

D2.1 Platform Specification (a)

Deliverable Id: D2.1

Deliverable name: Platform Specification (a)

Status: Final

Dissemination level: Public

Due date of deliverable: 2020-02-28 (M6)

Actual submission date: 2020-02-26

Work package: WP2 “Specifications & Methodology”

Organization name of lead

contractor for this

deliverable:

Thales Research & Technology

Authors: Jérôme Quévremont, Thales

Frank K. Gürkaynak, ETH Zürich

Michael Gautschi, ACP

Markus Postl, Virtual Vehicle

Martín Rivas, Prointec

Christina Schwarz, AVL

Bekim Chilku, Siemens

Martin Matschnig, Siemens

Mikel Labayen, CAF

Jordi Mansanet, Solver Machine Learning

Tuomas Paso, University of Oulu

Lauri Lovén, University of Oulu

Ville Niemelä, University of Oulu

Panos Kostakos, University of Oulu

Arash Sattari, University of Oulu

Rouhollah Ehsani, University of Oulu

Pierluigi Scarpa, MODIS

Tania Di Mascio, Università degli Studi dell’Aquila

Enrico Ferrari, Rulex

José Ramón Juárez, IKERLAN

Antti Takaluoma, Offcode

Ester Sola, Zylk

Alfonso González, Zylk

Iñigo Angulo, Zylk

Damiano Vallocchia, Ro Technology

Rubén Lorenzo, BSC

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 2 of 148

Sergi Alcaide, BSC

Jaume Abella, BSC

Daniel Onwuchekwa, University of Siegen

Nambinina Andrianoelisoa Rakotojaona, University

of Siegen

Carlos Lua Morales, University of Siegen

Matti Vakkuri, Haltian

Jyrki Okkonen, Haltian

Alexander Flick, PLC2

Giacomo Valente, Università degli Studi dell’Aquila

Paolo Giammatteo Università degli Studi dell’Aquila

Carles Hernández, UPV

Edurne Palacio, IKERLAN

Leire Rubio, IKERLAN

Kevin Villalobos, IKERLAN

Paolo Burgio, UNIMORE

Fernando Eizaguirre, IKERLAN

Stefano Delucchi, AITEK

Sébastien Jacq, Thales

Sylvain Girbal, Thales

Igor Bisio, University of Genoa

Ander Galisteo, IKERLAN

Reviewers: Leire Rubio, IKERLAN – technical coordinator

Iñaki Paz Rey, LKS

Antti Takaluoma, Offcode

Abstract:

D2.1 “Platform Specification (a)” captures the requirements of the FRACTAL

project. A top-down approach has been adopted, starting from the needs

expressed by the eight use cases, spanning through the main features (AI and safe

autonomous decision, mutable and fractal communication, safety, security and

low-power techniques) and then flowing down to both platforms, the commercial

node (Xilinx VERSAL) and the flexible node (PULP).

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 3 of 148

Contents

1 History ... 7

2 Summary ... 8

3 Introduction ... 9

3.1 Organization of the specification ... 10

4 Use case requirements .. 12

4.1 VER-UC1: Improving the quality of engineering and maintenance works

through drones ... 13

4.1.1 Description of the use case .. 13

4.1.2 Roadmap to achieve use case KPI and objectives 15

4.1.3 Requirements .. 16

4.2 VER-UC2: Improving the quality of automotive air control 19

4.2.1 Description of the use case .. 19

4.2.2 Roadmap to achieve use case KPI and objectives 23

4.2.3 Requirements .. 24

4.3 VER-UC3: Smart meters for everyone ... 27

4.3.1 Description of the use case .. 27

4.3.2 Roadmap to achieve use case KPI and objectives 28

4.3.3 Requirements .. 29

4.4 VER-UC4: Low-latency Object Detection as a generic building block for

perception in the edge for Industry 4.0 applications 33

4.4.1 Description of the use case .. 33

4.4.2 Roadmap to achieve use case KPI and objectives 37

4.4.3 Requirements .. 38

4.5 VAL-UC5: Increasing the safety of an autonomous train through AI

techniques .. 40

4.5.1 Description of the use case .. 40

4.5.2 Specific technical objectives .. 41

4.5.3 More generic objectives .. 41

4.5.4 Roadmap to achieve use case KPI and objectives 42

4.5.5 Requirements .. 43

4.6 VAL-UC6: Elaborate data collected using heterogeneous technologies 45

4.6.1 Description of the use case .. 45

4.6.2 Roadmap to achieve use case KPI and objectives 47

4.6.3 Requirements .. 48

4.7 VAL-UC7: Autonomous robot for implementing safe movements 51

4.7.1 Description of the use case .. 51

4.7.2 Roadmap to achieve use case KPI and objectives 53

4.7.3 Requirements .. 53

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 4 of 148

4.8 VAL-UC8: Improve the performance of autonomous warehouse shuttles for

moving goods in a warehouse ... 56

4.8.1 Description of the use case .. 56

4.8.2 Roadmap to achieve use case KPI and objectives 57

4.8.3 Requirements .. 57

5 Safety, Security & Low Power Techniques.. 59

5.1 Interconnection Architecture .. 59

5.2 Low Power Services .. 61

5.2.1 Node level ... 61

5.2.2 System level .. 62

5.3 Safety Services .. 63

5.4 Security Services.. 64

5.4.1 Node level ... 65

5.4.2 System level .. 65

5.5 Development methods in time-triggered scheduling 65

5.6 Requirements flowing down to WP3 .. 66

6 AI and safe autonomous decision ... 67

6.1 Communication requirements .. 68

6.2 Distribution needs .. 69

6.2.1 Centralization vs. decentralization .. 70

6.2.2 Hierarchy .. 70

6.2.3 Opportunism / dynamicity ... 71

6.2.4 Use case needs for Distributed Artificial Intelligence 71

6.3 AI Performance requirements .. 77

6.3.1 Efficiency .. 77

6.3.2 Effectiveness ... 78

6.3.3 Reliability and availability .. 78

6.3.4 Use case needs for AI performance .. 79

6.4 Data & model lifecycle concept ... 83

6.4.1 Embedded and edge machine learning algorithms 83

6.4.2 Distributed machine learning platform .. 84

6.4.3 Data management .. 85

6.4.4 Security and privacy ... 86

6.4.5 AI ethics ... 86

6.5 Inference requirements ... 87

6.5.1 Use case needs for inference ... 88

6.6 Learning requirements .. 95

6.6.1 Use case needs for learning ... 95

6.7 Run & development environment requirements 98

6.7.1 Available tools ... 99

6.7.2 Usable technologies / technology stacks 100

6.7.3 Interoperability & integrations with other systems 100

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 5 of 148

6.7.4 Continuous integration / DevOps platform 101

6.7.5 Use case needs for run & development environment 101

6.8 Requirements flowing down to WP3 .. 107

7 Mutable and fractal communications ... 109

7.1 Edge node design and implementation .. 110

7.2 Edge center controller infrastructure ... 111

7.3 Validation of the edge computing architecture 114

7.4 Integration, testing and validation of standalone communication sub-

systems ... 115

7.5 Requirements flowing down to WP3 .. 116

8 Node architecture and building blocks ... 118

8.1 VERSAL-based node ... 118

8.1.1 Hardware requirements... 120

8.1.2 Software requirements .. 125

8.2 RISC-V (PULP) based node .. 126

8.2.1 Hardware requirements... 130

8.2.2 Software requirements .. 135

9 Conclusions ... 140

10 List of Figures .. 141

11 List of Tables ... 142

12 List of Abbreviations ... 144

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 6 of 148

Acknowledgement

This project has received funding from the ECSEL

Joint Undertaking (JU) under grant agreement No

877056. The JU receives support from the

European Union’s Horizon 2020 research and

innovation programme and Spain, Italy, Austria,

Germany, Finland and Switzerland.

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 7 of 148

1 History

Version Date Modification reason Modified by

0.0 2020-10-16 Template Thales

0.1 2021-02-11 Complete version Authors

0.2 2021-02-25 Reviewed version Reviewers and authors

1.0 2021-02-26
Final clean-up, delivered

version
Thales

1.1 2021-08-12
Added ECSEL logo, fixed

two figures.
Thales

1.2 2021-08-13
Improved previously fixed

figure
Thales, UNIVAQ

1.3 2021-12-17

Addressed comments from

the first period review,

delivered version

Thales

Table 1 – Document history

To cope with the high number of contributors, this document has been edited online.

The Microsoft Sharepoint solution has been selected to keep information under EU

legislation. This solution offers a reduced feature set compared to a “regular” Word

editor. For instance, we have not been able to build a table of references and have

instead used footnotes.

Use case and work package leaders have driven the sections that relate to their UCs

and WPs. Therefore, formats can slightly differ between sections.

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 8 of 148

2 Summary

According to the DoA, D2.1 “Platform Specification (a)” captures the requirements of

the FRACTAL project in a top-down fashion.

The document starts with a description of the eight verification and validation use

cases and the capture of their needs:

 VER-UC1: Improving the quality of engineering and maintenance works

through drones

 VER-UC2: Improving the quality of automotive air control

 VER-UC3: Smart meters for everyone

 VER-UC4: Low-latency Object Detection as a generic building block for

perception in the edge for Industry 4.0 applications

 VAL-UC5: Increasing the safety of an autonomous train through AI techniques

 VAL-UC6: Elaborate data collected using heterogeneous technologies

(intelligent totem)

 VAL-UC7: Autonomous robot for implementing safe movements

 VAL-UC8: Improve the performance of autonomous warehouse shuttles for

moving goods in a warehouse

The features needed by these use cases have been devised to the three “features”

or “services” work packages:

 WP4: Safety, Security & Low Power Techniques (objective O2)

 WP5: AI and safe autonomous decision (objective O3)

 WP6: Mutable and fractal communications (objective O4)

Finally, use cases and WP4/5/6 requirements have been flown down to the platforms

borne by WP3 “Node architecture and building blocks” (objective O1):

 VERSAL-based commercial node

 PULP-based flexible node.

A list of abbreviations is available at the end of the document.

An update, D2.3 “Platform Specification (b)”, is planned at M22 (2022-06-30).

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 9 of 148

3 Introduction

Artificial Intelligence is key for the IoT to enhance existing services and to operate in

a more efficient manner. If AI is not implemented in the IoT its scope is very much

limited. Cognitivity, provided by Artificial Intelligence, will support the IoT to adapt

to surrounding world changes, learning in real-time to improve its performance.

The goal of FRACTAL project is to create a basic building block called the FRACTAL

node. This building block is a reliable computing platform node able to build a

Cognitive Edge (a network that makes predictions and diagnoses) under industry

standards. The FRACTAL node will be the building block of scalable decentralized

Internet of Things (ranging from Smart Low-Energy Computing Systems to High-

Performance Computing Edge Nodes).

On the one hand, this deliverable focuses on presenting the demonstrators and justify

their relevance. The demonstrators are grouped in verification and validation use

cases that represent high level class of applications (Transport & Mobility, Digital Life,

Digital Industry and Energy). This document details, for each demonstrator, its

context and how it allows to address the top-level objectives of FRACTAL project.

In order to have a more precise description of validation and verification needs from

use cases, the features the use cases depend upon are expressed as requirements.

Those requirements will be further developed and refined in the technical-work

package deliverables. Although, they are already effective at defining the

demonstrators, their scope and challenges.

On the other hand, this deliverable aims to collect the FRACTAL platform

requirements in a high-level format to be able to draw from the very beginning the

FRACTAL project concept.

This document provides significant requirements that clarify the following items:

 Definition the structure that should be provided (components, tools,

methodology and workflow) to be a key technology enabler for CPS (Cyber

Physical Systems) at edge computing level.

 Limitation of the scope of the project and better target the domains considered

in the project, the use case requirements will be used as inputs for the

specification.

 The high-level requirements, as the outcome of this deliverable, will draw the

roadmap for the next steps of the project, against which the ensuing results

will be benchmarked.

 Requirement fulfilment will allow to track the progress, the verification and

the validation of the FRACTAL Platform.

Solution providers will build the nodes to fulfil the demonstrator missions. This

deliverable identifies the initial components that will be integrated and validated in

each use case and demonstrator. Hence, each demonstrator defines Key Performance

Indicators (KPIs) that will allow this measure. These KPIs will be managed and

tracked in WP7 and WP8 devoted to demonstrators.

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 10 of 148

D2.3 “Platform Specification (b)” will be an update of the document, planned at

month M22. Among others, it will address the “TBD” (to be defined) included in the

current version.

3.1 Organization of the specification

There is not in the literature a single definition of what a specification is. In this

deliverable, the specification word is understood as “a set of documented

requirements to be satisfied by a material, design, product, or service”1. Therefore,

this document focuses on capturing the needs that shall be satisfied in FRACTAL. This

document also serves as a transition to WP3/4/5/6 where solutions are devised to

fulfill these requirements.

According to the Part A of the description of the action of the FRACTAL project for

WP2,

“To limit the scope and better target the domains considered in

the project, the use cases specifications will be used as inputs for

the specification. The high-level requirements, as the outcome of

this task, should become a roadmap for the remainder of the

project, against which the ensuing results should be

benchmarked.”

Therefore, the capture of requirements for this specification will mostly be driven by

use cases in a top-down approach, according to Figure 1.

Figure 1 – Top-down approach of the FRACTAL specification

The requirements for the node architecture (WP3) will in most cases derive from

“services” (WP4/5/6), but there can be direct inputs from use cases.

To reflect the top-down approach, this document is organized in the reverse order of

work package numbers, starting with an analysis at the use case level (WP7/8),

continuing with “services” (WP4/5/6) and closing with the node architecture (WP3).

In some cases, a complementary bottom-up approach can be used, where

technology providers define their solutions not being driven by use cases. This can

1 Form and Style of Standards, ASTM Blue Book. ASTM International. 2012.

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 11 of 148

be the case when top-down requirements are not achievable at the bottom level and

some negotiation is needed between end users and technology providers. This is also

the case when use cases do not provide inputs for certain areas that need to be

specified.

FRACTAL partners use different wordings in their respective domains. Therefore, the

words requirements, inputs, features, properties, expectations, capacities… have

similar meanings throughout the document.

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 12 of 148

4 Use case requirements

The use cases will be described later in WP7 (D7.1 due month 18) and WP8 (D8.1

due month 24). As the FRACTAL specification needs to be driven by use cases, this

chapter serves as inputs for the next chapters where the FRACTAL platform is

specified.

Use case Name
Relates

to

VER-UC1
Improving the quality of engineering and maintenance

works through drones
WP7

VER-UC2 Improving the quality of automotive air control WP7

VER-UC3 Smart meters for everyone WP7

VER-UC4
Low-latency Object Detection as a generic building block

for perception in the edge for Industry 4.0 applications
WP7

VAL-UC5
Increasing the safety of an autonomous train through AI

techniques
WP8

VAL-UC6 Elaborate data collected using heterogeneous technologies WP8

VAL-UC7 Autonomous robot for implementing safe movements WP8

VAL-UC8
Improve the performance of autonomous warehouse

shuttles for moving goods in a warehouse
WP8

Table 2 – List of FRACTAL use cases

After a description of each use case, their requirements are grouped according to the

strategic objectives of the project:

Obj. # Objective
Relates

to

O1
Design and Implement an Open-Safe-Reliable Platform to

Build Cognitive Edge Nodes of Variable Complexity

Pillar 1

WP3

O2

Guarantee extra-functional properties (dependability,

security, timeliness and energy-efficiency) of FRACTAL

nodes and systems built using FRACTAL nodes (i.e.,

FRACTAL systems).

Pillar 2

WP4

O3

Evaluate and validate the analytics approach by means of

AI to help the identification of the largest set of working

conditions still preserving safe and secure operational

behaviours

Pillar 3

WP5

O4
To integrate fractal communication and remote

management features into FRACTAL nodes

Pillar 4

WP6

Table 3 – FRACTAL objectives

Use cases are often referred with a shorter name: UC1, UC2…

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 13 of 148

4.1 VER-UC1: Improving the quality of engineering and

maintenance works through drones

4.1.1 Description of the use case

Nowadays, the construction sector is one of the least digitized sectors2. This lack of

use of technology starts in the first stages of the life of an infrastructure and

continues until its final stage of operation and maintenance, resulting in an increasing

in costs and in dangerous situations during the work on site. This not only means a

loss of business opportunities, but it also reduces the profit margin of the projects,

losing efficiency in the works on site, and making difficult to share information

between different phases. Projects are becoming more and more complex and hard

to manage with the current state of digitalization. In addition, construction must be

oriented towards sustainability and reduction of resource use, so some traditional

methods must be modified, adapted or eliminated to meet the challenges of the

future. Digitalization offers new ways of working that will allow to create knowledge

of the construction business with clarity and transparency.

