use case. 

• Test safety requirements in WP7/8. 

o Capture the results 

• Full traceability among the UC specification, development, test, verification 

and validation process 

6.1.2.5 Safety by construction 

While the design is intended to be built safe by construction, hardware random faults 

cannot be avoided, and hence, appropriate safety measures are incorporated during 

the architectural design to guarantee that those faults are properly managed by 

means of either fault-tolerance features or by transitioning timely to a safe state. For 

instance, in the context of this document, safety features relate to (i) avoiding 

common cause failures (CCFs) that might lead redundant components to the same 

error, and hence a failure despite redundancy, (ii) limiting and monitoring time 

overruns due to multicore interference to preserve freedom from interference, (iii) 
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reliable (fault-tolerant) communication, and (iv) allowing the use of AI-based 

components by resorting to appropriate ASIL (short of Automotive Safety Integrity 

Level) decompositions relieving AI-components from inheriting safety requirements. 

6.1.2.6  A simplified safety related methodology for the FRACTAL project 

1) Implementation of a hierarchical traceability system 

2) Breakdown of the system into building blocks 

3) Identification of the elementary building blocks 

4) Hierarchical specification of the use case (HW/SW) 

• Specification of the functional requirements 

• Specification of the non-functional requirements 

5) Hazard analysis / feared events analysis 

6) Safety requirements specification 

7) Identification of relevant buildings that will be under test during the project 

• Select the buildings blocks that require an increased confidence level and 

a reduced number of systematic faults 

8) Isolation/extraction of specifications related to the building blocks “under test” 

9) Specification & realization & documentation of functional tests 

• Functional tests of the elementary blocks 

• Functional tests of software integration 

• Functional tests of HW/SW integration 

10) Specification & realization & documentation of non-functional tests 

11) Specification & realization & documentation of the fault injection tests 

• This goes beyond the tests usually used in non safety-critical domains. 

• Faults are injected on the inputs of the functional blocks and shall not 

propagate to the outputs. 

• Fault injection is a time-consuming practice and the choice of the 

hierarchical breakdown where to apply it is crucial. 

• Fault injection can detect implementation errors, dysfunctional 

architecture and also incomplete or erroneous specifications. 

• See Figure 17 below 

12) Functional validation coverage of building blocks under test 

• Verification of the traceability between the building blocks specification 

and the tests specification 
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• Verification of the adequacy of the hierarchical specification, the tests 

specification and the obtained test results 

• Identify what has been validated 

• Determine if the building blocks meet the requirements of the building 

block specification 

• Analysis and identification of malfunctions and gaps 

13) Technical recommendations regarding the “buildings blocks under test” for future 

projects and towards a future product 

• What has been validated in the FRACTAL project 

• What doesn't work or may cause problems 

• Desirable future improvements 

• What remains to be validated 

 

Figure 17 – Illustration of fault simulation: error propagation 

6.1.2.7 Reusing building blocks 

In the context of FRACTAL, products targeting safety-related application may rely on 

pre-existing building blocks. The main reason for this is that the cost of development 

from scratch can be prohibitive in relatively complex systems. For instance, creating 

a complex safe and secure system with capabilities comparable to mainstream 

computing systems (Microsoft Windows or GNU/Linux) would incur in prohibitive 

costs – estimated at 50 B$ for the Linux kernel11. 

Safety standards allow the reutilization building blocks. For instance, IEC 61508 

allows using a proven-in-use argument (named Route 2S in IEC 61508-3). However, 

to achieve certification based on this argument, the product developer needs to 

provide a vast amount of detailed information of collected historic data (e.g. in IEC 

61508-7, C.2.10.1) that sometimes is not available. 

However, there are other means to achieve qualification of pre-existing software 

elements. For instance, the SIL2LinuxMP12 project provides the safety qualification 

 

11 Nicholas Mc Guire and Carles Hernandez, An open dependable platform for safety critical systems, Hipeac 
Magazine April 2020, https://www.hipeac.net/magazine/7154/ 

12 https://sil2.osadl.org/ 

https://www.hipeac.net/magazine/7154/
https://sil2.osadl.org/


 

Project FRACTAL 

Title Methodological Framework (a) 

Del. Code D2.2 

 

  
 Copyright © 2022 FRACTAL Project Consortium 32 of 75 

 

argument for the pre-existing software elements of a constrained Linux environment 

using IEC 61508, Route 3S. For that, one has to provide arguments explaining why 

the development process of those pre-existing software elements satisfies the high 

standards of IEC 6150813. 

Unfortunately, in the context of close-source libraries (e.g CudaDNN) certification 

cannot be achieved by the application developer unless the owners of these libraries 

go through an out-of-context (an element in isolation) certification process and/or 

adapt their libraries to fit specific standards and are able to provide the required 

safety documentation. While in theory, the usage of close-source libraries not 

developed in conformance with safety standards is not actually precluded by 

certification standards (e.g end-users can use black-box testing), this however, has 

severe implications for applicability. Thus, for these HW/SW products to be qualifiable 

for safety-related applications, suppliers should either adapt their products to comply 

with specific safety standard or allow end-user to go for alternative open-source 

libraries. For the latter, in order to make this approach attractive, open-source 

libraries must provide competitive performance with respect to the existing closed-

source libraries14. 

6.2 Focus on some FRACTAL building blocks 

To build the safety concept for a fractal system, a number of safety-related properties 

need to be built bottom up. Generally, these properties relate to the ability of the 

system and its components to detect, manage and/or tolerate faults and or behavior 

beyond the intended functionality. This section covers those aspects for the different 

components in the form of safety measures and strategies. In particular, approaches 

are presented to deal with faults for the computation of an application (diverse 

redundancy), timing interference across applications, communication across nodes, 

and AI-related processes. 

6.2.1 Diverse redundancy 

Fault detection in a fractal system can be efficiently provided bottom-up. This implies 

that appropriate safety measures need to be deployed along with computation 

means. Safety measures for the highest criticality functionalities (e.g. ASIL C and D) 

include some form of diverse redundancy so that a single fault, despite affecting all 

redundant elements, cannot lead to exactly the same error, which might escape 

detection. 

 

13 Andreas Platschek, Nicholas Mc Guire, Lukas Bulwahn, Certifying Linux: Lessons Learned in Three Years 
of SIL2LinuxMP, Embedded World 2018. 

14 H. Tabani, et. al., Assessing the Adherence of an Industrial Autonomous Driving Framework to ISO 
26262 Software Guidelines, Design Automation Conference 2019. 
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CCFs, in automotive terminology, are those failures caused by a single fault that 

makes safety measures, such as redundancy, ineffective. For instance, two identical 

cores executing the same task redundantly fully synchronized have the same state, 

and upon a common fault (e.g. a voltage droop) could experience the same error. To 

avoid CCFs, safety-related systems implement redundancy with some form of 

diversity so that the risk of experiencing identical errors in redundant elements is 

residual. In the case of storage, this is usually achieved using Error Detection Codes, 

in the case of communications using Cyclic Redundancy Check codes, and in the case 

of computation, using some form of lockstepped execution where two or more 

identical cores execute identical software but with some staggering (i.e. time shift) 

so that cores' state is sufficiently diverse. 

Therefore, platforms intended to run functionalities with high integrity requirements 

need some form of lockstepping support. This can be achieved with tight 

lockstepping, where only one redundant core is visible at software level and the 

others can only work in lockstep mode, as done, for instance, by the Infineon AURIX 

microcontrollers for the automotive domain. 

Tight lockstepping at core level can be implemented with different flavors. For 

instance, one could compare the outcome of each instruction or even each pipeline 

stage every cycle. However, the most effective solution has been shown to compare 

only off-core activity (e.g. requests visible in the interconnect) to reduce the 

overheads while avoiding any visible impact due to errors.  

While this solution is highly effective to attain diverse redundancy, it is inflexible since 

it does not allow using the cores independently to run different tasks. An alternative 

is using light lockstepping, where redundancy is created and managed at software 

level, and independent cores are used enforcing staggering with SW-only means, as 

illustrated in Figure 18. 

 

Figure 18 – Schematic of the SW-only lightweight lockstep. 

SW-only diverse redundancy builds upon the creation of redundant processes at 

software level, so that both of them receive the same – redundant – input data and 
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return their results for comparison in a safe CPU. Without loss of generality, this 

discussion focuses on dual-core lockstep, which is the common approach in many 

domains, including automotive. 

The methodology builds on the use of three threads (see Figure 18): 

• Monitor. The monitor is the one spawning the redundant computation threads 

(head and trail), and monitoring and enforcing staggering between them. 

• Head thread. The head thread executes the functionality without any specific 

control for the sake of achieving diverse redundancy. 

• Trail thread. The trail thread executes the functionality redundantly with 

some staggering (delay) w.r.t. the head thread. Therefore, if the staggering 

at any point is too short, it is stalled for a while. 

Since the monitor lacks any form of redundancy, it needs to run in a native 

lockstepped core, which may be in a separate microcontroller, or may also be in the 

same microcontroller. The monitor spawns the head and trail threads into two other 

cores, which do not implement tight lockstepping support. Then, the monitor 

performs the following steps periodically every Tcheck cycles: 

1. Collects the instructions executed count (IC) from both threads, so IChead 

and ICtrail. 