In relation to the construction work itself, it is the least digitalized stage in the

lifecycle of infrastructures. On-site analysis/consulting is necessary to improve and

integrate processes related to cost, time and supplier management. In this stage, an

abundant quantity of information is lost due to the large number of means of

communication that are used (telephone, mail, personal, etc.), both internally and

externally to the work. The constant monitoring of the work and its workers is also

one of the key points to study, which helps to improve the quality of the processes,

reduce costs and improve health and safety during the development of the works.

UC1 has been born following the current tendencies in digitalization of the processes

through the technology evolution of the systems, enhancing efficiency and reducing

costs. Within this UC1, two end-to-end solutions will be developed and tested, which

will allow improving economic and operation efficiency and safety conditions in the

construction of civil engineering works. The UC1 aims to enhance the management

environment by treating the collected data on site, through the use of IoT platforms

and the sensorization of the construction areas. Given this context, the UC1 has been

focused on two main areas: (1) the maintenance of critical structures to increase the

useful life of structures, and (2) the digitalization of the workforce equipment on

construction sites; both areas aiming to improve safety and operation conditions in

construction works.

From these two areas, two demonstrators will be gathered inside the UC1:

Demonstrator 1 - UAV supervision of critical structures

2 McKinsey, Imagining construction’s digital future, June 24, 2016, https://www.mckinsey.com/business-

functions/operations/our-insights/imagining-constructions-digital-future

https://www.mckinsey.com/business-functions/operations/our-insights/imagining-constructions-digital-future
https://www.mckinsey.com/business-functions/operations/our-insights/imagining-constructions-digital-future

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 14 of 148

Demonstrator 1 will be focused in the supervision of critical structures as bridges or

viaducts, where images of the structural status will be collected through the use of

UAVs, systematizing the visual inspection in near-real-time to detect failures and

cracks in the concrete surface. Within this demonstrator, PROINTEC will develop an

algorithm capable to distinguish between active and non-active cracks of a wide

range of pathologies registered in concrete structures. These measurements of the

structural status will allow an early detection and classification of the cracks, and

which is even more important, a comparison at different times of the evolution of the

crack.

The information collected from the UAVs will be processed in the fractal node, and

applying the artificial intelligence, the images will be treated in order to create a map

of the structural status of the detected cracks.

Figure 2 – UC1 demonstrator 1 scheme

Demonstrator 2 - Wireless Sensor Network (WSN) for safety at construction

sites

Demonstrator 2 will be focused in the monitoring of both workforce and machinery

within a construction area, by deploying a WSN that provide information about the

status and location of the workers in real time. This information will be managed

through an IoT platform, registering possible dangers and alarms, apart from

establishing a protocol in case of emergency. With this solution, the risk of accidents

involving machinery and workers will be reduced, improving traditional health and

safety systems, focusing the action in the vision of zero injuries at construction sites.

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 15 of 148

Figure 3 – UC1 demonstrator 2 relations description

In this case, workers will carry personal sensors in their work equipment that will

record their position, and several alarms, both to workers and platform, when a

vehicle comes too close and vice versa. All this raw information will be collected,

processed in the Fractal node and represented in an IoT platform through a user-

friendly dashboard. A report will be generated that allows to take measures and

reschedule the works on site.

Figure 4 – UC1 demonstrator 2 scheme

4.1.2 Roadmap to achieve use case KPI and objectives

This section summarizes the plan to get a successful use case in WP7 at the end of

the project. Further elaborations will occur in WP7.

The present use case can be divided into 4 large consecutive areas of action, which

will lead to the achievement of the objectives of the UC1 and obtaining a technological

solution for the demands of digitalization of tasks in construction works.

1. Collection of data

Firstly, different data acquisition campaigns will be carried out on the construction

sites where the demonstrators are to be located. These campaigns will be carried out

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 16 of 148

in two ways. On the one hand, for demonstrator 1, images will be collected with UAV

drones of a critical structure, such as a viaduct or bridge, so that information can be

obtained on the most sensitive areas of cracking due to the loads to which the

structure is subjected. On the other hand, for demonstrator 2, once the sensors have

been deployed on both the operators and the machinery, a specific time of use will

be established in order to find a pattern of incidents and obtain a sufficiently large

sample to be able to take corrective measures.

2. Treatment of data

The information collected in the above-mentioned campaigns will be processed in

both demonstrators through the Fractal node. This processing will be based on

artificial intelligence and edge computing techniques, which will simplify and allow

the interpretation of the information in a simple and clear way. In this sense, within

the demonstrator 1, a previous study of pathology recognition technologies in

structures through artificial intelligence will be carried out, in order to apply the most

precise processing techniques. In demonstrator 2, an information filter will be

developed through the node, which will allow the selection of key and representative

information from the collected data.

3. Visualization of the work status

The results will be presented on different platforms, through dashboards and multi-

screen systems in the cloud. In this way, the information will be able to be consulted

in real time, both on site and remotely.

4. Adoption of measures

Once the results have been obtained, the necessary measures will be taken to

improve safety and efficiency on the construction sites. In this case, within

demonstrator 1, a representation of the evolution of the pathologies detected in the

structures will be established so as to indicate the need or not to carry out

maintenance on the structure. Within demonstrator 2, the need to rethink the work

on the construction site will be analyzed, as well as the skills of the operators and

their qualifications for carrying out the work.

4.1.3 Requirements

These requirements from the use case are inputs for objectives O2, O3, O4 and O1

(which correspond to WP4, WP5, WP6 and WP3).

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 17 of 148

Objective 2:

Non-functional (low power, safety, security, high-performance trade-off)

requirements

These requirements are inputs for WP4.

 Authentication and authorization capabilities.

 Computing needs, including required memory, data bus speed and width,

processor speed, and potential need for GPU/TPU usage.

Objective 3:

Cognitive and autonomous node requirements

These requirements are inputs for WP5.

 Suitable input, including image resolution, image quality (stability, noise

and focus), stable environmental/acquisition conditions (lighting, dynamic

range, angle and distance)

 Suitable a priori knowledge, meaning a proper and large enough dataset

of cracks. It should include all the different pathologies and acquisition

conditions to be found in the actual operation.

 SW stack which shall run Tensorflow/Keras/TensorRT/TFLite.

Objective 4:

Mutable and fractal communication requirements

These requirements are inputs for WP6.

 Communication capabilities with different data sources, directly or

indirectly (WS, API, REST, JBDC, OBDC).

 Communication latency < 2s.

 Direct communication with the Fractal node via API / WS with

individual device identification.

Objective 1:

Open-Safe-Reliable and low power node architecture

These requirements are inputs for WP3.

Target: PULP and VERSAL platforms

 Required processing time from data acquisition/downloading to

generation of the diagnosis.

 Customizability of the fractal node in order to be useful for a vast set

of different IoT-applications and data sources to be used in UC1.

 SW stack, which potentially includes a stable distribution of Linux

compatible. The SO and libraries shall integrate the GPU/TPU mounted.

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 18 of 148

Other requirements

This section describes requirements that are not related to WP3/4/5/6 but are

inputs for the integration of the use case in WP7.

 Multi-platform web frontend based

 Multi-user display platform and multi-screen on site (tablet, laptop)

 Data representation in real time through Dashboard:

o Positioning of operators and machinery.

o Alerts (day and time, internal/external radio, operator,

machinery).

o Battery level of the devices.

o Alert Concentration Heat Maps.

o Weather conditions.

 Analytical and operational capacities and data visualisation and

reporting.

 Statistical analysis of the captured data for "in situ" and "posteriori"

measurements.

 Availability of images of the cracks in the structure at different

times, to check the evolution.

 Definition of the metrics and criteria for evaluating the detection,

including the criteria of coverage (i.e., it is necessary to detect the crack

completely, or with a partial detection is sufficient), accuracy (i.e., how

many of the diagnosed cracks are actually cracks) and recall (i.e. how

many of the total cracks have been correctly diagnosed).

 Definition of cracks to be located, including their shape, size, type and

variability.

Table 4 – VER-UC1 requirements

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 19 of 148

4.2 VER-UC2: Improving the quality of automotive air

control

4.2.1 Description of the use case

Existing automotive air-path control strategies are fully reliant on model-based

control techniques. The air path of an engine is a highly nonlinear system with

dead zones, hysteresis and delays. Typically, the behavior of the system is modeled

using first principles that allow physical interpretation, but it is hard to exactly capture

the dynamics of the environment while they cannot be incorporated into the

controller. The ability of air-path control strategies to perform self-learning through

observations of specific situations is therefore minimal. The usage of these systems

is predominantly localized (at the vehicle level), but their development might

benefit from swarm behavior. Consequently, there is limited scope for sharing of

localized learnings. This use case will, therefore, contribute to integrate complex

environmental knowledge as a fundamental part of the system, among other

benefits, like potentially increased product quality and increased efficiency for the

development of customized air-path controllers.

Figure 5 – Engine control diagram

The resulting algorithms are generalized and do not lend themselves to the

adaptation to specific variations (e.g. uncertainties due to manufacturing tolerances

or aging etc.)

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 20 of 148

Figure 6 – Physical Air Path diagram

In Figure 6 the physical layout of the Air Path on a combustion engine with an Exhaust

Gas Recirculation (EGR) can be seen. The main actuators of the Air Path are the EGR

valve, the throttle valve and the turbocharger. The main control variables of the Air

Path are the intake manifold boost pressure, the lambda, which is the air to fuel ratio

and the NOx emissions of the engine. This is why, the air-path is a multifaceted

system consisting of components of various complexity levels. Together, they are

responsible for mission-critical functionality. Their operation has the potential to

benefit from proactive self-learning. Such ability would help correct own

component and system shortcomings. The localized learnings have a potential for

exploitation further than at a single vehicle level, which is crucial for

commercial exploitation that is possible through scalability. The use case aims to

demonstrate:

 Implementation of data-driven models aimed at improved energy efficiency

and reduction of environmental pollutants

 AI-based self-learning and self-adaptation of the data-driven models, as well

as consequential enactment of control strategies

 Identification of potential cyber-security breaches through anomaly detection

The concept of data-driven model application to automotive air path control has the

potential to provide higher precision in control and diagnosis. The resulting

dependability enhancements are possible through simplified development

with significantly lower computational effort over existing controllers. The

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 21 of 148

ability to self-learn and apply adequate improvements to the control system enable

an appropriate response to changes in the environment of CPSoS. The quality of

learning and predictions must be raised beyond the current level so that some aspects

of the Learning Engine replace the existing model-based control. The collective

learnings should improve resilience and energy-awareness.

4.2.1.1 Applications in the Area of Predictive Diagnostics

Motivation

This UC investigates analytical solutions that support predictive maintenance of

physical entities in powertrains. To develop such predictive capabilities, we primarily

focus on using in-use data (in most cases in vehicle-data) of well-known mechatronic

powertrain components for the task of modeling. We thereby establish a link between

the in-use behavior and the ageing of these components to enable proactive actions

to prevent severe malfunctions or damage.

Current Situation

Regular maintenance of products (e.g., components of the powertrain, test beds to

verify and validate powertrains) aims to keep availability and reliability of these

products as high as necessary. When unexpected outages occur, this causes

unforeseen expenses. Preventive maintenance aims to address this on a time- or

performance-based cycle. With predictive maintenance, AVL’s PTE3 business unit

strives to anticipate and avert such outages. The aim is to detect possible and

imminent breakdowns at the right time to help prevent these events by planned

maintenance activities.

Challenges

The process of setting up predictive maintenance starts with identifying an upcoming

issue that will cause a breakdown in the near future. To begin, reasonable variables

must be determined that allow the target state of the product (or parts of it) to be

defined. Monitoring the predefined variable means that the current status of the

product has to be measured at regular points in time — for example, pressure,

temperature or vibration have to be detected to describe and document the current

status. Thereby the frequency of measurements also determines the quality of the

collected data. It is also necessary to define how the data will be used for prediction,

so a model must be developed to monitor the product’s condition, with algorithms to

analyze trends and better forecast product status and possible breakdowns.

In this UC, we are focusing on analytical solutions allowing predictions about future

incidents. In particular we are using in-use data of physical products within a

powertrain (in-vehicle data capturing the behavior of components such as

turbochargers, oil pipes, valves or coolers) or in-use data from testbeds for

powertrains (endurance runs, such as contactors and fuses used in testbenches

and batteries). In both cases, we consider in-use data that in combination with

3 AVL PTE: AVL powertrain engineering

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 22 of 148

the predictive model will allow for accurate prediction of future incidents. In

this respect, the following challenges need to be addressed:

 Accessing sensor data: Gathering sensor data from the product.

 Preprocess data: Cleaning data by removing outliers aligning time series or

filtering out noise.

 Feature selection: Capturing abstract features that are suitable to be fed

into the model.

 Modeling: Development of models that classify the product or parts of it as

healthy or erroneous and can detect anomalies or predict the remaining

lifetime using actual in-use data.

 Deployment of the model: Support the deployment of the models into the

final service / product.

Objective

By mastering the above-mentioned challenges, AVL PTE business unit will be able to

anticipate problems before they might actually occur. A computational node of the

product in consideration is comprised of the entire data from concept to the operation

of the product. Besides of establishing connectivity, the computational node provides

interfaces for a well-defined data structure that enables data ingest, data storage

(e.g. meta-data, data storage in the case of connectivity issues, etc.) and

management (e.g. processing, plausibility check, etc.) and supports the dedicated

workflow to execute a predictive maintenance model (e.g. model inference).

Figure 7 – Predictive maintenance models link the in-use phase to the development and the
workshop/maintenance phase

Developing predictive models is a challenging task, which includes four major steps:

1. Data Preparation

2. Descriptive Statistics/Analytics

3. Feature Engineering

4. Modeling and Evaluation

We envision the development of various models within this UC. Each model makes

use on in-use data (e.g. in-vehicle data for powertrain components). In the following

we briefly characterize one potential envisioned defect related to the Air-path.

Exhaust-gas recirculation valve: Stuck valve is caused by deposition of unburned

hydrocarbons and soot. The erroneous behavior depends on mounting conditions and

software configuration.

Observable symptoms:

 Exchange of valve

 Certain entries in the defect code memory

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 23 of 148

 No electrical fault and no stem fault is appearing

Technical service action: Exchange of the valve and/or software adaption.

4.2.1.2 Proactive Adaptations (OTA)

The air-path service repository, which deals with the mapping of the learning to the

situations, also has a prospect of eventually becoming fog-based, so that future

work could also benefit from the use case (e.g. exploitation of information on driving

patterns or information from the traffic infrastructure). This hierarchical

composable structure lets itself for further expansion of the situation cognition and

proactive adaptation at the air path level to be combined with the air quality

monitoring and traffic management systems. In striving to balance a trade-off

between fog-based and edge-based computation, this use case also investigates

crucial issues around massive computational power inside the system.

4.2.2 Roadmap to achieve use case KPI and objectives

To achieve the aforementioned objectives of this use case, the following steps have

to be applied.

First the Air Path Control Strategy has to be adapted, in order to be able to

communicate with the data-driven models (see Figure 8). Therefore, different sensor

and actuator values have to be pre-processed and additional inputs have to be

calculated within the ECU4.

4 ECU – Engine Control Unit

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 24 of 148

Figure 8 – Overview of UC2

Then a suitable training environment will be established with measurement data from

a real engine and the data-driven model will be developed. Different modeling

algorithms/techniques for the data-driven model development will be considered and

the most suitable will be used for further investigations.

After the model is developed and tested in simulation, the model will be integrated

on the FRACTAL node and evaluated on the board. Especially the safe (e.g. correct

transfer) and steady (e.g. update rate) communication between the node and the

Engine Control Unit will be crucial.

After the verification of a safe control of the actuators, different adaptation and

diagnosis concepts will be tested.

4.2.3 Requirements

These requirements from the use case are inputs for objectives O2, O3, O4 and O1

(which correspond to WP4, WP5, WP6 and WP3).

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 25 of 148

Objective 2:

Non-functional (low power, safety, security, high-performance trade-off)

requirements

These requirements are inputs for WP4.

 The Node shall have the capacity to process time-series input-data in 10Hz

update rate

Objective 3:

Cognitive and autonomous node requirements

These requirements are inputs for WP5.

 The Node shall be able to execute TensorFlow framework models

Objective 4:

Mutable and fractal communication requirements

These requirements are inputs for WP6.