2. Computes the difference between both counters and compares it against a 

threshold Istagger. 

a. If the head thread is sufficiently ahead from the trail one, then both 

threads continue the execution. Formally, execution continues 

normally if (IChead - ICtrail) > Istagger. 

b.  Else, if the trail thread is too close to the head one, then the monitor 

stalls the trail thread during the next monitoring period (so Tcheck 

cycles). Formally, the trail thread is stalled if (IChead - ICtrail) <= 

Istagger. 

3. Finally, the monitor sleeps until the remaining time until elapsing Tcheck 

cycles. 

This mechanism guarantees that the trail thread cannot catch up with the head thread 

as long as the instruction threshold Istagger is large enough so that, even if the 

head thread stalls completely and the trail thread executes at the maximum possible 

speed, the trail thread cannot catch up with the head thread since one monitoring 

period until the next one. This implies that executing a Istagger instructions must 

require at least Tcheck plus the time to detect that the current staggering is too low 

and stalling the trail thread. 

6.2.2 Management of timing interference 

Safety-related systems, as part of their development process, must adhere to specific 

verification and validation (V&V) processes, and include safety measures to deal with 

random hardware faults that may occur in the field. This is achieved by means of 
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observability and controllability knobs. Those knobs have already been deployed in 

mono-core SoCs. However, MPSoCs pose a number of challenges related to 

performance interference in the hardware shared resources across tasks running in 

different cores. Such interference must be properly accounted for and mitigated to 

meet performance-related safety requirements in line with safety standards 

specifications. In the context of FRACTAL, since such interference emanates at node 

level, that is the scope where safety measures and V&V means need to be deployed. 

Commercial safety-related MPSoCs, such as, for instance, the Infineon AURIX 

processor family, include limited features to monitor and mitigate multicore timing 

interference. Typically, those MPSoCs include some form of Statistics Unit (SU) 

capable of tracking access counts, number of instructions executed of different types, 

as well as aggregated stall cycles in some buffers and queues. Those MPSoCs may 

also include powerful debug facilities such as Aurora, Lauterbach and CodeWarrior, 

which allows collecting detailed information about events in the MPSoC. 

Unfortunately, those SUs and debug facilities have some limitations: 

• It is generally hard – if at all possible – discriminating how much interference 

each core creates on each other core since stall cycles, if available, are 

provided in an aggregated manner. 

• The MPSoC may lack means to exercise control over multicore timing 

interference. 

• Despite debug facilities are powerful, they are normally only usable during the 

development process given the fact that they require specific equipment and 

software for their use. Hence, safety measures to be used during operation 

cannot exploit those facilities. 

Specific SUs can be tailored to deal with those challenges and meet the requirements 

of safety-related systems in terms of multicore timing interference, both during V&V 

and during operation. In particular, a timing-interference aware SU would allow 

implementing appropriate safety measures if it provides the following features: 

1. Interference monitoring. Monitoring the amount of delay experienced by each 

task due to interference, and being able to identify the particular task causing 

such interference is particularly relevant to optimize the system during design 

and verification, and to diagnose deadline overruns in the field. 

2. Interference quota enforcing. Those deadline overruns can be simply avoided 

if means are deployed to set quotas on how much interference each task can 

create on each other task. 

Those features allow implementing both, reactive mechanisms and diagnostics by 

monitoring interference, as well as proactive mechanisms based on quotas to avoid 

effects due to undesired timing behavior. Overall, those mechanisms are the basis to 

meeting freedom from interference, in line with the requirements of functional safety 

standards (e.g., ISO26262). 
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Timing interference generally manifests in the on-chip interconnection networks since 

all data sent to/from the cores needs to traverse those networks. Hence, SUs for 

timing interference monitoring and control must likely be deployed along with those 

interconnection networks. Since those interconnects use standard interfaces, such as 

AMBA AHB/ACE/AXI, SUs may be easier to integrate and reuse if they comply with 

those protocols. 

In the context of FRACTAL, if the MPSoC includes a centralized interconnect managing 

all on-chip traffic from cores (e.g., a bus), a single SU may suffice. Alternatively, if 

distributed interconnects are deployed (e.g. NoCs) so that no single location drives 

all core-related traffic, we may need to set up multiple SUs to be able to monitor and 

control all on-chip traffic. Those SUs may further require some post-processing of the 

information collected in a distributed manner to gain global knowledge about how 

multicore timing interference is occurring. 

6.2.3 Reliable communication 

Fractal systems will rely on inter-node and intra-node communications. To satisfy 

safety requirements, on-chip communication networks or interconnects may rely on 

state of the practice protection mechanisms such as Error Correction Codes (ECC), 

replication or monitoring. 

ECC. Is usually required for data links. The choice for the actual ECC implementation, 

(e.g. SECDED or parity) depends on the implementation costs and the actual safety 

need. For instance, fail-safe applications or applications with long fault tolerance time 

intervals can use simple parity bits while more stringent applications requiring fail-

operational capabilities may require also redundancy bits with correction capabilities 

such as SECDED (single error correction double error detection). 

Hardware replication. Hardware replication (e.g. duplication) might be also needed 

in addition to ECC to achieve the highest integrity levels. 

Hardware monitors. Shall be integrated with the interconnect to allow built-in self-

test (BIST) and error reporting capabilities. This is usually a requirement that 

expands all integrity levels and it is aimed to ensure safe operation during the lifetime 

of an application. In the context of highly complex SoC platforms (e.g multicores) 

these monitors should also have the capability to track software timing information. 

For off-chip communications, applications safety shall not rely on FRACTAL 

communications. That is, the node needs to remain safe (i.e transition to a safe state) 

if the communication with other nodes is down. However, data integrity and 

authenticity conveyed by the FRACTAL communication are secure features that are 

also important for safety, not to make any decision based on flawed information.  

6.2.4 Artificial intelligence 

The utilization of artificial intelligence (AI) techniques in the context of FRACTAL 

applications with safety requirements will be constrained. In general, the utilization 
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of AI will not involve tasks of the system mapped to a certain criticality level. For 

instance, following ISO26262 nomenclature AI tasks will be restricted to QM (quality 

management) functionalities only. That is, functions without safety relevance and 

that only require standard Quality Management processes. Otherwise, safety 

violations in absence of HW or SW failures that are a consequence of limitations in 

the algorithms, sensors or actuators must be also considered as defined in the 

ISO/DIS 21448: Safety of Intended Functionality (SOTIF) automotive sector 

standard.  

Even in this constrained scenario, the deployment of AI techniques in platforms that 

involve critical functionalities (e.g mixed criticality systems) is challenging. The 

reason is that sharing the same CPU between critical and non-critical tasks requires 

ensuring the existence of partitioning mechanisms (provided by Linux or a 

hypervisor) to allow AI related tasks not to interfere with critical tasks (neither at the 

functional nor at the temporal level). Additionally, if FRACTAL platforms make use of 

AI outputs to improve non-safety properties like quality of service (QoS), energy or 

availability, the AI system shall provide a measure of uncertainty in all the decisions 

in order to get an estimate of the QoS that these systems based on AI will be able to 

provide. 

In summary, for FRACTAL systems, the safety of the platform should not depend on 

the output of the artificial intelligence algorithms. Involving AI in the decisions that 

may affect the safety of an application is however mandatory to achieve fully 

autonomous certified applications. Unfortunately, this technology, while being 

currently a hot research topic, is not expected to be available in the near future for 

critical industrial domains. 

6.3 Certification of VERSAL platform and related 

applications 

6.3.1 Versal ACAP functional safety origin 

Functional safety of the Xilinx Versal ACAP device families are based on the concepts 

that are already successfully deployed in Zynq Ultrascale+ MPSoC and inherit the 

specific core certifications as applies. Due to short time since introduction the 

qualification and publishing of all the features has not been achieved up to now. The 

chapter 6.3 aligns the available information at with the proposed methodology for 

the Fractal project forwarded in 6.1.2. 

For more accurate and up to date information PLC2 and related partners will track 

the vendor’s Xilinx Functional Safety Lounge. This collection (available under NDA 

through https://www.xilinx.com/products/technology/functional-safety.html) 

provides safety related topics as: 

• Certified Hardware and Software Design Tools 

• Functional Safety Certificate and Reports 

https://www.xilinx.com/products/technology/functional-safety.html
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• Functional Safety Package 

• Certified Methodologies 

• Certified IPs 

• Reliability Reports 

• Xilinx Certification Papers 

This Xilinx Functional Safety Lounge provides such information for all device families 

and particular information on Versal ACAP may not be available at this time. 

The proceeding as described here is to apply the device specific information to a 

precisely defined platform setup (forwarded in 7.4) that is held against certification 

requirements for specifically IEC 61508 and ISO26262. To achieve this, the safety 

related items are listed with relation to safety impact, guiding how to apply this along 

said methodology. 

6.3.2 Versal ACAP safety features 

Versal ACAP has been developed with supporting the Functional Safety Standards 

IEC61508, ISO26262, SIL 3 in IEC61508, ASIL D in ISO26262 using decomposition 

while customers can use further artifacts from IEC61508 and ISO26262. 

For the physical device there exists 3 isolated domains in Versal 

• FPD (Full power domain) 

• LPD (low power domain) 

• PL Domain (programmable logic) 

And domains in Versal which need to be used in a shared context: 

• PMC (Platform management controller) 

• DDR (DDRAM memory controller) 

• NoC (Network on Chip) 

The Processing system provides CPU based platforms with 

• Cortex-A72 in the FPD (dual core) 

• Cortex-R5 in the LPD (dual core) 

• PMC: (hardened Xilinx MicroBlaze processors) in the LPD for boot and platform 

management 

The Versal architecture is isolated in the groups as described but the sharing concept 

allows a global inter-communication capability. This also requires customer use-case 

dependent isolation where protection mechanisms are required. 

Also, the Versal Power Domains (supply voltages) provide an isolation concept with 

some of major blocks as listed here: 

• PS FPD (APU, CCI) 

• PS LPD (RPU, OCM, dedicated Peripherals) 
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• NoC (Network on Chip for memory and streaming interfacing) 

• PL+AIE+CPM (programmable hardware, programable engines and i/o) 

• PMC (platform management: boot, power, initialization) 

• Battery (RTC, BBRAM) 

6.3.2.1 Versal Safety Components 

The first safety component group is the LPD which includes the Cortex-R5 processors 

and the platform management control for initialization purpose: 

• ARM Cortex R5 Cluster (2 R5 CPU’s, TCM 128KB/Core, 32KB I/D Cache) 

• Split mode: independent R5 cores, using an independent OS 

• Lockstep mode: one OS is running on two cores 

• Global Interrupt Controller (GIC) for the RPU 

• On Chip Memory (OCM) 256KB can be used in addition with TCM 

• Dedicated I/O: Gbe, CAN FD, SPI, I2C, GPIO, UART, WDT, TTC 

• Processing System Manager (PSM), controls PS power Islands 

• Accelerator coherence port Direct Memory Access controller (ADMA) 

• Network on Chip (NoC) Port for DDRAM access 

• Xilinx Memory Protection Unit (XMPU), customizable isolation 

 

Figure 19 – Low Power Domain Components 

For random safety SIL 3 can be achieved for the LPD domain and for systematic 

safety SC 3 / ASIL D can be achieved for this domain with appropriate requirements 

of initialization and run-time protection. When using shared resources like PL or AIE 

accelerators these needs to be developed in responsibility of the user defined criteria 

as they exist outside of the LPD. 
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The second safety component group is the FPD which includes the Cortex-A72 

processors, Cache coherency management and the NoC: 

• ARM Cortex A72 Cluster (2 A72 CPU’s, 32KB I/D L1 Cache, 1MB L2 Cache) 

• Neon + FPU 

• Cache Coherent Interconnect (CCI) 

• System Memory Management Unit (SMMU) 

• Windowed Watchdog Timers 

• Network on Chip (NoC) Port 

 

Figure 20 – Full Power Domain Components 

For random safety the target is to support SIL 2* / ASIL B* for the FPD domain and 

for systematic safety SC 3 / ASIL D can be achieved for this domain with appropriate 

requirements of initialization and run-time protection. 

*) actual in the certification process at Xilinx in Q2/2021 

For systematic safety SC 3 / ASIL D can also be achieved for the PL domain modules 

programmed in the PL. For random safety the target is to support SIL 2 / ASIL B for 

the DDRAM controller part and for systematic safety SC 3 / ASIL D can be achieved. 

For isolation purpose protection units (XMPU) exists for the specific target ports. 

6.3.2.2 Versal Functional Isolation Techniques 

The Versal device includes several protection units of two types: 

• XPPU (Xilinx peripheral protection unit) 

• XMPU (Xilinx memory protection unit) 

The XPPU provides peripheral protection for 
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• PMC APB programming Interface 

• NPI - NoC Programming Interface 

• LPD APB, AXI Programming Interface 

• FPD AXI Programming Interface 

• LPD Peripherals 

• PMC Peripherals 

The XMPU provides memory protection for the memory access of 

• DDRAM 

• XRAM (Accelerator RAM) 

• OCM 

• PCM RAM 

and can differentiate up to 16 regions of an address range for each XMPU. 

Also, a trusted isolation resource is available with ARM Trustzone when using the 

Linux OS running on the Cortex-A72 while the isolation is differentiated in secure and 

non-secure accesses where the trusted firmware is provided with the Xilinx OS-Linux 

build flow. 

A Memory protection also exists with MMUs: The Cortex-A72 cores includes a MMU 

and a System-MMU is integrated in the FPD which is required for hypervisor OS 

management, if needed. 

6.3.2.3 Versal Safety Channel Architecture 

A Functional Safety Channel is a set of hardware and software resources that 

implements the entire Safety Function. A Functional Safety Channel has a Sensor, 

Logic Solver and an Actuator. A centric safety channel can be defined in the LPD with 

the RPU processing and the R5 can be initialized to run in the lock-step or split mode 

for the Solver task. Sensor Inputs may be sourced from peripherals in the LPD or PL 

and Actuator Outputs may be sent to peripherals in the LPD or PL. 

 

Figure 21 – LPD Centric Safety Channel 

A centric safety channel can be defined in the FPD with the APU processing using the 

Cortex-A72 running a SMP OS like Linux or AMP like Baremetal or FreeRTOS with a 

logic Solver task. Sensor Inputs may be sourced from peripherals in the LPD or PL 

and Actuator Outputs may be sent to peripherals in the LPD or PL. 
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The FPD centric safety channel certification is still under evaluation at Xilinx 

(Q2/2021). 

 

Figure 22 – FPD Centric Safety Channel 

A centric safety channel can be defined in the PL with a MicroBlaze soft-IP processor 

implementation in the PL running a Baremetal or FreeRTOS with a logic Solver task. 

Also, a hardware redundant core implementation is available for the MicroBlaze 

system. Again, sensor Inputs may be sourced from peripherals in the LPD or PL and 

Actuator Outputs may be sent to peripherals in the LPD or PL. 

 

Figure 23 – PL Centric Safety Channel 

Multiple domain safety channels architectures can exist with multiple safety channel 

systems as described above with LPD, FPD and PL based solvers. 

 

Figure 24 – Deample: A Dual Safety Channel in Versal 
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Also, heterogeneous safety channels solvers can be created with solver architectures 

of co-processing i.e., APU + RPU coprocessing or using the AIE as accelerators via 

NoC. A barrier between multiple safety channels can exist physically like a FPD / LPD 

separation or can exist in temporal diversity which is available when running two 

independent OS scheduled with a hypervisor running on the APU in the FPD. 

6.3.2.4 Versal Diagnostics 

Diagnostics are required for functional safety systems and are used to detect a fault 

on Functional Safety. A safety requirement is guaranteed based on the diagnostics. 

The diagnostics implementation is available for the Versal in hardware and software: 

• Internal Hardware (intrinsic to the element) 

• Packaged Software (embedded test libraries, test applications) 

• Architecture (External Redundancy) 

The LPD Diagnostics provide the following services: 

• Lockstep CPU (Cortex-R5) 

• Error Checking Code (ECC) for TCM, OCM, Caches, DDRAM 

• Windowed Watchdog Timers 

• Temperature & Voltage Monitoring Satellites 

• Bus switch Timeout, Parity, Port Isolation 

• Protection Units (XPPU, XMPU) 

• Software Test Library 

• Check Register State (Parameters) 

• Check Peripheral function 

• Check the checkers (Fault injection) 

• End to End Data Integrity (a.k.a Black Channel) – Customer Driven 

The FPD Diagnostics provide the following services: 

• Hypervisor capable CPU (Cortex-A72) 

• Error Checking Code (ECC) for OCM, Caches, DDRAM 

• Watchdog timer 

• Temperature Monitoring Satellite 

• Software test libraries 

• Check Register State (Parameters) 

• Check the Checkers (Fault injection) 

• End to End Data Integrity (a.k.a Black Channel) – Customer Driven 

The AIE Diagnostics provide the following services: 

• MBIST (for program and data memory) 

• ECC for program memory and data memory 

• TMR (triple mode redundancy) for critical system registers 
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Versal test libraries (STLs) are provided for safety requirements with ASIL C for OS 

running in the LPD using the Cortex-R5 in the RPU or a MicroBlaze in the platform 

management (PMC). When using the STL test libraries running on the AIE engines 

the safety standard ASIL B can be achieved. Versal STLs support for the processing 

units 

1. RPU (R5 core) 

2. PSM (MicroBlaze), Xilinx provided firmware 

3. PMC (MicroBlaze), 

4. AIE (core functional tests including its interfaces) 

6.3.2.5 Versal Tool Chain 

Xilinx provides Vivado for the hardware design flow and Vitis for the software design 

flow. Vivado has been certified from the TÜV Süd in an earlier release and is expecting 

a certification for Functional Safety Applications according to the standards ISO26262 

& IEC61508 in this year. The Vitis environment provides the Xilinx toolchains for the 

embedded flow and acceleration flow mainly based on C/C++ language 

programming. 

 

Figure 25 – Deample: Vitis Unified Software Platform 

The Vitis release 2020.2 is the first release where the certification process is ongoing 

for specific firmware, like the platform management. The tool NoC Compiler is 

required to define separation of memory and port accesses and so also for the 

isolation methodology in hardware. The NoC compiler is part of the Vivado toolchain. 