 The Node shall be capable of communicating with cloud services for

federated learning as well as diagnosis and adaptation

 The Node shall be capable of receiving over the air updates (OTA) for

adaptation of the models after the development phase

 The Node shall have CAN communication ports, to be able to communicate

with the Engine Control Unit and other nodes within the vehicle

 The Node shall be capable of communicating via Ethernet, to be able to

communicate with additional sensors (e.g. information from the multimedia

systems, etc.) and other nodes within the vehicle

Objective 1:

Open-Safe-Reliable and low power node architecture

These requirements are inputs for WP3.

Target: commercial node (VERSAL)

 The Node shall have a non-volatile memory, to store information also after

the engine is switched off (e.g. storage of adaption values, ageing

parameters, etc.)

 The Node shall have a storage media (e.g. solid state disc, ~200MB) for

metadata or offline communication (e.g. driving in a tunnel)

 The inputs to the node will be very transient, therefore, the node has to be

able to compute new actuator positions every 10 ms in real time

 Good performant math libraries shall be available (e.g. possibility to apply

filters, or perform simple aggregations like moving-averages, etc.)

 The Node shall have the possibility of parallel processing (e.g. at least 4

cores)

 The Node shall have at least 16GB RAM

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 26 of 148

 The Node shall have an uninterruptible power supply

 The Node shall have an internal voltage transformer

 The Node shall have Linux OS

 The Node shall have a C++ compiler

Other requirements

This section describes requirements that are not related to WP3/4/5/6 but are

inputs for the integration of the use case in WP7.

To be able to operate the Node in the engine compartment, several different

physical requirements need to be fulfilled to ensure a safe behavior of the engine

control system:

 The Node shall be robust to operate at temperatures up to 100°C

 The Node shall have a housing that protects it against dust and spray water

 The Node shall be robust against vibration

Table 5 – VER-UC2 requirements

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 27 of 148

4.3 VER-UC3: Smart meters for everyone

4.3.1 Description of the use case

Smart metering is a hot topic and one of the top use cases for the internet of things.

The goal is to read the meters remotely by connecting them to the internet. This

allows utility providers to remotely read the meters with the benefit that they would

no longer need to visit customers to physically read the meters. In order to support

smart metering, the meters and its infrastructure around need to be electrified which

is often not the case. Especially legacy utility meters such as gas, and water meters

often work with pure mechanical principles. Such meters lack power supply and an

electronic interface for accessing the meter stand. Electrifying the infrastructure and

replacing these meters with a smart device that is connected to the internet is a big

investment.

A low-cost non-invasive alternative would be to put a battery-operated device

equipped with a camera to take a picture of the meter and run a pattern recognition

algorithm directly on the device to identify the meter stand. The extracted values can

then be transmitted wirelessly over the cellular network. Such a device must have a

small form factor in the range of a 3-5 cm2 such that it can simply be tagged on a

meter. It should consume as little power as possible such that it can be in the field

for multiple years. Further, it needs to efficiently and reliably read the meter stand

in suboptimal lighting conditions. And finally, it must be capable of transmitting the

data over a wireless channel, even if the device is in a location with limited

connectivity such as a basement.

Figure 9 – Smart meter diagram

As a final product, we envision a single chip solution that consists of a programmable

platform that can extract the meter stand and run a protocol stack for wireless

connectivity on the same chip. For this purpose, a powerful, but energy-efficient

compute platform is required. To achieve this final product, a prototype based on the

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 28 of 148

fractal platform will be developed. The following chapters will highlight how we want

to achieve this goal and provide detailed platform requirements.

4.3.2 Roadmap to achieve use case KPI and objectives

This section summarizes the plan to get a successful use case in WP7 at the end of

the project. Further elaborations will occur in WP7.

The project can be split in three main parts:

1. Image analysis:

The fractal RISC-V platform will be interfaced with a low power camera that can take

pictures of the meter. In a second step, the platform must analyze the picture and

extract the meter stand. The main challenges of this task will be to reliably detect

digits in an image with a pattern recognition algorithm, on a platform with only a few

100kB of memory and in a power envelope of a few milliwatts such that the device

can remain active for multiple years.

2. Wireless connectivity

Transmitting the full image over the internet will take too much time for IoT protocols,

and therefore consume too much power. With clever duty cycling, and by only

transmitting the relevant information (the meter stand) the power consumption will

be greatly reduced. In addition, it will be a challenge to reliably establish a wireless

connection in locations with limited connectivity such as basements where meters

are typically located.

3. Security features

User data must be stored encrypted on the fractal node to protect personal, sensitive

data from external access. The platform must be authenticated by the utility provider,

such that it cannot be cloned. Further, the platform must be able to verify its

firmware, before reading and transmitting meter readings, such that it cannot be

manipulated.

In a final product, these features must be implemented in a single chip, otherwise

the solution will not be affordable in prize, and will be too big to be tagged on a

meter. For this project however, we can build a prototype of the system based on a

FPGA platform with the fractal node and interface it with a camera, and ACPs modem

that offers connectivity over the cellular network. Even though a big FPGA is being

used in this project, it is important to keep the power consumption and form factor

requirements of the final solution in mind during the development of the fractal node.

The prototype that is developed in this use case is targeting smart metering. The

prototype’s functionality is however not limited to smart metering. A small batter-

operated device that is capable of analyzing images, perform edge-computing and

establishing a wireless connectivity to communicate with a server is potentially useful

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 29 of 148

in many scenarios for the internet-of-things. Through the fractal project it will be

possible to connect multiple such nodes that are used in different scenarios in one

network.

4.3.3 Requirements

These requirements from the use case are inputs for objectives O2, O3, O4 and O1

(which correspond to WP4, WP5, WP6 and WP3).

The following table summarizes the specific requirements for the fractal node that is

used by the smart meter prototype.

Objective 2:

Non-functional (low power, safety, security, high-performance trade-off)

requirements

These requirements are inputs for WP4.

 Low power consumption:

VER-UC3 requires smart scheduling techniques to prolong the battery lifetime

of the system. Therefore, active times must be kept as short as possible and

the system must go in deep power down state when it is not used.

 Encryption services to encrypt user data:

Encryption must be completed within milliseconds, and with a memory footprint

of a couple of 100kB due to the limited availability of memory in an integrated

circuit.

 Authentication and Integrity:

It is important to guarantee authenticity, confidentiality and integrity of the

transmitted data. In addition, VER-UC3 would benefit of an authentication

service that can run on the fractal node to authenticate meter reading requests

from the operators.

Objective 3:

Cognitive and autonomous node requirements

These requirements are inputs for WP5.

No specific requirement for autonomous operation and AI

Objective 4:

Mutable and fractal communication requirements

These requirements are inputs for WP6.

 Communication framework with minimal overhead:

VER-UC3 will transmit and receive only a few hundred bytes per day (meter

stand, time, date, unique identifier). For such IoT applications it is essential

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 30 of 148

that the overhead of the communication protocol is minimal and thus not

becoming a main contributor to the power consumption of the device. MQTT

could be a suitable protocol.

 Bandwidth and latency requirements:

The smart meter prototype will periodically establish a wireless internet

connection over the cellular network (NB-IoT) and transmit its data. Since only

few bytes need to be transmitted per day, a bandwidth of 1kbps is sufficient.

Latency must not exceed 1s.

Objective 1:

Open-Safe-Reliable and low power node architecture

These requirements are inputs for WP3.

Target: customizable node (PULP)

 Processing performance:

In VER-UC3 it is foreseen to run a convolutional neural network (CNN) on the

fractal node to identify digits in an image. To enable a long battery lifetime, it

is important that the CNN can be computed in a short time (max. few seconds),

such that the system can go back to deep sleep as soon as possible. To be able

to reach this goal, a processing performance in the range of 10 MOP/s to 1

GOP/s will be necessary.

 On chip memory requirements:

In order to keep the form factor of the device small (when ported to an

integrated circuit), it is not possible to equip the chip with multiple of

megabytes of memory. We estimate that 512kB of on chip memory and

possibly a 1-2 MB of off chip memory (with higher latency) will be required.

 Non-volatile storage:

The software plus the weights of the CNN must be stored in a non-volatile

memory, typically a flash. We estimate that 3-4MB of flash memory will be

required to store the weights. In addition, a firmware with a small program to

interface the camera, run the CNN and establish a connection with the modem

must be stored in the flash. This program should also include encryption, and

authentication services and will therefore also require 1-2MB of memory.

 Small form factor:

The goal is to tag the final solution of the smart meter prototype directly on the

meter. Hence, the size of the fractal node, together with a battery, a camera

and an antenna, must be in the range of a few cm2 when integrated in an

advanced technology. It is therefore important that nothing in the fractal node

will prevent the production of such an integrated circuit.

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 31 of 148

 Real time clock:

The smart meter device of VER-UC3 will be configurable with a wakeup period

in which it will autonomously wake up, take a picture and analyze it. The meter

stand can then either be directly transmitted to the operator, or it can first be

stored in memory together with a timestamp, and once enough readings have

been collected, all of them can be transmitted to the operator.

 Interfaces:

VER-UC3 will require only a limited set of interfaces such as UART and a camera

interface. The platform should however support other common interfaces like

SPI, I2C, I2S, USB, etc. to interface other sensors, or transfer data from one

node to another.

 Low power consumption:

The smart meter of VER-UC3 will be in a deep sleep state most of the time. To

enable a long battery lifetime, the power consumption of this state is of most

importance. Deep sleep currents of <10uW will allow the system to be active

for 10+ years when used with a medium sized battery (2000mAh). The fractal

node must be portable to an integrated circuit in which the power consumption

of the deep sleep state is in this order.

 Customizable:

The fractal node must be customizable in order to be useful for a vast set of

different IoT-applications. Some applications require more memory, others

more processing power.

 Software stack:

Given the limited amount of memory and the power envelope of the smart

meter prototype, it is not feasible to use Linux as an operating system. Running

a bare-metal application that reads the meter, analyzes the image and

establishes a connection with the modem is sufficient. Using a simple operating

system such as littleKernel (lk), Zircon or FreeRTOS is preferable.

 Real-time support:

Image analysis and meter reading are not real-time critical. Hence, no support

for real-time execution is required. It could however be that a real-time critical

application is running on the same chip (such as the software stack of the

modem). It is a plus if the fractal node can run a real-time OS.

Other requirements

This section describes requirements that are not related to WP3/4/5/6 but are

inputs for the integration of the use case in WP7.

 Reliable wireless connectivity:

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 32 of 148

Meters are often placed in basements where there is only limited wireless

connectivity. The smart meter prototype requires a modem that offers

extended coverage wireless connectivity such as NB-IoT over the cellular

network.

Table 6 – VER-UC3 requirements

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 33 of 148

4.4 VER-UC4: Low-latency Object Detection as a generic

building block for perception in the edge for Industry

4.0 applications

4.4.1 Description of the use case

Real-time object recognition has shown to be an important segment for many

industrial applications where automation replaces manual work. This feature

enhances the automation process with intelligent capability to detect and recognize

objects visually. The whole process is based on machine learning approaches where

the inference of a previously trained convolutional neural network (CNN) is used as

an algorithm for detection and recognition of the objects from the input data.

The computation capacity nowadays provided by edge computing made it possible to

run the object detection and recognition algorithms closer to the location where the

object is observed, and with that to eliminate the needs for sending the input video

data to the cloud services for data processing. The proximity to the source brings few

crucial benefits for this type of solutions. First, it eliminates the need for remote

computation in the cloud and with that the need for wide bandwidth, second, it lowers

the responds time that would have been imposed due to the network communication

delays, and third, it increases the privacy by keeping the video data local. Running

the inference locally on the node also enables the edge computing device to perform

the process of detection and recognition in real time.

VER-UC4 has for goal to implement a vision-based object detection and recognition

algorithm in form of a Low-Latency Object Detection (LLOD) building block as part of

the FRACTAL edge platform. The proposed LLOD building block will have the ability

to detect the objects, localize their positions in the image, and categorize them based

on pre-defined classification. Figure 10 shows the main component of this use case

as well as the flow of the data. The LLOD building block takes as an input a video

stream generated from the camera. The stream is handed to a device that runs

algorithm for computer vision on top of it. Once the frame processing is finished the

device publishes the results on the display. The output is localization of the objects

in the image and their classification based on the group that they belong. All this will

be performed in real-time as the input video stream flows. The detection, localization

and recognition of the objects will be done with the help of inference of a previously

trained convolutional neural network model called YOLO, which is described below.

The LLOD building block will be implemented in form of a hardware accelerator as

part of a larger SoC deployed on FPGA hardware platform. The flexibility of FPGA

allows the LLOD building block to be configurable and adaptable for different neural

network algorithms. Thus, any change in the inference will simply require

reconfiguration of the accelerator in order to improve execution speed and reduce

energy consumption.

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 34 of 148

Figure 10 – VER-UC4 Object detection and recognition in industry

VER-UC4 will focus on exploiting the performance and behavior of the new proposed

hardware extensions developed in WP3. The inference will be run on proposed

hardware and the outcomes will be evaluated. This will allow us to have a better

understanding on the impact that proposed hardware extension can have on the

execution performance of the inference for visual computation.

Once the prototype is ready it will be handed over to use case VAL-UC8 to be

integrated as part of the SPIDER autonomous robot.

4.4.1.1 Object detection and recognition algorithm - YOLO

Object detection and object recognition are techniques used for detecting and

identifying objects within an image or a video. Object detection has for goal to localize

the objects in the image, while object recognition understands the content of the

image and identifies the objects on it.

You-Only-Look-Once5 (YOLO) is a real-time object detection and recognition

algorithm that detects and categorizes objects in extremely short time. It is based

on a convolutional neural network that can predict multiple objects and their position

on the single image simultaneously. Unlike classifier-based methods, YOLO evaluates

the image only once. This is achieved by unifying all components required for object

detection into a single neural network. The entire image is inspected at once and all

the bounding boxes are predicted instantly. Such an approach makes it possible for

the neural network to perform end-to-end training in real-time speed.

The algorithm divides the image into a SxS grid, where each grid cell predicts B

bounding boxes and the confidence score for those boxes. Each bounding box

consists of (x,y) coordinates of the box center, the width w and height h relative to

the whole image, and the confidence which presents the intersection over union (IOU)

between a predicted box and any ground truth box. If the bounding box is spread

over multiple grid cells, then the grid cell containing the center of the object has the

5 Joseph Redmon et al. “You Only Look Once: Unified, Real-Time Object Detection”.

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 35 of 148

responsibility to detect the object. The bounding box uses multilabel classification to

predict the classes.

The model is implemented as a set of 24 convolutional layers followed by two fully

connected layers. The convolutional layers extract features from the image while the

fully connected layers predict the predictability and the coordinates.

The light variation of the YOLO algorithm with less convolutional layers and fewer

filters is called Tiny-YOLO. This solution consists of 15 layers on which kernels of size

3x3 and 1x1 are used for convolutional layers and kernel of size 2x2 for pooling

layers. The inference has a smaller size (less than 50MB), is a few times faster than

the main version and achieves a higher rate of frame processing.

The reason for choosing Tiny-YOLO as inference for edge computing in UC4 are:

 It detects and identifies the objects in the images very fast,

 Has a high rate of processing frames per seconds,

 Has a small size that makes it suitable for embedded devices,

 Achieves a high accuracy on object identification,

 It analyses the whole image at once,

 Has a low rate of background errors compared to other approaches,

 It is a mature solution for object detection and recognition,

 And it is an open source trained neural network.

Apart from these advantages, YOLO has limitation as well. From each grid cell in the

image the model can only predict two boxes and can only have one class per cell.

The model also struggles with objects that are small and appear in group. These

constraints limit the number of objects that can be predicted within a cell.

4.4.1.2 The hardware platforms

The LLOD building block will be implemented on the Xilinx VERSAL Adaptive Compute

Acceleration Platform (ACAP) and the Parallel Ultra Low Power (PULP) platform. Such

an approach will give us a better understanding on the impact that different hardware

designs developed in WP3 can have on the behavior and performance of the neural

network inference for computer vision. Xilinx ACAP is described in section 8.1, while

the PULP platform is described in section 8.2.

The LLOD prototype to be developed for this use case consists of a camera, the

software/hardware platform from the FRACTAL edge node and a display. The camera

points to the production line and is used for generation of the input video streams.

The frames from the video stream are processed from convolutional neural network

that runs on one of the defined hardware platforms. The output results on detection

and recognition of the objects are shown on the display.

In order to observe the impact of different hardware architecture on the execution of

the inference we propose five solutions with diverse hardware architecture:

 The first solution will run the neural network inference on scalar processor

without utilizing any hardware acceleration. For Xilinx ACAP platform this will

be an ARM processor, while for the PULP platform a RISC-V processor. This

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 36 of 148

will demonstrate the difference between ARM and RISC-V processors when

they run inference of neural network.

 The second solution will utilize the AI engine provided from Xilinx platform.

The neural network inference will be mapped on the AI engine to exploit the

benefits that could be gained by using the array of AI engine tiles. This case

will demonstrate how the AI engine deals with data-level parallelism and what

impact the AI engine has on the performances of the neural network. The

whole demonstrator will be built using the SDK provided by Xilinx for ACAP

platform.

 The third solution is based on a High-Level Synthesis (HLS) hardware

accelerator, which consists on a configurable array of processing elements.

The accelerator will be implemented in the programmable logic part of the

board for both Xilinx ACAP and PULP platform. In contrast to the second

solution where the accelerator is a hardcore solution, this one is an array of

processors that is flexible, configurable, and adaptable. This case will

demonstrate the impact of adaptability of accelerator on the performance of

neural network. The outcome results will also be compared with Xilinx ACAP

solutions that uses the AI engine.

 The fourth solution will be implemented on heterogeneous embedded system

on chip (HESoC) consisted of a standard scalable processor as host and a

cluster of programmable many core accelerators (PMCA). The platform is

called HERO6 and is part of the PULP solutions. The cores of the accelerators

are RISC-V processing elements which are adapted to run the neural network

efficiently. The software stack provided by HERO will be used for building the

demonstrator and the generated results will be evaluated.

 The fifth solution will be a solution that utilizes a RISC-V processor that

supports Instruction Set Architecture (ISA) extension for data-level

parallelism. The advantage of RISC-V processor is that it has a modular ISA,

thus adding or removing a set of instructions belonging to one module will not

affect the other ISA modules. Based on the specification of RISC-V7 there are

two types of modules to deal with this form of parallelism called “P” and “V”

extensions. “P” standard extension is a packet with SIMD instructions, while

“V” extension covers the instructions for vector operations. “P” extension

covers the SIMD instructions only for integer operations, while the float-point

SIMD operations are dropped in favor of standardizing the “V” extension. Also,

the size of the vector on which SIMD instructions can operate is limited. The

“V” extension offers more flexibility since the number of registers that it uses

to define the size of the vectors is not fixed and also the type of the elements

within the vector. All parts of the code where data-level parallelism comes

into expression will be executed on the vectoral part of the processor while

6 HERO: Heterogeneous Embedded Research Platform for Exploring RISC-V Manycore Accelerator on FPGA,
Anreas Kurth et al., CARRV 2017

7 The RISC-V Instruction Set Manual, Volume I: Unprivileged ISA, 20191213

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 37 of 148

the rest of the code will be mapped on the scalar part. Since inference of a

neural network has properties of data-level parallelism it will by transformed

from the compiler on a set of vectorial instructions. Extension of RISC-V

processor with “V” or “P” instructions has not been considered as part of this

project, but a possible implementation would be a good case to exploit the

behavior of the neural networks on such architectural solution.

All the development on Xilinx platform will be done with the help of the SDK provided

from the vendor. For PULP platform we will use the 64bit version of the RISC-V

processor that can run Linux operating system.

4.4.1.3 Applications of LLOD

LLOD as a solution can be used on different industrial applications. In the following

we list examples of industrial domains where LLOD can be applied.

 Quality control process – can be a visual task performed to detect faulty

products on production lines. The LLOD can be part of an inspection process

to detect faulty products and to trigger the next action when such a product

occurs (e.g. separate).

 Inventory management – is a complex task in an industrial environment

where the value of inventory is changed dynamically because things are added

or removed frequently. With help of LLOD the process of keeping track of

inventory can be automated.

 Robotics – is extremely useful in the process of automation. LLOD empowers

the robots to correctly locate and differentiate the products in the production

line.

 Safety – is an important part of human-machine interaction process. LLOD

increases the safety of such a process by observing human-machine

interactions and triggering safety mechanisms in safety critical situations.

4.4.2 Roadmap to achieve use case KPI and objectives

To demonstrate the behavior of the LLOD building block and to evaluate its

performance we will implement the model on both proposed platforms. The goal for

this use case is to check for all proposed solutions:

 if the LLOD model runs properly on the proposed solution,

 if the solutions fulfill the objectives, and

 to compare the behavior of the inference on all of them.

The solutions where the inference will run directly on RISC-V and ARM processor will

be the first ones to be implemented. The results from such an approach will present

a good basement to compare the performance improvements that can be gained with

later solutions when special hardware extensions are used.

The second step will be the mapping of the neural network inference on the AI engine

of Xilinx platform with the help of the provided SDK. Once we confirm that the

implementation runs properly, we will evaluate the behavior of the inference and

compare it to the baseline solutions from the previous example.

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 38 of 148

Next, the inference will be mapped on the PMCA part of the HERO platform with all

other operation on the host processor. The results will be evaluated and the behavior

of the neural network inference for this case will be compared with the other cases

in order to extract the advantages and disadvantages between different hardware

solutions.

The last step is the evaluation of the hardware accelerator implemented on the

programmable logic part of the platform. The solution will be evaluated for different

configuration parameters due to its flexibility to observe the impact of the

configuration of parameters on performance of the neural network inference. The

results will be compared with the other solutions as well.

4.4.3 Requirements

The following tables summarize the high-level requirements for UC4. These

requirements are inputs for objectives O2, O3, O4 and O1 (which correspond to WP4,

WP5, WP6 and WP3).

Objective 2:

Non-functional (low power, safety, security, high-performance trade-off)

requirements

These requirements are inputs for WP4.

 The LLOD controlled device shell response in latency shorter than 1ms.

 The LLOD object detection latency shall be shorter than 50 ms.

 The LLOD shall have capacity to process at least 30 fps.

 The LLOD shall be energy efficient by operating within the limited power

envelope of the edge node.

Objective 3:

Cognitive and autonomous node requirements

These requirements are inputs for WP5.

 The LLOD shall be able to locate the objects in input video stream.

 The LLOD shall be able to recognize the objects that have already been detected

in the video stream.

 The LLOD shall perform detection and recognition operations of all objects in

video stream through a single observation.

 TensorFlow/Caffe/Darknet frameworks shall be supported by the edge node for

generation of the inference.

 The inference of LLOD shall be able to process the video input in real-time.

 The operation of the inference of LLOD shall be isolated within the edge node.

Objective 4:

Mutable and fractal communication requirements

These requirements are inputs for WP6.

 The edge node shall provide Ethernet interface for remote monitoring of LLOD.

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 39 of 148

 The edge node shall provide Ethernet interface for remote configuration of

LLOD.

 The edge node shall provide Ethernet interface for communication of LLOD with

other FRACTAL nodes.

Objective 1:

Open-Safe-Reliable and low power node architecture

These requirements are inputs for WP3.

Target: PULP and XILINX platforms

 The inference of LLOD shall be run on platform consisted of host CPU and

hardware accelerator.

 The hardware accelerator of LLOD shall be powerful enough to run the inference

without any stall as the video streams flows.

 The hardware accelerator of LLOD shall be flexible by enabling re-configuration

of the hardware for different inference models.

 The RISC-V processor shall be 64-bits.

 The RISC-V processor shall support M extension for multiplication.

 The RISC-V processor should support “V” extension for data-level parallelism.

 The compiler should support data-level parallelism for “V” extension on RISC-

V.

 The RISC-V processor should support “P” extension for data-level parallelism.

 The compiler should support data-level parallelism for “P” extension on RISC-V.

Other requirements

This section describes requirements that are not related to WP3/4/5/6 but are

inputs for the integration of the use case in WP7.

 The LLOD shall be able to run applications on top of the software system that

will control its operation.

 The RISC-V processor shall run 64-bit Linux operating system.

Table 7 – VER-UC4 requirements

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 40 of 148

4.5 VAL-UC5: Increasing the safety of an autonomous

train through AI techniques

4.5.1 Description of the use case

CAF Signalling is involved in different research projects related to CV&AI-enhanced

systems development in order to:

(1) reach a higher autonomy in urban vehicles and

(2) align them with European railway normative.

The objective is to apply CV&AI techniques to improve different autonomous train

operation functionalities, such as precision stop, visual odometry, rolling stock

coupling operation or person and obstacle detection-identification in railroads.

Figure 11 – CAF Istanbul's fully automated metro

However, as many companies across the sector, CAF Signalling is facing up different

computational capabilities challenges for CV&AI-enhanced autonomous train

operation, which needs real-time & safety-critical computing platforms for correct

performance. The future of CV&AI breakthroughs in railway sector will require large

arrays of memory devices at the same accuracy as a Graphical Processing Unit (GPU)-

based system, hardware accelerators and new platforms. These achievements will

expand the scale of CV&AI processing-calculations making them larger and faster

(this means energy-efficiency must improve dramatically).

CAF Signalling will use the FRACTAL approach on AI-enabled computing platforms to

execute some functionalities developed in CV&AI field for autonomous train

operation.

More precisely, FRACTAL’s project use case will focus on:

 Automatic platform detection: It will detect platform area based on train

localization information (odometry sensors, platform beacon...) and different

visual pattern (visual sensors) detection/identification (characteristic patterns

which identifies train platforms). Platform detection functionality will enable

CV&AI based automatic train approximation to accurately stop the train.

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 41 of 148

 Automatic accurate stop at door equipped platforms aligning the vehicle and

platform doors: It will perform precise positioning inside platform area using

visual patterns detection, identification and tracking in order to reach accurate

stopping point and managing automatic train operation (traction and brake

commands, ATO functionality). The visual patterns will be designed and

chosen to maximize the detection and identification processes in any possible

lightness and meteorological conditions. On the other hand, these patterns

will be installed according to predefined precise distances to obtain physical

accurate measurement from correctly calibrated visual sensors.

 Safe passenger transfer: It will manage automatic safe door enabling (ERMTS

functionality) making sure the train is completely stopped in the platform area

(using visual sensors) avoiding a) door opening operation if the train and

platform doors are not precisely aligned and b) door closing operation if any

passenger is getting in/out the train.

4.5.2 Specific technical objectives

This use case technical objectives aim to:

 Integrate the safety-critical high-performance computing platform within a

railway control system.

 Testing and evaluation of CV&AI-enhanced autonomous train operation

processes over safety-critical high-performance computing platform with

actual in-the-field data and operating in the real railway vehicle environment.

The use case will perform CV&AI based:

o Correct automatic platform detection.

o Accurate automatic stop at door equipped platforms, aligning the

vehicle and platform for correct passenger transfer.

o Correct detection of the passengers who are getting in/out the train

(in platform area) avoiding any door closing operation before all train’s

doors are free of crossing-passengers.

4.5.3 More generic objectives

The CV&AI-enhanced algorithms for (driverless) autonomous train operation will

need a further substantial effort to increase the technical readiness level (TRL) before

bringing it to the market. CV&AI-enhanced technology must fulfill with strict

standards and safety regulation in order to be certified. In addition, regarding the

certification process of railway systems and according to EN-5012x standards,

CV&AI-enhanced techniques are not currently recommended, so the adoption of this

kind of solutions in such a domain is still a challenge. For this reason, the main barrier

for exploitation will be increasing the TRL for system certification carrying out all

safety requirements.

Safety-critical high-performance computing platforms (with integrated algorithms for

CV&AI-enhanced driverless automatic and safe train operations) will help in

increasing the TRL for a future possible system certification, thus, bringing expected

benefits of AI based technologies to the autonomous railways sector and supporting

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 42 of 148

an easier marketing of these technologies. The algorithms developed by FRACTAL in

the context of the CAF Signalling use-case will be transferred to European railway

companies, which will increase their competitiveness and contribute to the Europe

2020 strategy for smart, sustainable and inclusive growth. On the other hand,

FRACTAL will establish CAF Signalling in a preferential position as an innovative

technology provider in autonomous and safe train operation.

CAF Signalling's general objectives with VAL-UC5 are:

 Give autonomy and decision-making capabilities to vehicles so they can

observe and interpret the environment in an independent manner,

complementing the information already received from railroad signaling

modes.

 Reduce installation and maintenance costs by lowering both complexity and

price with new optical sensors and increasing installations’ lifecycle.

 Increase flexibility in different railway operations that are attached to

delimited areas and delimited time slots depending on the type of railroad and

its configuration.

 Enhance variable calculations and operations both in precision and speed with

new optical sensors information.

 Increase railway systems safety level.

 Increase railway exploitation capacity and flexibility by CV&AI based more

precise measurements (optical metrics, object detection/identification…)

4.5.4 Roadmap to achieve use case KPI and objectives

This section summarizes the plan to get a successful use case in WP8 at the end of

the project. Further elaborations will occur in WP8.

Apart from the technical objectives of VAL-UC5 listed in the use case description, in

the scope of FRACTAL three objectives are to be fulfilled when integrating CAF’s

CV&AI-enhanced system in an embedded platform based on FPGA:

 Verify that the algorithms and its dependencies running over office-lab

computer can be addressed in an embedded platform.

 Verify that the algorithms running over an embedded platform generate the

same outputs (accuracy) when receiving the same inputs as in office-lab tests.

 Verify the CPU, HW accelerator and memory budgets required by the different

algorithms on an embedded platform.

The Roadmap first-schema to achieve these objectives is the following:

 Develop VAL-UC5's functionalities over Linux x86-64 machine + Nvidia GPU

workstation in office-lab environment.

 Prepare the VERSAL board for future porting:

o Develop FRACTAL’s libraries abstracting inference to final user level.

 Integrate/compile OpenCV libraries into VERSAL.

 Integrate/compile ONNX interpreter libraries into VERSAL.

o Develop FRACTAL’s HW Accelerator.

 Integrate Vitis AI DPU module into VERSAL.

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 43 of 148

 Port solution to the VERSAL board

 Test solution (compare office-lab environment results with real-time

embedded VERSAL HW platform)

To success in VAL-UC5 development and achieve KPI and objectives, CAF Signalling

will contribute with:

 Real railway videos:

o Videos recorded from train cabin (front view)

o Videos recorded from rear mirror camera.

 Computer Vision based measurement algorithms (C++ over OpenCV):

o Stopping distance estimation.

 Trained AI models for detection (ONNX):

o Platform detection.

o Passenger detection.

 Performance measurement strategy

4.5.5 Requirements

These requirements from the use case are inputs for objectives O2, O3, O4 and O1

(which correspond to WP4, WP5, WP6 and WP3).

Objective 2:

Non-functional (low power, safety, security, high-performance trade-off)

requirements

These requirements are inputs for WP4.

 The platform shall be compliant with non-functional railway equipment

requirements:

o EN 50155 (Electronic equipment).

o EN 50125 (Environmental issues).

o EN 45545 (Fire protection).

o EN 50121 (Electromagnetic compatibility).

o UNE EN 61373 (Equipment vibrations).

 The platform shall support real-time performance for UC5 functionality.

10fps (100ms cycle) will be considered as real-time.

Objective 3:

Cognitive and autonomous node requirements

These requirements are inputs for WP5.

 The platform shall support OpenCV library.

 The platform shall have ONNX interpreter.

 The HW accelerators shall be compatible with TensorFlow’s framework

outputs (nice to have).

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 44 of 148

Objective 4:

Mutable and fractal communication requirements

These requirements are inputs for WP6.

No specific requirements.

Objective 1:

Open-Safe-Reliable and low power node architecture

These requirements are inputs for WP3.

Target: commercial node (VERSAL)

 The board shall provide multi-core technology with at least 4 cores.

 The board shall handle multi-threading applications.

 The board shall have at least 60 GFLOPS.

 The board shall provide at least 16GB DDR RAM.

 The board shall incorporate HW acceleration:

o The board should incorporate HW acceleration based on GPU (nice

to have)

o The HW accelerators should be programmed with OpenCL (nice to

have)

 The board shall incorporate different interfaces (and their Linux drivers):

o The board shall have 2xGbit peripherals

o The board shall have 2xUSB3.0 peripherals

o The board shall have 1xHDMI peripherals

 The board shall have Linux OS.

 The board shall have C++ compiler.

Other requirements

This section describes requirements that are not related to WP3/4/5/6 but are

inputs for the integration of the use case in WP8:

 No specific requirements.