This static compilation provides the NoC initialization at boot time where properties 

can be assigned like defining exclusive groups or a separate hardware routing. 

FMEDA Tools (Failure Modes, Effects and Diagnostic Analysis) 

1. FuSa metric computation 

2. FMEDA data integrity checks 

3. FMEDA in certification process at Xilinx => FIT rates => safety manuals 

4. FMEDA tools at the development site (optional) 
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There are various tool methods that can be deployed to fulfill the proposed 

Methodology for the Fractal project so a definition of the actual scope must be 

created. 

6.3.3 Versal ACAP Certification in Fractal 

With all the safety related features that are available, there are typical FMEDA 

Workflow phases that are described in the Xilinx ecosystem. The task at hand is to 

apply this to the proposed methodology in section 6.1.2. To show that this process 

can be followed with sound coverage should enable a certification of a Fractal node 

design. 

The proposed concept towards a potentially certifiable platform for FRACTAL use-

cases would be a statically hardware partitioned architecture that will support a 

separation on safety channels fulfilling different classes of safety. Such setup will be 

forwarded in section 7.4 as to explicitly describe the scope of the features to be used. 

This is subject to coordination with the use case requirements. 
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7 Methods for the integration on FRACTAL platforms 

This chapter introduces methods that will be used to integrate use cases on FRACTAL 

platforms in WP7 and WP8. Some sections are specific to a use case. 

WP7 will integrate the FRACTAL building blocks, technologies and methods. The 

performance, safety and security requirements will guide the integration and 

verification activities. The verification task will assess the metrics regarding these 

quality attributes and set up a coordination task to gather and analyze the insights 

and KPIs of the various FRACTAL nodes. 

WP8 will aim at homogenizing the requirements from use case providers in order to 

provide a unique framework for dealing with all the real-world situations considered 

in the use cases in term of Fractality. The objective of this work package is to define 

the needs of the use cases by identifying domain-specific requirements and will 

assess at the end of the project whether the technical objectives of the project have 

been reached. 

Moreover, WP8 will ensure that developments in the field of: 

• Artificial Intelligence and Autonomous Decisions 

• Safety and security insurance 

• Low power and high performance on the edge implementation 

To do this, a coordination process between use case providers, technology providers 

and integrators will be needed in order to ensure that the development activities are 

in the direction of fulfilling the pillars of the project. 

7.1 Operational integration 

To be able to bring FRACTAL to market, FRACTAL must be viewed as a Product and 

this project must define the characteristics of that product and how it is built and 

delivered. Project workflows described in section 4 introduce the many components 

that the distinct partners are developing to be integrated into the FRACTAL platform 

and that UCs will use; thus defining the elements required in a FRACTAL node, both 

software and hardware. 

On the other side, the distinct use cases provide a focus on the variability that a 

FRACTAL node must support. By the end of the project, a Fractal node should be able 

to be constructed to satisfy each use case (WPs 7 and 8). Operational Integration 

refers to the process that must be undertaken to build the FRACTAL node that an end 

user wants. That process includes putting the Fractal node built in a production 

environment. 

However, first a common view of what a Fractal node is and which are its parts. Here 

Feature Models can help to define what a FRACTAL node will be. A feature is defined 
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as a distinguishing characteristic of a product, usually visible to the customer or user 

of that product. The analogy of a car will be used to explain what a product and a 

feature model is. When we want to buy a car, we have to select among the distinct 

features available. For instance, the user can choose the version, the engine, the 

color, the air conditioning system, the transmission, etc. Sometimes some selections 

force the selection of another feature. For instance, a given product version can force 

a given engine and restrict the number of other options available. This is, features 

can have distinct values and also have relationships. Even, some features can be 

optional (e.g. sunroof). 

The diagram in Figure 26 shows a starting point for the FRACTAL feature model. 

 

Figure 26 – Sample initial feature model for Fractal 

Notice that the selection of a feature implies the selection of the corresponding 

product components underneath. It this sense, the selection of a FRACTAL feature 

can force the selection of a given SW/HW component or the exclusion of another. For 

instance, a feature of Low Power consumption may exclude the Versal Platform 

(feature constraints). 

In order to build this model, every component (HW and SW) being developed in the 

context of the project has to specify what need it does solve and what feature it adds 

to Fractal. Features will be organized in a tree like the one presented before. 

A "feature catalogue" contains all the available feature options for all the products. 

The selections that a user performs to build a product conforms the "Bill-of-Features" 

for that product. Given a valid “Bill-of-Features", the process to build that FRACTAL 

node should be detailed. 

In the context of the project each Use Case should be able to express their needs for 

the Fractal Node through the Feature Model. According to the workflow of the project 

presented in section 4, WP3 defines the node architecture over which the other WPs 

will build their contributions. Thus, on WP3 an initial feature model will be 

constructed, that will be refined with the participation of the Use Cases on WP 7 and 

8 (following subsections detail the methodologies on these WPs). Then the 

construction process for the selected Fractal node should be defined. This is, 

questions like the following ones must be answered: 
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• Which platform should be bought 

• How are required HW components installed (indirectly selected on the feature 

model) 

• How is OS installed 

• How are required SW components installed (indirectly selected on the feature 

model) 

• How to add software for the use case 

• How to test that the system is operational 

• How to pass certification tests 

• … 

In the end, the industrialization and productization of Fractal are achieved, enabling 

companies to sell products that conform to Fractal for other use cases. 

7.2 SW integration (PULP, VERSAL), RTOS for PULP 

7.2.1 Posix compatible RTOS integration to the PULP 

Background: 

In FRACTAL the general (low risk -- fast to deliver) approach is to integrate the 

middleware layers (by WP4 and WP5) top of the Linux operating system. For use-

cases this will offer a simple and powerful system to implement the application logic. 

Also, the acceleration/protection functions that physical HW offers are easy to 

integrate to the Linux low-level layers. The drawback is that Linux requires adequate 

amount of processing power and energy. Due high-power nature Versal platform this 

is not issue as such, but in low-end nature of PULP it limits the options. 

On this task a Posix compatible OS (Nuttx) is integrated to PULP. From software point 

of view, will be limited – less memory, no supervisor abstractions, it lacks high-level 

languages such as Java and Python. However, unlike most of the Realtime operating 

systems (RTOS) it has Posix threads and sockets, standard c-api's and standard dev-

tools. Most of the cases source-code developed to the Linux can just be compiled in. 

As a result, the Nuttx will be a compatible Fractal subset. In its scope, it does not 

require any special porting for the Fractal SW. 

As a result, this offers a mechanism to push certain Factual applications to the 

extreme low-power -- low-cost targets. 

Implementation strategy: 

The Nuttx integration work will be implemented as a spiral model. At first a minimum 

possible implementation will be developed. Result will be released and based on 

available options and Fractal requirements the next development round will be 

implemented. Results of the first few rounds will be more demonstrative, but on later 

rounds more practical results will be delivered. 
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First target: Select a (Pulp) RISC-V platform and integrate Nuttx to it. 

There exists a deprecated implementation of Nuttx for PULP. Official Nuttx has 

dropped that out due limited platform support. As a result, we study of how much 

the deprecated port is out of Nuttx baseline and what are the options to release the 

result. 

While the availability of Fractal Pulp HW is not clear at this stage, some 

similar/existing/available (Pulp) RISC-V platform will be used for first round. 

According studies the development board of the Greenwaves GAP815, would be 

easiest to obtain for the first platform. 

Second target: Select either: Another HW Platform or some middleware layer(s) or 

another Nuttx feature. 

After each target new target is set. 

N-1 target: Branch a version for the task 7.2.2. 

N target: When adequate amounts of targets integrated, integrate (some) Use Case 

to platform. 

Due the uncertainty of the requirements that middle-ware, capability of the Fractal 

Pulp platforms, the applications should have a platform back-up plan -- this Fractal-

Pulp-Nuttx platform will be available later that Linux based platforms. This will be a 

topic to collaborate with Use Cases. 

7.2.2  Asymmetric Linux-Rtos multiprocessing to the FRACTAL project 

In symmetric multiprocessing (SMP) all processor cores are utilized by same 

operating system. In asymmetric case (AMP) cores are utilized by different operating 

systems. There are some benefits of this sort of systems. Here are briefly the two 

cases: 

First: The Real time matter. Linux as such is not a real-time operating system. At 

certain stage – that is not fixed – Linux begin to lose real time deadlines (Practical 

tests have demonstrated that response jitter below 1ms is intolerable). One solution 

to solve this issue, is the Real time version(s) of Linux. There the certain parts of 

kernel are modified for real time purposes. Drawback on this is that these changes 

are branches of the main line Linux. While the Linux evolves, the compatibility of this 

branch weakens and over time the new feature backporting becomes more difficult. 

This yields to practical problems -- typically related to security and compatibility. 

Another solution is to have a parallel real time operating system (RTOS). This RTOS 

 

15 https://greenwaves-technologies.com/gap8_gap9/ 

https://greenwaves-technologies.com/gap8_gap9/
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process the real time tasks, while Linux is the actual computing platform. And, having 

this RTOS running on same processor chip, eases the system design. 

Second: The low power operation. Linux is a complex system that requires complex 

HW to run -- lot of moving parts that consume energy. Driving system to standby 

and woke up on event is a better solution, however the woke up takes in average 

more energy than normal operation and often the woke-up events require only little 

processing or even are false. Again, obvious solution is to introduce a second low-

power OS that stays awake, while Linux is standby. This OS can verify the woke-up 

events and some cases process them. And in cases where “The Force” is needed, 

RTOS can woke-up Linux OS and delegate the event. Like the above case, the system 

design is easier, when the low-power OS and application OS are in same physical 

chip. 

Two cases above and combination of them are valuable tools for certain application 

types in Fractal context. In task we seek to run Nuttx (RTOS) in one core and Linux 

in other cores. The Posix compatibility offers yet another potential compatibility 

benefit: Due both OSes are in same processor context; they may share same 

security, data and even binaries. 

Challenges on this task are related to the context switching, security and shared 

resources matters below the OSes. 

As in previous task the implementation will done according to the spiral model. At 

first an adequately good platform is selected, where some version of previous task 

Nuttx implementation is integrated together with some Linux. The second target will 

be a Fractal improved version of that. And so on. 

Security features, low-power operation, application requirements need to be 

collaborated with other Fractal partners -- this can be also in focus of Versal platform. 

This text is to be updated later during the project (presumably in D2.4). 

7.3 Electronic System-Level HW/SW co-design 

Systems based on heterogeneous parallel architectures (Heterogeneous Parallel 

Systems - HPSs) have been recently exploited for a wide range of application 

domains, especially in the System-on-Chip (SoC) form factor (e.g., Xilinx 

ZYNQ/VERSAL and Altera Cyclone V SoC families). Such systems can include several 

processors, memories, and a set of physical links among them. By definition, the set 

of processors in the same architecture is heterogeneous. This implies that it is 

possible to exploit, at the same time, the following processing classes16: 

 

16 Frank Vahid and Tony Givargis. 2001. Embedded System Design: A Unified Hardware/Software 

Introduction. John Wiley & Sons, Inc. 
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• General-Purpose Processors (GPP): x86/x64, ARM, MicroBlaze, NiosII, Leon3, 

etc. 

• Application-Specific Processors (ASP): Digital Signal Processor (DSP), 

Graphics Processing Unit (GPU), Network Processor (NP), Artificial Intelligence 

Processor (AIP), etc. 

• Single-Purpose Processors (SPP): AES encoder/decoder, JPEG 

encoder/decoder, UART/SPI/I2C controllers, AI engines; in general, every ad-

hoc developed digital HW component (a.k.a. co-processors or accelerators). 

Finally, such processors can be adopted in the form of soft, hard or fuse (i.e., 

hardwired) IP cores or as discrete integrated circuits (IC) mainly depending on the 

final system form factor (i.e., on-chip, on-FPGA, on-board) and scope (complete 

product or platform). 

HPSs are often used to implement Dedicated Systems (DS). DSs are digital electronic 

systems with an application-specific HW/SW architecture. They are specifically 

designed to satisfy a priori known application requirements, both functional (F) and 

not functional (NF). A DS could be then embedded in a more complex system and/or 

it could be subjected to hard/soft real-time constraints. When DSs are based on HPS 

they are called Dedicated Heterogeneous Parallel Systems (D-HPS). 

Apart from possible differences in terminology and composition, for this kind of 

systems one consideration is always true: they are so complex that the adopted 

HW/SW Co-Design Methodology plays a major role in determining the success of a 

product. Moreover, in order to cope with such a complexity, the selected methodology 

should allow the designer to start working at the so-called Electronic System-Level 

(ESL) of abstraction. This means to be able to start the design activities from an 

executable model of the system behavior based on a given Model of Computation 

(MoC) that would be unifying for HW and SW, and that could be described by means 

of a proper specification/modeling language. In fact, in the past years, a remarkable 

number of research works have focused on the system-level HW/SW co-design of D-

HPS. In such works, the most critical issues have been always related to the System 

Specification and Design Space Exploration activities. In the first activity, the 

designer models the behavior of the desired system (specifying also possible NF 

requirements), the available basic HW components, and the target HW architecture. 

The second activity is then related to the approach, automated or not, used to find 

the best HW/SW partitioning and mapping for the final system implementation. The 

main differences among the various approaches are related to the different amounts 

of information and actions that are directly requested to the designer and that are so 

heavily influenced by his/her experience. In particular, a lot of approaches explicitly 

require as input the HW architecture to be considered for mapping purposes. Very 

few others try to fully addresses the problem of both to “automatically suggest an 

HW/SW partitioning of the system specification” and to “map the partitioned entities 

onto an automatically defined heterogeneous parallel architecture”. In the context of 

the latest category, during other ECSEL RIA projects (e.g., MegaM@RT2, AQUAS, 

FITOPTIVIS, COMP4DRONES), it has been defined and improved a model-based ESL 
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HW/SW co-design methodology (and related prototypal toolchain), called 

HEPSYCODE17, targeting heterogeneous parallel dedicated systems. HEPSYCODE 

reference ESL HW/SW co-design flow is briefly described in the following, together 

with a proposal about possible adaptation/integration opportunities of HEPSYCODE in 

the context of the FRACTAL project. 

 

Figure 27 – The reference ESL HW/SW co-design flow 

 

17 http://www.hepsycode.com 

http://www.hepsycode.com/
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7.3.1 Reference ESL HW/SW Co-Design Flow 

The HEPSYCODE ESL HW/SW co-design flow is shown in Figure 27: it shows the main 

co-design steps and the related items that are briefly described in the following 

paragraphs. More details about the whole methodology can be found in 18,19,20,21. 

7.3.1.1 System Behavior Specification 

The entry point of the reference co-design flow is the System Behavior Specification 

(SBS). It is composed of System Behavior Model (SBM), Reference Inputs (RI), and 

Non-Functional Constraints (NFC). 

SBM represents the behavior of the system to be implemented, i.e., the functional 

requirements. It is based on a CSP-like (Concurrent Sequential Processes) MoC22,23 

and described by means of the SystemC language24. 

RI is a set of input-output tuple pairs, possibly timed, that represents the expected 

outputs from the SBM when specific inputs are provided to it. RI is of critical 

importance since it has to be as much as possible representative of the actual 

operating conditions of the system (a.k.a. Golden Inputs). 

NFC represents requirements related to aspects orthogonal to the behavior. In fact, 

they specify a set of constraints that have to be satisfied while still following a correct 

behavior. They are currently related to one or more of the following issues: 

• Timing Performance Constraints 

o Time-To-Completion constraint (TTC) 

▪ Time allowed to complete the processing related to RI 

 

18 L. Pomante. “System-level design space exploration for dedicated heterogeneous multi-processor 

systems”. IEEE Int. Conf. on Application-specific Systems, Architectures and Processors, 2011. 

19 L. Pomante, D. Sciuto, F. Salice, W. Fornaciari, C. Brandolese. Affinity-Driven System Design Exploration 

for Heterogeneous Multiprocessor SoC. IEEE Transactions on Computers, vol. 55, no. 5, May 2006. 

20 Pomante, L., Muttillo, V., Santic, M., Serri, P. SystemC-based electronic system-level design space 

exploration environment for dedicated heterogeneous multi-processor systems. Microprocessors and 

Microsystems, 72, 2020. 

21 Ciambrone, D., Muttillo, V., Pomante, L., Valente, G. HEPSIM: An ESL HW/SW co-simulator/analysis 

tool for heterogeneous parallel embedded systems, 2018. 7th Mediterranean Conference on Embedded 

Computing, MECO 2018 - Including ECYPS 2018, Proceedings. 

22 C.A.R. Hoare. Communicating sequential processes. Communications of the ACM, 21(8):666–676, 

August 1978. 

23 http://www.usingcsp.com 

24 SystemC, http://www.accellera.org 

http://www.usingcsp.com/
http://www.accellera.org/
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o Time-To-Reaction (TRC) 

▪ Time allowed to complete the processing related to specific 

processes of the SBM 

• Energy Consumption Constraints 

o Energy-To-completion (ETC) 

▪ Energy consumption allowed to complete the processing related 

to RI 

• Mixed-Criticality Constraints 

o Isolation 

▪ Do not map processes with different criticalities on the same 

processor 

o Isolation with hypervisor technologies (HPV) 

▪ Do not map processes with different criticalities on the same 

HPV-based SW partition 

• Architectural Constraints 

o Set of available processors and physical links 

o Min and max number of available processors and physical links 

instances 

o Available area (for PCB/ASIC) or an equivalent metric for FPGA 

o Reference template architecture 

▪ HW 

• Distributed/shared memory 

• Homo/hetero-geneous mono/multi-core processors 

▪ SW 

• Available (hyper)scheduling policies. 

7.3.1.2 Technologies Library 

In order to list and describe the basic HW elements available to automatically build 

the final architecture, a proper Technologies Library (TL) provides a characterization 

of available processors, memories and physical links. Such a library contains 

information like processing classes (i.e., actually only GPP, DSP, and SPP), operating 

frequencies, maximum load (for GPP and DSP classes), capacity (for SPP and 

memories), max bandwidth (for physical links), relative cost (considering the cost 

related to obtain a component and/or the effort needed to use it), and so on. Such 

information is then exploited during the different steps of the co-design flow. 