Table 8 – VAL-UC5 requirements

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 45 of 148

4.6 VAL-UC6: Elaborate data collected using

heterogeneous technologies

4.6.1 Description of the use case

Nowadays, several emerging edge technologies are combined together within a new

disruptive retail paradigm, called Sentient Spaces. It represents an advanced ICT

based space that has sensing capabilities, an Artificial Intelligence (AI) based brain

to process information and data collected, and a large amount of actuation

capabilities to interact with customers. It is a dynamic space able to adapt itself

promoting products according to individual's preferences. Leveraging on it a double

positive impact will be possible: the consumer will experience accurate guidance and

product information and retailers will be much more efficient, making marketing more

targeted and effective.

Figure 12 – Smart Totem illustration

In a sentient space, a smart totem is equipped with intelligent sensors and actuators,

such as cameras, that collect data and implement AI based content analysis providing

output and actuations. It is then clear that such a totem could have a disruptive

impact on retail and shopping mall business, providing personalized advertisements

and product recommendations and driving customers towards products.

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 46 of 148

In such a context, our aim is to make these devices more accessible and faster to

use. Leveraging on Fractal methodologies and approaches, studied and defined

during the project, advanced AI approaches will be developed and deployed on the

edge to process collected data to extract meaningful proximity information and

detailed understanding of its surrounding.

The inference is provided by a neural network and rule based approaches, optimized

for running on the embedded device installed in the smart totem. Different embedded

technologies will be investigated and compared by following the FRACTAL approach

and platform.

Information can be detected in terms of customers’ gender and age range,

effectiveness of marketing campaigns inside the store determining customers

attention time for each content promoted. Not only video but also audio processing

will be used to detect meaningful data that can be further elaborated providing useful

support for targeted advertisement and a personalized marketing strategy. Moreover,

audio processing algorithms for in store context awareness exploits audio signal

collected to provide user tailored information, contents and services, delivering

shopping experience that meets consumer expectations. Both audio processing and

video content analysis are based on innovative AI approaches that can be deployed

on edge devices without requiring to upload data collected (i.e., video streams and

audio signals) to a centralized cloud infrastructure.

In more detail, our scenario is shown in the figure below:

Figure 13 – Schematic representation of the VAL-UC6.

The use case will be composed of a set of building blocks that expect to reach the

following TRL:

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 47 of 148

Use Case Building Blocks TRL

(Expected)

Comment

Smart totems actuators 4 Tailored user support (e.g.,

content displayed and actions

done) automatically selected

according to information detected

on totems proximity and

cooperatively by other totems

Smart totem sensing and

local processing

4 Integration of edge computing

devices for AI algorithms to infer

relevant information by means of

audio and video processing

Communications and

distributed cooperative

strategy

4 Totems will cooperate to

coordinate their functionalities and

the contents they provide sharing

the information locally detected

Age&Gender Classifier 4 Implementation of accelerated

CNNs for edge devices

Audio processing algorithms

for totem proximity context

awareness

4 Exploit audio context awareness to

provide user tailored interface,

contents and services

Intelligible analytics for

context awareness of totem

content (e.g., content

selection, knowledge

extraction from image, audio)

4 Specialized algorithms for black

box vs clear box machine learning

models

On-board resource

management system

4 Deliver real-time performance by

adequately managing shared

resources in a predictable manner

on the target board

Table 9 – Target TRL for VAL-UC6

4.6.2 Roadmap to achieve use case KPI and objectives

This section summarizes the plan to get a successful use case in WP7/8 at the end of

the project. Further elaborations will occur in WP7/8.

In particular, the objectives are:

 To verify that the algorithms and their dependencies running over test plant

can be addressed in the embedded platform.

 To verify that the outputs provided by the embedded platform in the live

environment are consistent with those of the test facility.

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 48 of 148

 To verify the CPU, HW accelerator and memory budgets are consistent in order

to secure node communication and secure data store.

The first Roadmap release to achieve use case objectives will be as follows:

 Develop the UC6's functionalities over Linux machine in office-lab

environment.

 Prepare the AI Core series board abstracting inference to final user level:

o Integrate C++ compiler;

o Integrate/compile OpenCV libraries;

o Develop FRACTAL’s HW accelerators for the TensorFlow – Keras'

framework outputs.

 Integrate user interaction systems (such as camera, microphone, touchscreen

display, audio speaker, sensors, etc.).

 Dataset definitions for the AI algorithm learning process.

 Develop the AI solution to achieve the objectives set on user experience,

correct outputs and user's interest in the advertised product.

 Test solution.

4.6.3 Requirements

These requirements from the use case are inputs for objectives O2, O3, O4 and O1

(which correspond to WP4, WP5, WP6 and WP3).

Objective 2:

Non-functional (low power, safety, security, high-performance trade-off)

requirements

These requirements are inputs for WP4.

Considering the defined scenario, the system should guarantee “firm” Real-Time

response timing bounds, as established by Miller, 1968 and further explored by

Nielsen:

o 0.1 seconds is the limit for the user to feel that the system is reacting

instantaneously to their direct manipulation – the only necessary

feedback is the display of results.

o 1.0 second is the limit for the user’s thoughts to remain

uninterrupted, although they will notice the delay.

o 10 seconds is the limit for keeping the user’s attention – in other

words, the general point of abandonment.

Further requirements need to be considered:

 Computing needs, including required memory and bandwidth, data bus

speed and width, processor speed, and potential need for hardware

acceleration.

 Authentication and Integrity, it is important to guarantee authenticity,

confidentiality and integrity of the transmitted data.

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 49 of 148

Objective 3:

Cognitive and autonomous node requirements

These requirements are inputs for WP5:

 The Node shall be able to execute TensorFlow-Keras framework models, or

other standard Machine Learning APIs.

 The HW accelerators shall be compatible with TensorFlow-Keras framework

outputs.

 OpenCV Library.

The node should support AI solutions to process images collected by cameras to:

 Detect user age.

 Detect user gender.

 Detect people at totem proximity.

 Count people, or track people density, in totem proximity.

 Compute heatmap.

 Detect crowd intensity and variation.

 Detect (nice to have) level of attention.

The node should support AI solutions to process the audio signal collected by

microphones to:

 Detect speaker Age.

 Detect speaker Gender.

 Detect speaker Language.

The node should support AI solutions to process heterogeneous data to:

 Select content/info to be provided.

 Select the output channel among those available (e.g., video, audio, etc.).

 Select eventual further output/actuations.

The node should/could support distributed learning approaches (e.g., federated

learning).

Objective 4:

Mutable and fractal communication requirements

These requirements are inputs for WP6:

 The node shall support TCP/IP protocol; the ideal network protocol to

transport messages among the devices shall be MQTT or any other

publish/subscribe communication protocol.

 The node must expose a set of APIs which shall allow HTTPs REST calls to

and from other nodes, central application and user devices.

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 50 of 148

Objective 1:

Open-Safe-Reliable and low power node architecture

These requirements are inputs for WP3. Target: commercial node (VERSAL):

 The node must acquire images from at least one HD camera.

 The node must acquire audio signal from at least one microphone.

 The node must support programmable accelerator engines, such as for

instance FPGA/programmable logics, or AI engines (e.g., VERSAL’s), or in

case, GPGPUs.

 The Node shall have Linux OS such as Ubuntu or Petalinux.

 The Node shall have a C++ compiler and related standard libraries.

 The node must support wired connectivity (e.g., Ethernet) in order to

ensure network stability, it shall have at least 1GHZ Ethernet connection.

 To have a hardware computing node that allows accelerating convolutional

neural networks applications.

 The node should have a modular and scalable architecture to allow an easy

and quick integration of new data sources without changing the

architecture.

 The node must store data locally in a secure manner.

 The node should control an interactive touchscreen display.

 The node should control an audio speaker.

 To have a monitoring system able to measure response time of tasks, both

implemented on microprocessors and accelerators.

Other requirements

This section describes requirements that are not related to WP3/4/5/6 but are

inputs for the integration of the use case in WP7/8:

 No specific requirements.

Table 10 – VER-UC6 requirements

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 51 of 148

4.7 VAL-UC7: Autonomous robot for implementing safe

movements

4.7.1 Description of the use case

The "Smart Physical Demonstration and Evaluation Robot" (SPIDER) is an

autonomous robot prototype. Within this use case, the Cognitive Edge Node

developed in FRACTAL will be integrated in the autonomous robot SPIDER and

evaluated against its applicability for performing computationally intensive relevant

vehicle functions of variable complexity at the edge of the network (near the source

of the data) while still being able to guarantee extra-functional properties

(dependability, timeliness) for preserving safety and security operational behaviours.

Figure 14 – Smart Physical Demonstration and Evaluation Robot (SPIDER)

The use case targets two main objectives:

O1: Co-execution of safety-relevant, security-relevant as well as AI

based tasks.
Co-execution of safety-relevant, security-relevant as well as AI based tasks

without compromising any of the requirements of these functions.

O2: Implement fail-operational capabilities.

Fail-operational capabilities with a single computing device even in the

presence of common-cause faults.

The (user-task dependent) computationally intensive relevant vehicle functions might

be task dependent, like for instance: enhanced AI-based computer vision and AI

based decision making techniques, sensor fusion, the creation of an occupancy grid.

All of these are applicable for the demanding requirements of the automotive market.

By performing the computationally intensive data processing at the edge of the

network, so that the SPIDER robot only sends aggregated data to the cloud, reduces

communication bandwidth requirements, and thus fosters node autonomy by

reducing the cloud functionality to management and control.

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 52 of 148

Two SPIDER functions will be deployed on the Cognitive Edge Node platform and use

the fractality of the nodes for maintaining safety and security while providing high

availability at the same time.

The collision avoidance function (CoA) is a safety-critical function and prevents

collisions of the SPIDER with surrounding environment objects to avoid damage and

most importantly human harm. The CoA uses four lidar sensors, which constantly

measure the distance to environment objects. If one of the objects gets too close to

the SPIDER, an emergency brake is initiated.

Figure 15 – Sensor setup for collision avoidance function of VAL-UC7

The SPIDER is capable of omnidirectional driving (moving in all directions). Thus, a

360° environment perception with high accuracy of position and range is required.

The SPIDER is intended to be operated in a closed environment like a proving ground,

where the access of humans is prohibited. However, to ensure maximum safety, the

CoA shall detect humans (or objects) approaching the SPIDER from an arbitrary angle

and reduce speed or initiate an emergency brake if they come too close. Since the

SPIDER can move by its own, the area in which the movement is directed is

particularly safety critical. Therefore, if an environment object is detected within this

area – called movement zone – an emergency brake shall be initiated.

The hardware platform to be used will be the medium performance node (RISC-V).

VIF will run (user-task dependent) computationally intensive applications (like

enhanced AI-based trajectory planning, or creation of an occupancy grid), on the

FRACTAL Cognitive Edge Node's platform to demonstrate its applicability for the

automotive market, where the applicability will be verified by the execution of

predefined demanding tests, designed to stress the component. The separated

implementation of the functions ensures that neither security issues nor erroneous

decisions made by (uncertified) AI algorithms can impact the functional safety.

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 53 of 148

4.7.2 Roadmap to achieve use case KPI and objectives

This section summarizes the plan to get a successful use case in WP8 at the end of

the project. Further elaborations will occur in WP8.

The use case will be composed of a set of building blocks that expect to reach the

use case KPI and objectives.

1. Requirements and specifications

Definition and specification of the use case requirements- and technical

specifications for the autonomous robot SPIDER. Alignment with other use cases.

2. Safety concept

Providing a safety and security analysis for the integration of the FRACTAL node

into the use case. Providing a safety concept with respect to use case. Ensure the

compatibility with safety standards.

3. Development and integration of vehicle functions

Develop and integrate vehicle functions and AI algorithms on the target platform

(CoA, PTF, AI).

4. Verification and demonstration

Execution of vehicle functions and AI algorithms under real-world conditions.

Designed to stress the components.

4.7.3 Requirements

These requirements from the use case are inputs for objectives O2, O3, O4 and O1

(which correspond to WP4, WP5, WP6 and WP3).

Objective 2:

Non-functional (low power, safety, security, high-performance trade-off)

requirements

These requirements are inputs for WP4.

 Authenticity

VAL-UC7 requires to combine function from different devices or nodes. Thus,

the originator of a message needs to be authenticated. The FRACTAL

communication framework shall implement methods for verification of

messages as well as signing messages (e.g. with a cryptographic key or

certificate).

 Integrity

The FRACTAL framework shall provide a cryptographic function to verify

integrity of a received message. This function needs to be executed within short

process cycles leading to cryptographic functions that allow fast encryption and

decryption (e.g. symmetric key rather than asymmetric).

 Predictable timing with 10 Hz loop rates

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 54 of 148

The collision avoidance function is based on input from lidar sensors running

with 10 Hz each. The CoA functions running on the edge node shall allow a

similar rate while the time deviation between processing loops needs to be kept

small. Maximum allowed deviation per loop is the half of the processing rate,

thus 5 Hz.

 Global time service

The FRACTAL platform shall provide a service for receiving a synchronized time

between nodes and give the possibility to synchronize the time with external

devices.

Objective 3:

Cognitive and autonomous node requirements

These requirements are inputs for WP5.

 C++ or Python API

The path tracking function of the VAL-UC7 uses AI functions which can be

implemented with C++ or Python. Therefore, the FRACTAL framework shall

provide a C++ or Python API to access the FRACTAL AI toolkits.

 OpenCV Library (not mandatory)

The support of the OpenCV library may help in developing functions for the CoA

as well as the PTF of VAL-UC7. However, the library is not necessary to achieve

the main goals and therefore listed as not mandatory.

Objective 4:

Mutable and fractal communication requirements

These requirements are inputs for WP6.

 TCP/UDP Protocol Implementation

The VAL-UC7 uses TCP and UDP for communication with other devices in a

distributed network. The FRACTAL node shall support the TCP and UDP allowing

to access the communication stack from C++ or Python nodes.

Objective 1:

Open-Safe-Reliable and low power node architecture

These requirements are inputs for WP3.

Target: customizable node (PULP)

 Floating point unit

The FRACTAL platform shall provide a FPU for double precision operations.

 Multicore

Minimum of 2 CPU cores (nice to have).

 2 GB RAM

Minimum CPU memory of 2 GB to support Linux as operating system.

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 55 of 148

 Linux

Main functions of the VAL-UC7 shall be implemented on a Linux platform. Most

suitable distributions would be Ubuntu 16.04, Ubuntu 18.04 or derivates.

 C++ Suite

Main functions of the VAL-UC7 shall be implemented with C++ on Linux. Thus,

a compiler, and a debugger are necessary and not mandatory a profiler. The

compiler needs to support at least C++11 functions.

 1 GHz Ethernet

The collision avoidance function of the VAL-UC7 uses sensor input from four

lidar sensors which are producing 30 MB/s with 10 Hz each. To ensure network

stability and keep the transmission delay short the FRACTAL framework shall

provide at least a 1 GHz Ethernet connection.

Other requirements

This section describes requirements that are not related to WP3/4/5/6 but are

inputs for the integration of the use case in WP8.

 Testing ground

For testing safety critical functions like path tracking and collision avoidance of

the SPIDER robot for VAL-UC7 a sufficient testing ground needs to be prepared.

The ground shall be flat, asphalt or compacted gravel, and shall provide

sufficient run-off area (5m for low speeds).

 SPIDER core functionalities running

SPIDER robot needs to be prepared for VAL-UC7 to have all base functionalities

running that are required for making test drives on a proving ground. Those

composes for example the hardware interface and safety controller, motion

controller, sensor interfaces, or user interfaces.

 Lidar sensors available

For the collision avoidance function of the VAL-UC7 four lidar sensors with at

least 16 lines each and a range of minimum 50 meters are required. The sensors

need to be arranged on the four edges of the SPIDER robot to ensure an

overlapping field of view of at least 2 sensors. The sensors need to be installed

and integrated to the base software stack of the SPIDER.

 3D simulation available

For safety reasons the VAL-UC7 functions shall be tested in simulation before

the integration to the SPIDER robot. A 3D simulation is required that includes

an environment, the kinematics of the robot, and simulations of the point clouds

from the 4 lidar sensors.

Table 11 – VAL-UC7 requirements

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 56 of 148

4.8 VAL-UC8: Improve the performance of autonomous

warehouse shuttles for moving goods in a warehouse

4.8.1 Description of the use case

The goal is to improve the warehouse throughput, considering that delays in

warehouse operation is critically undesirable, since it has a domino effect on the

supply chain. The handling, storage and retrieval of warehouse goods by automated

shuttles are optimized using Artificial Intelligence techniques. AI will optimally

organize and analyse the masses of generated data, in order to improve the

warehouse throughput.

The automated shuttle systems shall operate as agents of swarm intelligent system

to improve its reliability. To eliminate the need for a central coordinator in which

communication failures could destabilise the system. The shuttles to gain better

computational capability to host AI functions shall use the FRACTAL nodes. Real-time

Information (e.g. diagnostics, battery health, task) hosted on the shuttle operation

are registered in the AI database (Big data). Therefore, the FRACTAL node will be

suitable to satisfy the computational requirement at low energy.

The shuttles will be edge-computing nodes that will process real-time information at

very high speed through integrated filters. Task handling will be shifted from material

flow computer to shuttles with local decision capabilities (e.g. routing and

sequencing). The system shall minimize human interruptions resulting from faults.

The warehouse system shall utilize new data flows (via deep learning techniques) to

optimize the warehouse throughput.

The following AI features are desirable:

- Establish uninterrupted communication between the shuttles by exploiting

machine learning techniques on the aggregated data obtained from signal

connectivity monitoring.

- Predictive maintenance: Task that previously led to failure or low performance

will be optimized and corrected to improve the warehouse availability.

- Adaptive system: A shuttle system that will adapt independently to new

situations within the warehouse.

- Power optimization and improved storage strategy: By optimizing the location

of high-velocity goods, while spreading them out in an optimal way to

minimize congestion and to improve the retrieval efficiency. Machine learning

will be exploited to establish the desired optimal values.

- Route optimization: Aggregated data of route-patterns and delivery efficiency

will be exploited through AI application to obtain a higher throughput for the

warehouse.

- Pick-up order (Productivity): Using supervised learning techniques with inputs

– accumulated pickup list to schedule an optimized system directed picking

(Output – result of the best pattern).

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 57 of 148

- Defined bulk processing of orders. Bulk information is giving to a SWARM

including expected timing. The SWARM resolves the solutions to deliver as

specified.

4.8.2 Roadmap to achieve use case KPI and objectives

This section summarizes the plan to get a successful use case in WP8 at the end of

the project. Further elaborations will occur in WP8.

1. Requirements and specifications

Definition and specification of the use case requirements- and technical

specifications for the shuttle based warehouse. Alignment with other use

cases.

2. Shuttle concept

Provide a concept for the Shuttle based warehouse system in regards of the

FRACTAL nodes key features. Defining a safety concept for the full system in

terms of maintenance and other key features.

3. Shuttle development

Developing the Shuttle Hard- and Software to verify the FRACTAL node’s

capabilities in warehouse automation.

4. Verification and demonstration

Providing a basic warehouse environment to verify and demonstrate the

integration of the shuttle node

4.8.3 Requirements

These requirements from the use case are inputs for objectives O2, O3, O4 and O1

(which correspond to WP4, WP5, WP6 and WP3).

Objective 2:

Non-functional (low power, safety, security, high-performance trade-off)

requirements

These requirements are inputs for WP4.

 Safety Certification for Black-Channel communication (ASIL 3, ISO 26262)

In Order to allow the storage device to be ASIL 3 compliant, the communication

channel needs to be certified

 Real-Time capabilities

The FRACTAL Node should provide real time capabilities in order to correctly

control the storage devices with a RT-Patch enabled Linux OS

Objective 3:

Cognitive and autonomous node requirements

These requirements are inputs for WP5.

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 58 of 148

 Pathfinding

To allow storage and path improvements, the AI of the FRACTAL node should

support pathfinding to allow enable the nodes to find the best available shuttle

for tasks

 Machine learning

To allow predictive maintenance features to be developed, machine learning is

required in order to predict failures of certain parts and devices

Objective 4:

Mutable and fractal communication requirements

These requirements are inputs for WP6.

 Wireless Communication

To allow communication with other FRACTAL nodes and external systems, WiFi

Communication is required with a minimum Bandwidth of 300 Mbit/s. Ad-Hoc

(mesh) and Access-Point based connections are necessary

 Diagnostic protocol to shutdown device on communication loss

 2 1000Mbit/s Ethernet interfaces

 Localization features (Localization of device inside of the warehouse)

Objective 1:

Open-Safe-Reliable and low power node architecture

These requirements are inputs for WP3.

Target: customizable node (PULP)/commercial node (VERSAL)

The FRACTAL node shall provide multi-core technology with at least 2 cores.

 The node shall handle with multi-threading applications.

 The node shall have at least 800 MHz on each core.

 The node shall provide at least 4GB DDR RAM.

 The node shall provide at least 32 GB eMMC or similar memory

Other requirements

This section describes requirements that are not related to WP3/4/5/6 but are

inputs for the integration of the use case in WP8.

 The FRACTAL node shall provide an EtherCAT stack on 1 of 2 Ethernet interfaces

 The FRACTAL node shall provide a ProfiNET Master stack

 Linux with RT Patch as Operating System

 Gyroscope

 1 CANOpen interface (D-SUB9)

 Serial TTY interface

 1 USB3 Port

Table 12 – VAL-UC8 requirements

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 59 of 148

5 Safety, Security & Low Power Techniques

This section relates to objective O2 and pillar 2 and it describes the non-functional

techniques addressed in WP4.

Figure 16 – Blocks from the Cognitive System to adapt for guaranteeing pillar 2

A central idea for the fulfilment of O1 (Design and Implement an Open-Safe-Reliable

Platform to Build Cognitive Edge Nodes of Variable Complexity), is to ensure that the

FRACTAL system is safe and reliable. In the context of safety, determinism is

essential as many sub-services are implemented for the FRACTAL node, as

determinism will ensure that the system is predictable at all times. A system has a

deterministic behavior if, given an initial state at the instant of time and a set of

future timed inputs, the future states and the values and instants of all future outputs

are entailed (can be predicted without a doubt). In WP4, the concept of fractality is

projected at both the chip level and at a system level. The concept of determinism is

used both at the chip and system level to satisfy O1. The time-triggered concept is a

known technique used to facilitate the implementation of safety services for a

distributed real-time system. The time-triggered concept referred herein provides

temporal partitioning of bandwidth to aid applications operate in a deterministic

context. Several layer 2 communication protocols such as the time-sensitive

networking, and TTEthernet all try to provide determinism on a network level.

Determinism at the network level is taking care of by implementing these protocols.

However, as part of the safety requirement proposed for the FRACTAL system,

determinism is also proposed at the node level. Therefore, the interconnection of

components within a chip should be deterministic. Determinism should be supported

at the chip level by networking each functional element of the FRACTAL node in a

time-triggered manner, thus as a time-triggered network-on-chip (NoC).

5.1 Interconnection Architecture

Network-on-chip (NoC) technology is a network-based communication system

designed for an integrated circuit such as the System-on-Chip. A typical NoC-based

MPSoC is shown in Figure 17. It is composed of several components, called nodes,

including Processing Elements (PEs), such as CPUs, custom IPs, DSPs, etc., and

storage elements (embedded memory blocks). All the Processing Elements are

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 60 of 148

connected to network adapters through Network Interfaces (NIs). Communication

through the NoC is performed by enabling PEs. These PEs send and receive packets

through the network composed of switches/routers, and they are connected together

through physical links or channels. To ensure determinism, the exchange of

messages should include a message class transmitted in a time-triggered fashion.

The NoC should support a heterogeneous mix of processing elements, i.e., CPUs,

GPUS, and Memory elements.

Figure 17 – Typical NoC-based MPSoC

The selection of topology is one of the major important points when designing NoC

since the scalability, cost, and power consumption depends on it. The topology

describes the structure of the different nodes in SoC. This project shall support at

least a mesh topology. The mesh topology specified is projected to provide high

scalability and flexibility in comparison with other topologies such as star and ring

topology.

There are essentially two different types of switching techniques in NoC, circuit, and

packet switching. The majority of NoCs use packet switching since it ensures shorter

latencies compared to circuit switching, and the power consumption during the

transmission of data is also low.

One of the main objectives of FRACTAL node is to have efficient power consumption,

making packet switching a suitable consideration. The FRACTAL project thus specifies

wormhole routing for the packet switching, which is one of the primary solutions used

to reduce the required buffer size in the router by dividing the packet into a small

number of flits. Wormhole switching does not only reduce the power consumption in

the whole system but also reduces latency during the transmission of a packet.

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 61 of 148

Time-triggered NoC supports source-based routing in which the route information is

defined in the source while the complete path information is injected into the packet.

The need to establish communication between off-chip and on-chip generates the

necessity to implement a gateway interface in the NoC. A gateway is responsible for

redirecting the messages between NoC and the off-chip communication network. The

off-chip and the on-chip system usually operate at different clocks. FRACTAL thus

proposes providing support for deterministic communication between two off-chip

networks.

The NoC should be scalable and configurable with parameters such as network size,

buffer size, number of input and output ports and the number of virtual channels.

In summary, the NoC provides the platform to manage and control the low power

and safety services that are planned for WP4. The Time-triggered NoC is proposed in

WP4 to provide determinism and ensure predictable timing for safety critical

applications such as the VER-UC7. In addition, to ensure the capacity to process time-

series data as required by VER-UC2, the major services delivered by WP4 shall be

implemented in hardware (the programmable logic of an FPGA) to mitigate

processing delays of the WP4 services for the use case application. To correctly

control storage devices as required by VAL-UC8, the temporal predictability provided

by the time-triggered NoC shall be used to promote the fulfilment of this requirement.

5.2 Low Power Services

5.2.1 Node level

Measurement of the power consumption of nodes and links allows us to know the

total power dissipation of the whole system and the particular component for each

node. Reducing the power consumption turns into the optimization of the NoC.

Different techniques are applied for each node to reduce the power consumption of

Fractal nodes.

Clock Gating

Clock Gating is a power management technique used to reduce SoC dynamic power

dissipation by removing the clock signal when the circuit is not in use. It is possible

to perform this technique by working on the Clock Tree, specifically on a “pruning” of

the clock tree, to allow on/off switch for timing distribution in the circuits. The pruning

provides (or does not provide) the clock signal in certain areas, that means, e.g.

disable the switching of flip-flops with a clear reduction of power consumption. An

accurate clock tree design must contain these enabling conditions in order to use and

benefit from clock gating technique.

Power gating

Power gating is a technique that provides for each core in the SoC a low power mode,

to reduce power consumption by shutting off the electric current to circuit blocks that

are not in use, and an active mode, to increase the energy flow to circuit blocks. This

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 62 of 148

technique works as a runtime adapter to energy requests in the circuit: the low power

mode will be activated in case no data needs to be processed, while the active mode

will operate in case of elaboration data needs.

The power gating is more delicate to use than clock gating because it increases time

delays in the circuit. Furthermore, it affects design architecture more than clock

gating, and indeed some trade-offs are necessary between the amount of leakage

power saving in low power mode and the energy dissipation to enter and exit the low

power mode.

DVFS

Dynamic Voltage and Frequency Scaling is a combination of two power management

techniques. The voltage and the frequency can be adjusted in real-time mode

depending upon the current needs.

The Dynamic Voltage Scaling allows the reduction of voltage usage in a hardware

component, for example, to preserve power in mobile devices, or the increase of

voltage usage to support high-performance requests.

The Dynamic Frequency Scaling adapts the frequency of a processor depending on

the needs of the current task. For example, the reduction of frequency is used to

reduce power consumption in battery-powered devices or helps to reduce the side

effects of circuits heating. These two techniques often appear combined since lower

frequencies require lower voltage for the digital circuit's proper functioning.

5.2.2 System level

Data aggregation and compression are data processing processes used to reduce the

amount of data which could be transferred in a system. In energy-constrained

systems, we have to consider minimizing the amount of communication needed for

data exchange among nodes. For example, in a wireless sensor network, the energy

resources and communication range could be a problem because of the expensive

data transmission costs in general, but it can be reduced using suitable data

compression and aggregation technique.

Data Compression

Data Compression is a process used to encode information, in order to reduce the

amount of data needed for a piece of the given information, used for storage or

transmission of data. However, some reasons can motivate data compression, such

as saving space, compatibility, gain in processing time, security, and others.

In general, data compression follows two steps: compression and decompression.

These operations may be further divided into two different categories: lossless, which

can be reversed to the exact original data without loss of details and without errors,

and lossy, where the processing causes errors or loss of details from the original

data. Lossless compression is useful in applications where every information is

relevant, for example, a character in a text, while a lossy compression may be

acceptable in applications where the loss of information does not compromise its

functioning, for example, a single frame in a video.

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 63 of 148

Common standards techniques of data compression are Run-length encoding (RLE)¸

Discrete Cosine Transform (DCT), Burrows-Wheeler Transform (BWT)¸ Discrete

Wavelet Transform (DWT), Huffman Coding, and others.

Data Aggregation

Data aggregation is the process of collecting and aggregating data from various

sources for a certain type of end-use. Data aggregation techniques remove data

redundancy and improve energy efficiency in a system; combined with a data

aggregation protocol, they can also reduce network traffic.

The compression is based on the repetition of proper data from a node. This is why

when neighbouring nodes have identical data; the compression process is called

aggregation. For example, considering a complex network composed of several

heterogeneous nodes, the neighbouring nodes' data is highly correlated spatially and

temporally, and it can lead to the base station receiving redundant information. The

aggregation of data, therefore reduces this redundancy and, consequently, the data

processing. System or network architecture plays a central role in identifying the

right technique or protocol to adopt.

In addition, the Xilinx Versal platform provides advanced features to optimise power

through its ACAP (Adaptive Compute Acceleration Platform) architecture.

Nevertheless, to mitigate the consumed power by the services implemented in the

NoC, Frequency scaling is extended to routers that do not fall temporally on the

message transmission path in the NoC. In WP4, a context monitor shall be used to

observe both off-chip and local states (e.g. slack time). It is planned to utilise the

slack information for power management such as performing voltage and frequency

scaling accordingly. This is particularly useful in fulfilling the low power consumption

requirement of VER-UC3

5.3 Safety Services

Safety services8 are implemented to guarantee the safety of applications that run in

the FRACTAL nodes. These services should contain fault tolerance capabilities at the

network level, including detection, containment, and masking of faults. The services

will support both soft and hard real-time applications. WP4 targets its implementation

of safety services in two layers. The top layer is the FRACTAL hierarchical system

which consists of interconnected FRACTAL nodes. The bottom layer services are

implemented within a FRACTAL node.

At the hierarchical layer, WP4 specifies that each FRACTAL node should incorporate

seamless redundancy services to verify the correctness of messages sent by each

Fractal node. By sending redundant packets on different routes, it is possible to detect

a fault when the redundant packet is different at the destination. In WP4, it is

8 Safety certification will be addressed in deliverable D2.2.

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 64 of 148

intended to incorporate seamless redundancy services in the communication protocol

between FRACTAL nodes. It is also intended that each FRACTAL node should provide

support to integrate built-in self-test and monitoring services to maintain safety and

reliability. At the bottom layer, WP4 plans to implement seamless redundancy within

the NoC for communications between the constituent resources.

The network should include means to monitor and control multicore interference,

which will be deployed building on specific Performance Monitoring Units (PMUs). This

is a requirement for WP3, which should provide the PMUs. Services to enforce time

and space diversity for redundancy should also be deployed, thus enabling some form

of light lockstep execution that allows avoiding common cause failures. For that

purpose, WP3 should provide interfaces to create redundant processes which execute

with some staggering.

5.4 Security Services

Security services are implemented in Fractal nodes to assure confidentiality,

integrity, authentication, authorization and non-repudiation.

The design of the cybersecurity measures should follow the well-known design and

evaluation patterns (IEC 62443…) to facilitate the cybersecurity certification of the

node in the future.

In Fractal, we are assuming a SL2 level of security according to IEC 62443. In this

level, we are assuming that the system is not going to be tampered with. In other

words, the root-of-trust is the device itself. More complex attacks on the system

requiring hardware access of a great number of resources are not contemplated.

Figure 18 – Fractal security services at node and system level

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 65 of 148

5.4.1 Node level

Each node should include cybersecurity features to comply with its cybersecurity

services.

Access Control

One important feature of these types of systems is the ability to control which users

can access the systems and which ones cannot. Moreover, each user may have

different privilege access. For example, an admin may be able to access to all the

processes but a user only to the process relevant to him. Also, all the login activity

will be monitored, to better understand what happened in the node in case of a

breach.

Encrypted Storage

For some use cases, the Fractal node is going to obtain or use user’s personal

information. The node needs to have the capacity to encrypt and decrypt this

information. In the case that the node is compromised, the data should not be

obtainable by an untrusted 3rd party.