7.3.1.3 Functional Simulation 

The first step of the proposed co-design flow is the Functional Simulation where SBM 

is simulated to check its correctness with respect to RI. Such a simulation allows also 

to take into account timed inputs, i.e., there is a concept of simulated time, but it 

doesn’t consider the time needed to execute computation and communication (i.e., 

0 simulated time). If SBM is not correct (i.e., wrong outputs or critical conditions such 

as deadlocks) it should be properly modified and simulated again. The early detection 

of anomalous behaviors allows the designer to correct the specification avoiding a 

late discovery of problems that could lead to time-consuming design loops. 
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7.3.1.4 Co-Analysis and Co-Estimation 

This step aims at extracting as much as possible information about the system by 

analyzing the SBM while considering the provided TL. This step is composed of Co-

Analysis and Co-Estimation activities. 

During Co-Analysis, SBM is analyzed to evaluate three metrics: Affinity, 

Communication and Concurrency. The first one represents how much a process is 

suitable to be executed on a specific processor class (i.e., GPP, ASP, SPP). The second 

one is the evaluation of the number of bits that the different processes pairs have 

exchanged during the simulation. The third is related to how much concurrency has 

been found during the simulation in the activities of processes and channels. 

Co-Estimation provides a set of estimations about Timing, Energy, Size, Load and 

Bandwidth. Timing is related to the estimation of the number of clock cycles needed, 

by each processor in the TL, to execute each single statement composing the SBM 

processes25. Energy is related to the estimation of the Joule consumed, by each 

processor in the TL, to execute each single statement composing the SBM 

processes26. Size represents the number of ROM/RAM bytes needed for SW 

implementations and equivalent gates (or similar metrics for FPGA) for HW ones27. 

Finally, by exploiting Timing data and considering the TTC constraint, it is also 

possible to estimate the Load associated with the execution of the SBM processes 

when mapped on a single instance of each processor in TL, and the Bandwidth needed 

to the different processes to communicate while fulfilling the TTC constraint. The 

extraction of these data from the SBM is an important step that allows, during the 

following design space exploration, the identification of the number and type of 

processors and physical links needed to satisfy the NFC. 

7.3.1.5 Design Space Exploration 

Finally, the reference co-design flow reaches the Design Space Exploration (DSE) 

step that is constituted of two iterative activities: “HW/SW Partitioning, Architecture 

Definition and Mapping”, and “Timing/Energy HW/SW Co-Simulation”. All the data 

(i.e., metrics and estimations) extracted in the previous steps are then used to drive 

the DSE by considering all the NFC. The “HW/SW Partitioning, Architecture Definition 

and Mapping” activity is based on a genetic algorithm that allows exploring the design 

space looking for feasible mapping/architecture items suitable to satisfy imposed 

 

25 V. Muttillo, G. Valente, L. Pomante, V. Stoico, F. D’Antonio, and F. Salice, “CC4CS: an Off-the-Shelf 

Unifying Statement-Level Performance Metric for HW/SW Technologies”, In Companion of the 2018 

ACM/SPEC Int. Conf. on Performance Engineering (ICPE '18). 

26 V. Muttillo, P. Giammatteo, V. Stoico, L. Pomante. An Early-Stage Statement-Level Metric for Energy 

Characterization of Embedded Processors. Microprocessors and Microsystems, 2020. 

27 Brandolese, C.; Fornaciari, W.; Salice, F. An area estimation methodology for FPGA based designs at 

systemc-level. Design Automation Conference, 2004. Proceedings. 41st, 2004 Page(s):129 – 132). 
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constraints. Then, the “Timing/Energy HW/SW Co-Simulation” activity considers 

suggested mapping/architecture items to actually check for Timing/Energy NFC 

satisfaction. If the suggested mapping/architecture item does not meet such 

constraints, the designer should perform again the DSE by changing some exploration 

parameters, by modifying the starting SBM, by enriching the TL with new elements, 

or by relaxing some constraints. 

7.3.1.6 Algorithm-Level Flow 

When the mapping/architecture item proposed by the DSE step is satisfactory, it is 

possible to implement the system. For this, the SW-mapped processes are typically 

transformed in C/C++ code, with the support of a possible embedded and/or real-

time OS, while the HW-mapped ones are transformed in synthesizable HDL code or 

implemented by means of existing COTS component depending on the final system 

form factor. It is worth noting that such transformations will be done automatically 

or manually depending on the language and the coding style adopted to describe the 

SBM. This step is fully based on existing commercial algorithm-level methodologies 

and tools. 

7.3.2 HEPSYCODE in the FRACTAL project 

Given the ever-increasing opportunities provided by the advancement in the HW/SW 

technologies, there is a strong need for ESL methodologies and tools able to keep as 

much as possible smaller the design-productivity gap in the field of HW/SW dedicated 

systems. According to this scenario, the HEPSYCODE methodology, briefly described 

in the previous sub-section, can be adapted/integrated in the FRACTAL 

methodological framework. In particular, in order to support the FRACTAL designer 

during the mapping of a set of functionalities on a FRACTAL node and the related 

FRACTAL node customization, it is possible to: 

• Adapt/integrate HEPSYCODE to fully exploit SoCs and processors relevant for 

the FRACTAL project (e.g., Xilinx ZYNQ/VERSAL, RISC-V) and the possible 

ASP/SPP provided by them (e.g., GPU, AI engine). 

• Adapt/integrate HEPSYCODE to consider NFC relevant for the FRACTAL project 

(e.g., mixed-criticality to support safety, power/energy). 

7.4 Methodologies for VERSAL platform 

The main scope of work on the Versal node platform safety design will need to align 

the provision of the existing toolflow from the vendor Xilinx’ ecosystem with the 

thirteen steps as forwarded in section 6.1.2. 

PLC2 aims to provide a base design in due time for the Versal development platforms 

(VCK190) which are part of the certification evaluation process at Xilinx. This helps 

to simplify the separation methodology and the tool usage where a supported OS 

(Linux) is running on the APU that already provides control concepts of the actual 

Versal ACAP safety features to allow for integration of the services envisioned in WP3 
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and WP4. FRACTAL node specific functionality can add and further integrate into the 

PL and on AIE engines. Such additions should not impact the overall safety 

considerations. The basic Xilinx-side proposed workflow is listed here: 

Design 

1. H/W Partitioning 

2. Failure modes identification 

3. Safeness Estimation 

4. Define requirements for phase STL and FSV 

STL 

5. Define SW requirements from FMEDA 

6. STL definitions > design > implementation 

7. Review the results from FSV 

FSV (FuSa Verification) 

8. Define Fault simulation environment 

9. Fault simulation and analysis 

10. Review process to STL phase 

FuSa 

11. Review and coordinate all the above phases 

12. Methodology of maintenance and integration flow 

13. Safeness metric generation 

The actual protection and isolation concept will be prepared but will still allow 

platform operation with a to-be-defined set of operation modes with respect to power, 

function availability and more to support the adaptive node concepts. The objective 

is to provide a unified boot and initialization setup which can be used for all Versal 

based FRACTAL UCs. On top the development of this base platform needs to also 

address the services architecture along the WP4 requirement. 
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Figure 28 – Versal top level reference platform 

The development of this base platform project will be guided by the steps of the 

proposed Fractal safety related methodology from section 6.1.2. Due requirement 

mapping and documentation will be carried out. 

7.5 Methodologies for PULP platform 

The Parallel Ultra Low Power (PULP) platform is a RISC-V based open-source platform 

for energy efficient computing. While there are multiple PULP systems with different 

capabilities, within the FRACTAL project the reference PULP system is the PULPissimo 

system available under: 

https://github.com/pulp-platform/pulpissimo 

The platform is fairly mature and has been used as part of various ASIC tapeouts so 

far, and comes with FPGA images for popular XILINX boards such as the Genesys II, 

allowing partners to hit the ground running. As part of FRACTAL, the goal is to 

improve and adapt this basis system for several use cases with additional capabilities 

developed by FRACTAL partners as part of technical developments WP4/5 and 6. 

https://github.com/pulp-platform/pulpissimo


 

Project FRACTAL 

Title Methodological Framework (a) 

Del. Code D2.2 

 

  
 Copyright © 2022 FRACTAL Project Consortium 59 of 75 

 

 

Figure 29 – PULPissimo block diagram 

From the onset, the positioning of the PULP platform has been complimentary to the 

XILINX Versal platform. While Versal is addressing high performance, industrial 

maturity and established processor cores, for FRACTAL, PULP was designed to 

address low power IoT operation, with a flexible and open architecture allowing 

partners to easily integrate changes to the platform using an open-source ISA. 