5.4.2 System level

Since PMUs deployed for safety reasons expose execution information, their

information could be used to implement side-channel attacks. Therefore, an

appropriate security layer should be built on top to limit access to such PMUs. This

may pose some process/task privilege management, or information obfuscation

means for the PMU on WP3.

Encrypted and MACed communication

In order to assure that the communication with external entities (other Fractal nodes

or an external infrastructure) is secure, each node will have the required capabilities

to cypher and MAC incoming and outgoing messages.

Key and certificate infrastructure

The secure communication can only take place when each element has valid

credentials in the form of public certificates and private keys. Nevertheless, if a

certificate is revoked, which entity should provide a new one? How can we assure

that the system is trustable? For this, a small PKI architecture will be implemented.

This architecture will allow the revocation and renovation of certificates and it will be

used a trust point in the system.

5.5 Development methods in time-triggered scheduling

 Typically, a scheduler decides which task will be executed, the time of task

execution, and which resources will execute that task in cases of multiple resources.

Due to the safety nature of some use cases, such as the UC7 (Autonomous robot for

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 66 of 148

implementing safe movements), temporal predictability is required. WP4 will provide

predictability at the fractal node level using the NoC and at the hierarchical fractal

layer by integrating a time-triggered communication for the interaction between

fractal nodes. As a result of these temporal requirements, the scheduling services

planned in WP4 shall support time-triggered paradigms.

Decisions in time-triggered systems are carried out at specific time slots; therefore,

a scheduler that supports the scheduling of tasks for a semi-static time-triggered

resource is desired. Meta-schedulers are usually invoked after any context event

(slacks, faulty events, faulty nodes) within the system at run time, providing the

ability to support real-time response capabilities, which are requirements seen in UC6

and UC8. It is planned in WP4 to implement an AI-based meta-scheduling scheme

for both the FRACTAL node and hierarchical systems to fulfil these requirements. The

search space for scheduling increases considerably as the context events increases.

It is planned to use the AI scheduling strategy that incorporates a machine learning

model trained at design time to decrease computation resources considerably at

runtime. An AI-based scheduler facilitates handling the complexity of adaptive

systems via predictable behavioral patterns established by static scheduling

algorithms.

Also, the solutions in WP4 shall use the support for the context events such as

dynamic slacks to enable frequency and voltage adjustments of the cores and NoC.

The voltage and frequency adjustments promote low power consumption. This is

significant for UC3 as it is projected to increase the system's battery life.

The large number of context events that could occur usually entails an increase in

the time required for re-scheduling during adaptation procedures. The FRACTAL

project proposes the use of AI to handle re-scheduling. Therefore, the FRACTAL

system will support AI-based schedulers.

5.6 Requirements flowing down to WP3

Objective 1:

Open-Safe-Reliable and low power node architecture

 PMUs measuring multicore interference [PULP].

 Interfaces to create redundant processes which execute with some

staggering [PULP].

 Process/task privilege management or information obfuscation means for

the PMU [PULP].

 The system should produce time-bounded decisions (reworded from “The

system should produce decisions at least at 10 Hz rate, possibly at a 30” Hz

rate.”)

 Time-triggered communication shall be supported for interaction between

FRACTAL nodes

Table 13 – WP4 requirements flowing down to WP3

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 67 of 148

6 AI and safe autonomous decision

This section relates to objective O3 and pillar 3 and it describes the cognitive and AI

techniques addressed in WP5.

The goal for the studies conducted in WP5 is to integrate complex physics knowledge

of the environment (including self-organization, brain networks, model-based agents,

nature forming processes, emergence, and stochastic algorithms) in combination

with AI algorithms to obtain a Predictive, Prescriptive, and Trusted edge.

Currently, edge-computing based implementations basically collect, process, and

send upwards data with no predictive or adaptative capabilities or autonomy.

FRACTAL will add intelligence to the node in order to create a mutable edge node

with context awareness as well as predictive capabilities.

To achieve the goals set by objective O3 and pillar 3, WP5 will perform the following

activities:

 Develop AI algorithms for building a synthetic representation of the node’s

operating environment.

 Develop AI algorithms for evaluating a node’s potential actions in the

simulated operating environment, helping in AI decision-making at the edge.

 Develop AI algorithms for dependable, fault-tolerant, intelligent decision-

making dynamic control feature at FRACTAL node level and system level.

 Develop AI algorithms that ensure mutability, i.e., a node’s capability to

adapt temporally and spatially to changes in its context by changing its

configuration and fractality level, depending on the operating environment

and system requirements.

Blocks from the Cognitive System to adapt for guaranteeing pillar 3 are highlighted

in Figure 19.

Figure 19 – Blocks from the Cognitive System to adapt for guaranteeing pillar 3

In order to meet the criteria set by objective O3 and pillar 3, the requirements related

to AI and safe autonomous decision are further divided into following categories:

 Communication (lead by MODIS, Section 6.1)

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 68 of 148

 Distribution (lead by IKER, Section 6.2)

 AI performance (lead by RULEX, Section 6.3)

 Data & model lifecycle (lead by HALTIAN, Section 6.4)

 Inference (lead by UOULU, Section 6.5)

 Learning (lead by UOULU, Section 6.6)

 Run & development environment (lead by ZYLK, Section 6.7)

In the above-mentioned sections, the requirements are at first discussed and defined

in general followed by specific requirements set by the use cases, when applicable.

Finally, Section 6.8 defines requirements for WP3 from WP5 point of view.

6.1 Communication requirements

The communication structures are implemented to guarantee proper communication

between the FRACTAL nodes with particular attention to methods of redundancy and

protection of communication from external attacks. An approach which could be

adapted and deepened to each use case to ensure the secure payload application

data between nodes and cloud is depicted in Figure 21.

Figure 20 – Secure Payload Application Data

In particular, for each use case we will describe the network architecture focused on

high level communication and embedded sensor communication and we will present

functional and innovative solutions to safeguard the transmitted data. In order to

achieve the goals, we will consider encryption techniques and security protocols at

the transport layer, network layer and link layer. A general approach which could be

adapted and deepened to each use case is depicted in Figure 21.

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 69 of 148

Figure 21 – Encryption techniques and security protocols at the transport layer, network layer, and link
layer

All network architecture will be adaptable to the needs of each UC and in particular,

network dimensioning should meet the following requirements:

 Channels: The data link channels should meet the needs of each use case and,

at the same time, maintain compliance with the European regulations relating to

the connection type.

 Protocols: The design of communication protocols should ensure stable and safe

communication. The system should be able to guard the transmitted data from

cyber-attacks and to ensure the protection of sensitive data.

 Bandwidth: The bandwidth for data communication should be dimensioned in

such a way as to ensure the possibility of adding new system features. Another

very important thing about bandwidth sizing is that it should avoid the states of

saturation since they can affect the system functionality.

 Latency: The communication design should meet the need of each components

in terms of maximum communication latency to avoid events of link down or loss

of connection. The latency parameters are also important for performance

monitoring system.

Note: Channels, protocols, bandwidth and latency will be quantified during the UCs specific delivery

activities (waiting for partners inputs).

6.2 Distribution needs

Distributed Artificial Intelligence (DAI) refers to an approach for solving complex

learning, reasoning, and decision-making problems; on which the problem is divided

into smaller subproblems and distributed to autonomous (or semi-autonomous)

intelligent processing nodes (usually called agents). These agents handle the

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 70 of 148

subproblems individually and communicate and interact with each other to integrate

and combine their partial solutions to solve the overarching problem and achieve the

established goals. This approach is well suited to face and solve large and complex

problems, characterized by physically distributed knowledge and large-scale data

managing. In FRACTAL, the distribution of the AI and machine learning models and

algorithms will be addressed under the perspective of three different main

dimensions:

 Centralization vs. decentralization

 Hierarchy

 Opportunism / dynamicity

These main dimensions are discussed in general in sections 6.2.1, 6.2.2, and 6.2.3.

Section 6.2.4 defines the needs set by the use cases for Distributed Artificial

Intelligence.

6.2.1 Centralization vs. decentralization

Standard machine learning approaches require centralizing the training data on one

machine or in a datacenter. However, recently various approaches are advocating for

the decentralization of this approach by locally training AI models on various

decentralized devices holding their own local data.

In FRACTAL, both approaches should be considered to meet the requirements of

different AI models for the different use cases. On the one hand, the decentralization

of AI models leads to smarter models (which better fits to the specific requirements

of a particular device), lower latency, and less power consumption. On the other

hand, for more complex models requiring large-scale data from different sources and

high computing capabilities, it may be necessary to train the models on the cloud and

then deploy them on the edge devices.

Another emerging and interesting approach will be federated learning on which edge

devices learn collaboratively from a shared model while keeping their own training

data locally. The shared model is first trained in a centralized fashion on a server

using a large-scale centralized dataset and then, the distributed devices download

the model and improve it by using their own local data (federated data).

6.2.2 Hierarchy

Hierarchical learning is inspired by the human’s ability to conceptualize the world with

different abstraction levels. In a similar manner, in hierarchical learning a complex

task is divided in simpler tasks, whose output is used for the accomplishment of the

complex task.

In FRACTAL, depending on the use case or the functionality, complex AI models may

be deployed by using different layers in a hierarchical organization on which high-

level algorithms are fed with the outputs of low level-algorithms focused on simpler

tasks, for the accomplishment of more complex tasks (divide and conquer). For

example, for the use case 5, a complex task such as automatic accurate stop at door

equipped platforms aligning the vehicle and platform doors may be divided on

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 71 of 148

different simpler tasks (e.g., automatic platform detection, door position detection,

stopping distance prediction), which predicted outputs will be used for the

accomplishment of the complex task.

6.2.3 Opportunism / dynamicity

In dynamic application domains, such as those considered in the use cases for the

FRACTAL system, the environment could change during problem solving. In this kind

of environments, intelligent agents must be opportunistic in order to take most of

the available resources in each moment. Therefore, it is necessary that the developed

AI models and algorithms could be dynamically deployed on the different layers of

the FRACTAL system in an opportunistic fashion, in order to achieve an efficient

execution in terms of power consumption, latency, connectivity, etc. For example, at

a given moment, a device may have enough connectivity to connect to a centralized

AI model in a cloud platform trained with large-scale data from different nodes,

whereas when the connectivity is lost it may use its own model (decentralized)

trained with local data.

6.2.4 Use case needs for Distributed Artificial Intelligence

UC1: Improving the quality of engineering and maintenance works

through drones

AI application 1) “Supervision of critical structures as bridges or viaducts,

where images of the structural status will be collected

through the use of UAVs, systematizing the visual inspection

in near-real-time to detect failures and cracks in the

concrete surface.”

2) “Monitoring of both workforce and machinery within a

construction area, by deploying a WSN that provide

information about the status and location of the workers in

real time”.

Centralization vs.

decentralization

No distribution of learning required. However, federated

learning or other decentralized learning architectures could

help enhancing model’s performance.

For application 1), training a model with a huge dataset of

images could be heavy in terms of data processing and

model training. Thus, initially, models could be built on the

cloud computing platform, with more powerful computing

resources/capabilities, over a common (and bigger) dataset

of structural status images. Once the initial model has been

built and trained it could be deployed on each node

(federated learning) where it could be improved by training

it with its own local data (i.e., the images captured by a

particular drone).

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 72 of 148

Hierarchy Hierarchical learning is not required; however, it could be

used to divide a complex learning task into several simpler

learning tasks, which will allow to solve the complex learning

problem.

For example, in application 2), different models for different

prediction subtasks could be built. Over those models, a

higher-level model could be built for predicting more

complex tasks. For example, different models could be used

for predicting workers and machinery trajectories in real

time. Over the predictions made by these models, a higher

complexity level model could predict whether, considering

the predicted trajectories, a collision would occur or not.

Opportunism /

dynamicity

Not identified yet.

Table 14 – UC1 DAI needs

UC2: Improving the quality of automotive air control

AI application Predictive maintenance of the components in an automobile

engine air-path.

Centralization vs.

decentralization

No distribution of learning required. However, decentralized

learning architectures could help enhancing model’s

performance.

For example, the predictions made by decentralized models

could be built using in-use data of physical products within

a powertrain (in-vehicle data capturing the behavior of

components such as turbochargers, oil pipes, valves or

coolers), and combined with the predictions made by

centralized models built using in-use data from testbeds for

powertrains (endurance runs, such as contactors and fuses

used in testbenches and batteries.

Hierarchy Hierarchical learning is not required; however, it could be

used to divide a complex learning task into several simpler

learning tasks, which will allow to solve the complex learning

problem.

The overarching goal of anticipating engine air-path

problems before they occur, could be divided in different

prediction tasks, each of them focused on a particular air-

path control strategy. For example, different models focused

on classifying the different parts composing the final product

as healthy or erroneous could be combined with anomaly

detection models and models predicting the remaining

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 73 of 148

lifetime of the product. After building the different models,

a high-level model would take as input the predictions of

these models, in order to anticipate problems.

Opportunism /

dynamicity

Not identified yet.

Table 15 – UC2 DAI needs

UC3: Smart meters for everyone

AI application A low-cost machine-vision based application to read

conventional meters.

Centralization vs.

decentralization

Centralized learning is required.

In order to minimize the power consumption and computing

resources of the nodes (e.g., memory), the data and the

models for these use case will be centralized on the cloud

computing platform. Thus, the image recognition algorithms

will be built and trained on the cloud platform and nodes will

just send the required data to the cloud platform, where the

meter stands will be extracted.

Hierarchy Not identified yet.

Opportunism /

dynamicity

Not identified yet.

Table 16 – UC3 DAI needs

UC4: Low-latency Object Detection as a generic building block for

perception in the edge for Industry 4.0 applications

AI application A machine vision-based object detection and recognition

algorithm in form of a Low-Latency Object Detection (LLOD)

building block.

Centralization vs.

decentralization

No distribution of learning required. However, federated

learning or other decentralized learning architectures could

help enhancing model’s performance.

This use case uses pre-trained object recognition models

(e.g., tiny YOLO (You Only Look Once)). However, these

models could be trained also with local data with the aim of

fine tuning them for the use case data.

Hierarchy Not identified yet.

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 74 of 148

Opportunism /

dynamicity

Not identified yet.

Table 17 – UC4 DAI needs

UC5: Increasing the safety of an autonomous train through AI

techniques

AI application On-board AI-enabled computing platform for autonomous

train operations.

Centralization vs.

decentralization

No distribution of learning required. However, federated

learning or other decentralized learning architectures could

help enhancing model’s performance.

Models will be built and trained in a centralized fashion in an

office-lab environment and then will be distributed in

different nodes deployed on the vehicles. With the objective

of giving vehicles autonomy and decision-making

capabilities so they can observe and interpret the

environment in an independent manner, these models could

be improved with local data of the vehicle, training them in

a decentralized fashion (federated learning).

Hierarchy Hierarchical learning is not required; however, it could be

used to divide a complex learning task into several simpler

learning tasks, which will allow to solve the complex learning

problem.

In this use case, a complex task such as automatic accurate

stop at door equipped platforms aligning the vehicle and

platform doors may be divided on different simpler tasks

(e.g., automatic platform detection, door position detection,

stopping distance prediction), whose predicted outputs will

be used for the accomplishment of the complex task.

Opportunism /

dynamicity

Not identified yet.

Table 18 – UC5 DAI needs

UC6: Elaborate data collected using heterogeneous techniques

AI application A smart totem is equipped with smart sensors and actuators

like, for example cameras, that collect data and implement

AI based content analysis providing output and actuations.

Centralization vs.

decentralization

The node should/could support distributed learning

approaches (e.g., federated learning).

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 75 of 148

Initially AI models could be deployed in a centralized fashion

in the cloud platform where more data and computing

resources are available. However, in order to build smarter

totems, which better fit to the specific requirements of a

particular scenario, models could be decentralized and

trained with local data from distributed nodes (federated

learning).

Hierarchy Hierarchical learning is not required; however, it could be

used to divide a complex learning task into several simpler

learning tasks, which will allow to solve the complex learning

problem.

For example, interacting with customers and promoting

products according to the individual's preferences is a

complex task that may be divided in smaller and simpler

subtasks. For example, products recommendations could be

made upon the audio and video analysis performed by other

AI models, products preferences predicted from customers

input, etc.

Opportunism /

dynamicity

Not identified yet.