There are already a number of training videos and material available on the PULP 

platform WWW site under: 

https://pulp-platform.org/pulp_training.html 

For example, the following (3.5h) training video will explain the design and features 

of PULPissimo: 

https://www.youtube.com/watch?v=27tndT6cBH0 

There are several different ways in how changes to PULPissimo as part of 

developments in FRACTAL can be implemented: 

• Adapting software to be compatible with PULPissimo. At the moment, 

PULPissimo supports several basic operating systems such as FreeRTOS and 

seL4 and there have been successful ports of various other operating systems 

and libraries. PULP based system rely on standard GCC/LLVM based SW 

development flow and also include a custom software development kit. The 

https://pulp-platform.org/pulp_training.html
https://www.youtube.com/watch?v=27tndT6cBH0
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following tutorial explains the PULP software development kit: 

https://youtu.be/Ydd9TlKQiO4 

• Adding accelerators and peripherals to the PULPissimo system to enhance 

its hardware capabilities. In addition to standardized AXI/APB compatible 

peripherals, PULPissimo also supports accelerators that can access a shared 

scratchpad memory with the RISC-V processor greatly reducing the overhead 

of data transfers. The following tutorial is on the HW/SW co-development 

needed for such modifications: 

https://youtu.be/B7BtaYh3VqI 

• Adding instruction set extensions to the RISC-V core in the system, which 

could improve the performance of the system significantly. RISC-V has a very 

clear methodology for such extensions, and ETH Zurich has significant 

experience with them. In fact, the default processor core in PULPissimo 

(RI5CY/CV32E40P) has already a large number of extensions for digital signal 

processing. However, SW tools must be made aware of these modifications, 

so that code can be generated that maps to these additional instructions. 

Some FRACTAL partners have also expressed interest in more sophisticated systems 

from the PULP platform like the HERO (heterogeneous Research Platform) or the 

64bit Ariane/CVA6 system with Linux support. ETH Zürich will guide partners that 

want to explore these options, but will concentrate their main effort around the 

PULPissimo. 

The flexibility offered by the platform and the experience of ETH Zurich on actual 

ASIC implementations of the platform will help partners to assess the cost and benefit 

of various improvements and changes that will be explored throughout FRACTAL. 

Such evaluations will be of help for partners even in cases where a direct use case 

implementation will not be feasible due to technical reasons. For example, the 

feasibility of a low power mode can be tested and developed on a PULPissimo system 

and the results could be used to determine the effect of such an improvement on 

different systems as well. 

7.6 Methodologies for hardware accelerators 

Naturally, Deep Neural Networks (DNN) perform many computations on a huge 

amount of input data for generation of the outcome. The use of classic general-

purpose computer designs has been shown to be not very efficient for execution of 

such networks due to the sequential concept of computation that these architectures 

apply. Therefore, building a specialized hardware that provides better performance 

and is energy efficient is required. 

However, DNNs are a central part of machine learning which means they must be 

trained before they infer. During the training phase the DNN’s parameters (weights 

and bias) are derived. As a process training is much more complex than inference, 

where inference computes the outputs based on the previously trained weights and 

biases. Since training of DNN is a onetime process and requires much more 

https://youtu.be/Ydd9TlKQiO4
https://youtu.be/B7BtaYh3VqI
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computation power it can be performed on high performance machines that have no 

restriction on energy consumption. On the other hand, inference is usually applied 

on many devices located near the sensors and runs repeatedly with different input 

data patterns. Thus, specialized hardware needs to be customized for inference 

execution to satisfy performance requirements and energy efficiency goals. 

The following subsections describe the methodology used for building and evaluation 

of the hardware accelerators in FRACTAL project. After listing the main components 

required for building of the hardware accelerator, the metrics that need to be 

observed for evaluation and optimization of the performance are described. All these 

steps are performed with the help of Catapult High-Level Synthesis tool, which 

enables the hardware designer to evaluate performance parameters at an earlier 

stage of the design before generating the hardware implementation details. The tool 

itself has integrated features that makes the performance evaluation a 

straightforward process. Once the design satisfies the performance requirements 

defined in the project the High-Level Synthesis tool will automatically generate the 

implementation outcome which can be for ASIC or FPGA technology. 

7.6.1 Hardware Accelerator Architecture for Deep Neural Network 

DNN accelerators typically consist of an array of processing elements (PE) and 

memory blocks interconnected by a Network on Chip (NoC). The PEs are simple 

Multiply-Accumulate (MAC) units capable to perform multiplication of inputs and 

weights and add the resulting products to the partial sum. 

Memory of hardware accelerators are organized hierarchically consisted of register 

files (RF), global buffers, and main memory. RFs are the smallest and fastest memory 

units located on PEs. They hold data immediately available to the MAC unit. The type 

of data stored in RF can be weights (weight stationary), partial sums (output 

stationary), or a combination of both types (row stationary). Which type of data will 

be located on RF depends on the data flow model in use. There are hardware 

accelerators as well without RFs (no local reuses) in case the size of the chip area is 

critical. A global buffer is an intermediate memory layer located on-chip to hold 

fragments of the weights and inputs. Its location and size enable a global buffer to 

respond faster and efficiently when its content is reused by PEs. The last layer is the 

main memory, usually in form of off-chip DRAM memory, that holds all weights and 

input data. 

Hardware accelerators for DNN can either be implemented on Field Programmable 

Gate Arrays (FPGA) or as Application Specific Integrated Circuits (ASIC). FPGAs are 

used for development of prototypes since the design for such technology is simple 

and the time to develop the product is shorter. On the other hand, ASICs can be 

optimized for much more parameters, have lower energy consumption and better 

computation performance. However, for ASIC technology the production costs are 

much higher combined with longer development cycles compare to FPGA solution.  
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7.6.2 Metrics for building optimized HW accelerator 

To build an efficient hardware accelerator for DNN it is important to take into 

consideration a set of metrics that are key for achieving an optimal solution. Mainly 

the efficiency of the accelerator is associated with the number of operations per Watt, 

but this metric is a composition of accuracy, throughput, latency, energy 

consumption, cost, flexibility, and scalability28. Accuracy indicates the quality of 

inference outcome and should be high enough to perform correct classification. The 

accelerator should have capability to process enough data in a given period of time 

so its throughput can achieve real-time performance. Also, the time between input 

and output should be short if it is required to have low latency. When an accelerator 

is used within an edge device the power consumption and energy efficiency must be 

taken into consideration during design phase to ensure that the accelerator operates 

within the boundaries of the power envelope. It has been observed that frequent 

access to the main memory for data read/write is one of the main sources of energy 

consumption and compared to the demand of the various arithmetic operation 

performed in the accelerator it is few magnitudes higher. Cost is constrained by the 

required hardware volume and the size of the market. Obviously, it is important the 

designed hardware accelerator is attractive from a financial point of view. If the 

accelerator is more generic, it can execute a wider variety of different inference tasks, 

a feature which makes the accelerator more flexible. The last metric, scalability, 

refers to how well the accelerator can adopt from perspective of throughput and 

energy consumption when its number of components increases. Thorough upfront 

evaluation of all the mentioned metrics will allow the hardware designer to evaluate 

if the accelerator will be a beneficial and viable solution for a given application. 

7.6.3 High Level Synthesis 

Nowadays, hardware design processes have become quite complex and sometimes 

manual coding is even impossible due to increased complexity of the needed 

hardware solution. High-level synthesis (HLS) aims to generate synthesizable 

register transfer level (RTL) implementation of the hardware derived from its high-

level specification. Its goal is to automate all the intermediated processes performed 

between specification of the hardware and the RTL level. The approach raises the 

level of abstraction on functional and implementation details and thus eliminates all 

the steps that were performed manually in the past. The whole concept is like the 

approach of compiling high-level code into assembler one. HLS also makes the 

verification process faster compared to the time required to perform the same 

process on Register Transfer Level (RTL), which sometime can take so long that the 

process itself becomes impractical. By elimination of the manual steps and reduction 

of the verification time HLS brings a lot of benefits: 

 

28 Vivienne Sze et al. „Efficient processing of deep neural Networks: A Tutorial and Survey” – Proceeding 
of the IEEE, Vol:105, Issue: 12, Dec 2017 
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• The automated generation of RTL implementation is less prone to errors due 

to the predefined rules applied for its generation. 

• Well-designed automation tool can generate RTL that outperforms in quality 

compared to human design RTL level. 

• Gives hardware designer more time to spend on design space exploration 

rather than on implementation. 

• HLS simulation runtime is few times faster than RTL simulation runtime. 

• HLS makes the design platform independent by enabling its implementation 

on a wide range of platforms. 

The process of generating the RTL hardware description from its specification is a 

multi-level task29 as shown in Figure 30. The process starts with describing the 

desired functionality of the hardware in a high-level language. The HLS tool takes the 

input, compiles it and generates a formal model. This model is then converted into a 

structured network of components (functional units, memories, controllers, and 

interfaces). During this stage the HLS firstly allocates the resources that are needed 

for computation. Next, the HLS schedules the execution order of derived operations. 

Thirdly, it binds the allocated resources to the corresponding operations derived from 

the formal model. These three tasks are interrelated and for optimal results they 

should be done in conjunction. The output is an RTL description of the hardware 

consisted of control and data path. It is important that HLS takes as input untimed 

high-level hardware description and transforms it into a fully timed hardware 

implementation. 

The most popular languages used in HLS tools for functional description are SystemC 

and C/C++. The resulting RTL description is generated in form of popular Hardware 

Description Languages (HDL) like VHDL or VERILOG. However, not all C/C++ code 

structures can be converted into an HDL. Usually, non-synthesizable segments of the 

code are sections used for system calls, input/output structures, and pointers. 

Therefore, it is required from the implementer to distinguish between code structures 

that can and cannot be synthetized. 

 

29 Philippe Coussy et al. “An Introduction to High-Level Synthesis” – IEEE Design & Test Computers, 2009 
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Figure 30 – HLS design flow 

Mainly, HLS generates the HDL based on a set of predefined transformation rules. 

However, these rules can be overruled with pragmas within the source code if a better 

outcome can be produced. The usual techniques used in HLS design for performance 

improvement of the hardware are pipelining, unrolling, and in-lining30. Pipelining 

enables parallel execution within the loop, unrolling generates more processing 

elements in parallel, while in-lining removes the hierarchy. All these techniques can 

be implemented in form of pragmas or within the HLS tool. 

7.7 Integration of Speech-based Signal Processing 

algorithms 

The number of connected devices has increased rapidly. The Internet of Things (IoT) 

framework and the diffusion of related enabling technologies, such as Device-to-

Device (D2D) communications, cloud and edge computing and big data analysis have 

strongly improved the feasibility of connecting and communicating through a large 

number of mobile nodes, often in non-ideal environmental conditions. Moreover, the 

 

30 Adam Taylor “Porting Vivado HLS design to Catapult HLS Platform” – White paper 
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importance of audio speech processing is demonstrated by the use of this type of 

approach in a wide variety of commercial applications. This growing interest in speech 

and speaker recognition is witnessed by the widespread use of applications, such as 

speaker verification and authentication procedures, gender recognition and language 

recognition. Other common applications of speech processing techniques lie in the 

range of accessibility solutions: the most remarkable examples of this kind are the 

speech-to-text and text-to-speech functionalities. Moreover, in numerous practical 

cases a speaker talks in an environment in which many smart devices (e.g., mobile 

phones) are present, for example during a seminar presentation, a conference call, 

or during a lecture in a classroom. For this reason, within the FRACTAL project, 

understanding audio context represents an important tool that can be extremely 

useful in several realistic scenarios. As the quality of audio signals is deeply influenced 

by the environmental conditions, an exhaustive study of the performances of the 

most common speech processing techniques in variable noise conditions and at 

different source-receiver distances is required. For this reason, many literature works 

address the issue of speech processing in challenging environmental conditions, 

proposing noise robust audio processing techniques, able to provide good 

performances even if noise is corrupting the audio signal. To the purpose of 

enhancing the recognition performances in challenging environmental conditions, in 

the FRACTAL project we propose a noise and distance robust Speech/speaker 

identification method, which embeds a smart pre-processing method employing Voice 

Activity Detection (VAD), capable to boost the system accuracy in terms of correct 

classification rate. 

The problem of Speaker Recognition is to recognize the identity of the speaker who 

sounds closest to speech analyzed from an audio sample produced by an unknown 

speaker. It can be tackled in two different scenarios: Closed-Set scenario, when the 

recognized speaker belongs to a given, a-priori known set, and Open-set scenario 

(also called out-of-set speaker identification, if the identity of the test subject could 

also belong to a speaker who is not part of the predefined known speaker group. In 

the following we tackle the speaker identification problem in both the aforementioned 

situations. It is worth noticing that the gender recognition and the language 

recognition approaches uses similar methods (just the data sets change). 

The acquired audio signal is divided into short segments called frames, during which 

speech can be considered as stationary. Each frame has a length of T= 25 [ms] and 

it is selected so that the time distance between the centers of two adjacent frames 

is equal to 10 [ms] (i.e., two consecutive frames are overlapped for one third of their 

duration). After the framing block, the features are computed. We employ the first 

13 Mel-Frequency Cepstral Coefficients (MFCC) and the respective 13 Delta-Delta 

(i.e., the second-order derivative of the MFCC coefficients) for a total of 26 features. 

Once they have been extracted, the features will be used to train a supervised 

classifier. The first step in order to obtain a good classification system is to pre-

process the signal by removing frames that do not contain useful information. When 

dealing with audio speech signals, this step translates into discarding the audio 

frames that do not contain speech utterances. We call this Voice Activity Detection 
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(VAD). To achieve this goal, many techniques have been proposed in the literature. 

One of the simplest consists in applying a Band Pass Filter (BPF) centered over the 

speech bandwidth (e.g., from about 50[Hz] to 3500[Hz]). This action will remove 

unwanted frequency components that do not fall within the voice bandwidth, but it 

does not ensure that the remaining signal components are actually related to speech 

utterances. In FRACTAL we employ an alternative approach to voice activity detection 

which aims at smartly taking into account only actual speech frames. We call this 

pre-processing method SmartVAD, which consists in a short-time spectral analysis 

pre-processing filtering system. It is based upon two important indicators: i) 

Spectrum Flatness Index (SFI) and ii) Energy Ratio Index (ERI). The rationale behind 

these two parameters is that a speech frame exhibits a spectrum having most of its 

energy within the 1st [kHz] and which should not be flat. Finally, a threshold criterion 

is applied such that an audio frame is not discarded only if the value of the considered 

indicators satisfies the threshold condition. These are important indicators of a voiced 

frame, and they motivate the choice of the proposed VAD indicators, which effectively 

represent the nature of the considered signal. 

Concerning artificial intelligent functions implementing the recognition phase, we 

employ a Support Vector Machines model. SVM is a supervised learning scheme that 

uses a binary approach to assign samples to a class, by dividing the feature space 

into different regions, one corresponding to each category. The SVM algorithm works 

in two separate phases: training phase and testing phase. 

Training Phase: we define the feature vector for a given frame out of F frames for 

each recording. We define as well, the vector containing all the classes (i.e., the 

names of all speakers in the following but in general can be the gender of the speaker 

and/or the language). The main idea of the SVM algorithm is to separate the feature 

space by means of one single hyperplane: in this project we employ both the One-

Against-All (OAA) method that constructs a SVM for each class considered recognition 

function, and the One-Against-One (OAO) approach, which builds more models. 

The main difference between the two types of classification schemes is that, whereas 

the OAA approach consists in training one model for each considered known speaker, 

the OAO approach performs a supervised training of one single model, by assigning 

a different class to each speaker identity. In other words, in the OAA approach, the 

single SVM for a class is trained by employing all the feature vectors of a given 

training set belonging to the given class with positive labels and all the other feature 

vectors belonging to the other classes with negative labels, so performing a sort of 

binary partitioning. The OAO approach, instead, consists in training one single SVM 

for all the considered classes, by assigning different label values to different classes, 

for a total number of labels equal to the number of classes to identify, thus performing 

a so-called multi-class partitioning. Starting from the audio signals of the training 

set, the single SVM, built for a class, can be obtained by computing the 

aforementioned hyperplane that can be expressed as a function of its orthogonal 

vector. Analytical descriptions of the SVMs have been omitted for the sake of brevity. 
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Decision (Testing) phase: every time that a speaker must be recognized, the SVM 

outputs a matrix, called Probability Matrix (PM), one for each trained hyperplane. The 

number of PMs is equal the number of the considered speakers for the OAA case, 

whereas it corresponds to the number of all possible combinations of all the 

considered speakers taken in pairs, for the OAO case. Each element of this matrix is 

the a-posteriori probability of a given feature vector belonging to the class identified 

by the binary label. From all the PMs a decision matrix is computed. It is a binary 

matrix where each element {−1, +1} is obtained by associating the given frame to 

the binary label which has the highest probability. From the decision matrix we 

determine the scoring vector S, which represents the scoring of the a given. It is a 

measure of the likelihood of the input speech utterance to belong to such a speaker. 

Finally, from the scoring vector the Maximum Likelihood Index (MLI) is inferred. It is 

simply the index of the speaker, among the predefined set, who has the highest score 

value (i.e., it has the highest a-posteriori probability to have produced the input 

speech signal). The recognized speaker is then determined by employing a decision 

rule that change in case of Open-Set or Close-Set scenario. In other words, for what 

concerns the open-set scenario (which is the one targeted within the FRACTAL 

project), the maximum score obtained by the speakers belonging to the known 

speaker set is compared to a predefined threshold. If the highest score is above the 

considered threshold the recognized speaker is the one who produced the maximum 

score, otherwise the classifier chooses for an Unknown speaker. 
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8 Conclusions 

In this deliverable, first, we have introduced challenges for developing the FRACTAL 

node as a system of systems, and a set of key concepts that are needed to define a 

framework. 

This document has introduced the framework of FRACTAL for taking AI and Safe 

Autonomous decisions, from different perspectives, starting from the framework to 

the services, libraries, strategies and algorithms.  

This methodological framework also relates to the safety aspects to be considered in 

FRACTAL nodes, that can be addressed by a series of different safety standards 

depending on the target applications. Apart of the diversity of application specific 

standards to be taken into account we also have considered safety communications, 

safety aspects of Artificial Intelligence and how the building block approach can fit 

into the FRACTAL framework. 

Integration aspects have also been taken into account, how different SW items, HW 

platforms, different applications… are integrated together in a unified platform. 

 A general methodology for FRACTAL system development has been presented that 

will be elaborated in other deliverables. We described the overall workflow of the 

project with a focus on the identification of the key enabling technologies, the task 

of this deliverable, based on the use case descriptions. 
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The short names of FRACTAL partners are not considered as abbreviations: ACP, 

AITEK, AVL, BEE, BSC, CAF, ETH, HALTIAN, IKER, LKS, MODIS, OFFC, PLC2, 
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PROINTEC, QUA, ROT, RULEX, SIEG, SIEM, SML, THA, UNIGE, UNIMORE, UNIVAQ, 

UOULU, UPV, VIF, ZYLK. 
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