Table 19 – UC6 DAI needs

UC7: Autonomous robot for implementing safe movements

AI application The "Smart Physical Demonstration and Evaluation Robot"

(SPIDER) is an autonomous robot prototype. Within this use

case, the Cognitive Edge Node developed in FRACTAL will be

integrated in the autonomous robot SPIDER and evaluated

against its applicability for performing computationally

intensive relevant vehicle functions of variable complexity at

the edge of the network (near the source of the data) while

still being able to guarantee extra-functional properties

(dependability, timeliness) for preserving safety- and

security operational behaviors.

Centralization vs.

decentralization

Models build in a centralized manner will be deployed on the

fractal nodes.

Hierarchy Hierarchical learning is not required; however, it could be

used to divide a complex learning task into several simpler

learning tasks, which accomplishment will allow to solve the

complex learning problem.

Complex tasks, such as AI based decision making

techniques may require to be built upon the predictions

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 76 of 148

made by specific models focused on simpler tasks (e.g.,

enhanced AI-based computer vision, collision detection

functions, etc.).

Opportunism /

dynamicity

Not identified yet.

Table 20 – UC7 DAI needs

UC8: Improve the performance of autonomous warehouse shuttles

for moving goods in a warehouse

AI application Handling, storage, and retrieval of warehouse goods by

automated shuttles are optimized using Artificial intelligence

techniques. AI will also optimally organize and analyze the

masses of generated data, in order to improve the

warehouse throughput.

The automated shuttle systems shall operate as agents of

swarm intelligent system to improve its reliability. To

eliminate the need for a central coordinator in which

communication failures could de-stabilize the system. Real-

time Information (e.g., diagnostics, battery health) hosted

on the shuttle operation are registered in the AI database

(Big data).

Centralization vs.

decentralization

Fully distributed decision making (swarm intelligence) by

shuttle agents.

Hierarchy Not identified yet.

Opportunism /

dynamicity

Not identified yet.

Table 21 – UC8 DAI needs

Proposal:

AI application N/A

Centralization vs.

decentralization

Models could be built and trained with centralized data on

one machine or in a datacenter or in a decentralized

approach on which AI models are trained on different nodes

holding their own local data. Another approach will be

federated learning on which edge nodes learn collaboratively

from a shared model while keeping their own training data

locally.

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 77 of 148

Hierarchy Learning tasks could be solved by single algorithms or

hierarchical learning algorithms on which a complex task is

divided in simpler tasks, whose output is used for the

accomplishment of the complex task.

Opportunism /

dynamicity

N/A

Table 22 – Proposed requirements for Distributed Artificial Intelligence

6.3 AI Performance requirements

AI algorithms should enable autonomous decisions in the FRACTAL node. While the

objective is to create a single framework for managing different AI applications in

different domains, each use case is employing different algorithms, has different

objectives and therefore the expected performance of the AI node may differ

significantly. For this reason, the different use case scenarios have been considered

trying to highlight which are the expected performances for each of them. The

combination of all these requirements allows the implementation of proper algorithms

and approach to fulfill the different expectations in the different application domain.

The FRACTAL architecture should also allow a scalable approach where resources can

be added according to the requests of the application. These dimensions have been

considered in evaluating the performance requirements:

 Efficiency, i.e. the time needed by AI algorithms to build a model and to apply a

model in real time scenarios.

 Effectiveness, i.e. the accuracy of the AI inference. This dimension requires the

definition of proper KPI that of course depends on the specific use cases.

Moreover, the effectiveness of AI results depends not only on the AI method itself

but also on the quality of the used data.

 Reliability and availability: how much the AI system should be reliable, i.e.

providing its outputs in any situation.

These main dimensions are discussed in general in Sections 6.3.1, 6.3.2, and 6.3.3.

Section 6.3.4 defines the needs set by the use cases for AI performance.

6.3.1 Efficiency

Concerning efficiency, we should keep in consideration two different aspects: the

efficiency in making inferences, i.e. for applying an already existing model to

streaming data, and the efficiency in building models, starting from new data.

In most of the applications the efficiency in building a model is not an issue since the

model used for inference is supposed to be quite static. Therefore, a refresh of the

model is needed if: (a) there is some major change in the dataset, or (b) the

performances are decreasing significantly. In both cases, the re-training of the model

is done off-line manually or in some cloud environments. In any case, this is an

operation that does not require high efficiency since the old model can keep working

while the new model is trained.

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 78 of 148

Regarding the efficiency in making inferences, this of course depends on the specific

application. Most of the applications involve video streams that should be analyzed

quickly to allow the inference to be continuously updated with the stream. Some less

critical applications can wait for some seconds to make a decision, while others need

a continuous generation of inferences to allow real time autonomous decisions. In

these cases, the inference rate ranges from 10 frames per second (fps) to 30 fps.

This means that the whole decision cycle should be completed in 0.03-0.1 s. Notice

that, as it will be explained later, the goal of AI modules is to allow autonomous

decisions also in safety-critical systems, so delays in generating an inference and

therefore a decision may result in potentially bad behaviors. For the goal of the

project, a human supervision is always established to avoid catastrophic events if AI

fails to produce a good decision in the right times.

6.3.2 Effectiveness

Defining the requirements of the FRACTAL system in terms of effectiveness is quite

hard. The effectiveness of an AI method does not depend only on the methods itself,

but above all on the quality of the data used for generating the model. Moreover,

evaluating if the quality of a decision system is good or bad depends on the context:

a level of accuracy could be acceptable in some fields while it is not sufficient in

another contexts. Even the measure used to evaluate an AI system depends on the

type of problem and on the goal of the analysis. Consider for example the case of

image recognition in video stream, which is transversal in different use cases. In

general, if some objects, people, or situations should be recognized in a video frame,

it is important that such inference is done with high accuracy. For example, an

application could consist in detecting whether a given objects is present in the frame

or which is the age of a person looking at the camera. For all these cases, it is hard

to define a target on this before starting the planning and experimentation of the

different components, but we could assume that an accuracy of about 90% is a good

target for many applications. This means that 90 out of 100 predictions (e.g.

predicting whether an object is present in the frame) are correct. But, according to

the requirements and the implementation of the use cases, it also possible that

different KPIs are used. For example, the number of false negatives could be reduced

as much as possible. In this case, it is accepted that the system has a higher number

of false positives (i.e. of scenes where the object is detected even if it is not present

actually), but we should avoid the opposite situation, where the object is present but

is not detected. KPIs and target for those KPIs will be defined during the project by

the single use case owners.

6.3.3 Reliability and availability

The system is designed for 24 hours a day operation (H24) and to work in several

situations, including different light and weather conditions. Moreover, all the

situations that can somehow affect the quality of the AI inference, such as occlusions,

graffiti, and stains, should be taken into account. To enable good decisions also in

these situations, it is important that the datasets used for generating the AI model

contains also examples of “irregular” conditions.

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 79 of 148

Some use cases are explicitly excluding the industrial application and therefore

reliability issues are less relevant. On the other hand, other applications are more

safety critical and need to have a higher level of reliability. For example, a system

for detecting people or obstacles in autonomous driving vehicles needs to perform

correct inferences in any situations. It is worth noting that for the purposes of the

project, a human supervision is always present, so that catastrophic consequences

of wrong or delayed decisions are avoided.

6.3.4 Use case needs for AI performance

UC1: Improving the quality of engineering and maintenance works

through drones

AI application An UAV based platform will be used to detect and monitor

incipient cracks on concrete structures. The detection will be

performed by an autonomous AI application that will use the

imagery acquired by the drones to determine the presence

of cracks.

Efficiency To be defined.

Effectiveness To be defined – Without knowing the actual structures,

conditions and dataset it is impossible to define a target.

Nevertheless, according to the preliminary test, it is

expected to obtain a >90% precision

Reliability and

availability

To be defined – Without knowing the actual structures,

conditions and dataset, it is impossible to define an

expectation for the system’s reliability. However, it is

important to include in the dataset all the potential

difficulties (i.e. textures, graffiti, stains, etc.) expected to be

found during the operation, in order to maximize the

robustness of the system.

Table 23 – UC1 AI performance needs

UC2: Improving the quality of automotive air control

AI application This UC is aiming at developing analytical solutions that

allow predictions about future incidents in an automotive

air-path.

Efficiency The system should be able to process data at a 10 Hz

frequency.

Effectiveness To be defined.

Reliability and

availability

The system should be able to produce a prediction quickly

in any situation.

Table 24 – UC2 AI performance needs

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 80 of 148

UC3: Smart meters for everyone

AI application Identifying numbers in an image via Convolutional Neural

Networks upon request.

Efficiency The system should detect about 16 digits and produce an

output in less than 1 s, preferably in 10-100 ms. Training is

done offline sporadically.

Effectiveness To be defined.

Reliability and

availability

The system is run upon request, so there is no need of

continuous availability. Nevertheless, the system should be

able to provide an output whenever it is required.

Table 25 – UC3 AI performance needs

UC4: Low-latency Object Detection as a generic building block for

perception in the edge for Industry 4.0 applications

AI application The UC4 will used the inference of Tiny-YOLO neural network

consisted of convolutional layers, pooling layers, fully

connected layers, activation functions and batch

normalization. The goal of the algorithm is to take as input

a video stream and show on the output (display) the location

of the detected objects within the stream as well as their

labels based on the class that they belong.

Efficiency • The system should be capable to process the frames

from video stream at a rate higher than 30 fps.

• The system implements inference of neural network

that is previously trained, and no additional training will be

performed.

Effectiveness The level of correctness on detection and classification of the

objects in the video stream should be at least 85%.

Reliability and

availability

Even though dependability is highly relevant for industrial

application by intention we exclude this for UC4. The

primary focus for the use case is real-time property.

Table 26 – UC4 AI performance needs

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 81 of 148

UC5: Increasing the safety of an autonomous train through AI

techniques

AI application People detection in the platform when passenger transfer

(people getting on/out)

Efficiency • Expected analysis frequency (inference): 10fps

• Model training frequency: Months (it will be done

offline, not in FRACTAL node)

Effectiveness Precision in detecting persons should be at least 90%.

Reliability and

availability

The system should work in any condition (different visibility

conditions; light, weather, occlusions). The system cannot

stop working although driver will be in charge of safety to

avoid severe consequences.

Table 27 – UC5 AI performance needs

UC6: Elaborate data collected using heterogeneous technologies

AI application This use case includes three specific AI based blocks:

• to process images collected by cameras to detect

heterogeneous data like user age/gender, detect and count

people at totem proximity, etc. (more details available in

Section 4.6)

• to process audio signal collected by microphones to

detect speaker age, gender, and language

• to process data generated from the aforementioned

AI blocks and from other data sources to select content and

information to be provided, output channels among those

available and other eventual actions.

Efficiency Efficiency is still to be defined. As reported in Section 4.6,

10 seconds is the limit for keeping user’s attention.

Therefore, this is the limit for the whole process of

elaborating video and audio signals collected, and

consequently to select and display the content.

Effectiveness KPI are currently under definition

Reliability and

availability

The system is supposed to continuously work 24/7 to

provide personalized advertisement and information

support. Its AI blocks have different expected reliabilities

(they are currently under definition). In case of failure, the

totem should commute to a traditional behavior displaying

some predefined generic contents

Table 28 – UC6 AI performance needs

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 82 of 148

UC7: Autonomous robot for implementing safe movements

AI application Path Tracking Function which allows to steer a vehicle from

a start point to a target point following a predefined path

and evading obstacles (static and dynamic) along this path.

This function takes as input a cost map (or occupancy grid)

representing the vehicle’s environment and vehicle state

data such as velocity and orientation. The output of the

function are control values affecting the linear velocity and

the angular velocity of the vehicle.

The function is derived by means of a Reinforcement

Learning approach using a reward strategy rewarding

proximity to the path and penalizing crashes with obstacles.

Efficiency It is planned to use the AI systems in real-time like

scenarios, meaning that the path tracking function should

be used to steer a vehicle in a real-world scenario. Thus, the

AI system should give a prediction with a frequency of 10

Hz.

It is planned that the AI system should be re-trained only if

additional features (such as smooth driving behavior, lane

keeping...) are required. A re-training would take about one

to several days and will not be performed on the FRACTAL

board.

Effectiveness As performance indicators we introduce metrics measuring

how good the tasks of path following and obstacle avoidance

in test scenarios can be solved. Especially we consider

metrics measuring

• proximity to the given path,

• awareness of obstacles.

Our aim is to be able to follow a given path without

calculating control commands that would lead to a crash into

an obstacle in far more than 90%.

Reliability and

availability

For normal operation the function has to deliver results with

minimum 10 Hz. Absence of updates leads to an emergency

brake situation.

Table 29 – UC7 AI performance needs

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 83 of 148

UC8: Improve the performance of autonomous warehouse shuttles for

moving goods in a warehouse

AI application Handling, storage, and retrieval of warehouse goods by

automated shuttles are optimized using Artificial intelligence

techniques. AI will also optimally organize and analyze the

masses of generated data, in order to improve the

warehouse throughput.

The automated shuttle systems shall operate as agents of

swarm intelligent system to improve its reliability. To

eliminate the need for a central coordinator in which

communication failures could de-stabilize the system. Real-

time Information (e.g., diagnostics, battery health, task)

hosted on the shuttle operation are registered in the AI

database (Big data).

Efficiency To be defined.

Effectiveness To be defined.

Reliability and

availability

To be defined.

Table 30 – UC8 AI performance needs

6.4 Data & model lifecycle concept

The concept consists of a distributed machine learning platform that manages:

 the distribution of the inference work between the edge and cloud

 dedicated embedded and edge machine learning algorithms

 data management, that e.g., takes care of the GDPR related issues

 ethical issues related to artificial intelligence

 security and privacy.

In the FRACTAL approach the technologies are developed together with the business

models for them in a co-design fashion and demonstrated in use cases of radio base

stations and elevator group optimization, among others. Relations to a wider

community and ecosystem are also taken care of by dissemination but also with direct

interactions. All these aspects are elaborated in the subsections below.

6.4.1 Embedded and edge machine learning algorithms

Deep learning has been the most important advance in machine learning for the last

decades. The power of the deep learning systems has incited the industry to apply

deep learning algorithms to many applications under various constraints. However,

deep learning systems demand excessive power consumption, computational

capacities, and memory volumes, require large training data sets, and are poor in

quantifying uncertainty. This prevents deep learning systems from being deployed in

resource-limited devices and environments, such as hand-held and mobile devices.

The costs of the components that can perform deep inferences and the power

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 84 of 148

demands prohibit the broad deployment of these systems into mass markets. One of

the solutions to this challenge is to transfer all data to edge computing facilities or

cloud services to perform the heavy inference work and transfer the results back to

the frontal devices. However, this system architecture wastes the computing

capacities of the frontal devices and has no clear balance between the communication

cost and computation cost, thus degrading the performance and increasing the

burden of the communication between the entities. In addition, it increases the load

of the edge facilities and the cloud services rendering them and thus being unable to

provide services for real-time applications.

In FRACTAL, we aim to develop state-of-the-art machine learning algorithms that are

suitable for complex distributed systems with flexible hardware and communication

configuration. The solutions build on improved deep learning techniques specifically

designed to tackle the above challenges, and on probabilistic modelling techniques

that are ideally suited for resource-limited environments. Based on our recent

advances in various techniques, we will apply multidisciplinary research to achieve

our goals together with other stakeholders. Our approaches include, but are not

limited to:

 Apply the next generation deep learning technology called Operational Neural

Networks (ONNs) to achieve a superior learning and generalization

performance with minimal network complexity, which in turn will improve both

the classification and anomaly detection accuracies as well as the

computational efficiency for real-time applications

 Using Compressive Sensing (CS) and Sparse Approximation (SA) techniques

to find more sparse representations of a given signal, which are easier to learn

and require less memory and computations in the analysis, hence more

efficient for real-time applications on edge devices

 Combining graph analytics, graph learning, and deep learning architecture to

process data in a graph structure and explore effective techniques to perform

hierarchical inferences in a multi-layer manner. The proposed approach can

greatly improve the accuracy and efficiency of a massively distributed system

where data can be modelled in a graph structure.

 Probabilistic programming for cost-efficient development of probabilistic

machine learning solutions for resource-limited devices and environments,

enabling development of machine learning solutions that are aware of their

own uncertainty, can be trained on limited data while relying on strong prior

knowledge, and can protect the privacy of the data providers.

6.4.2 Distributed machine learning platform

Embarrassingly Parallelization of sequential machine learning algorithms can yield

both reduced time and resource utilization. Also, data locality can reduce fetch times

and eliminate extra network and I/O costs, saving both time and resource. Therefore,

modern schedulers may take advantage of these and automatically employ caching

and avoid shuffles where data locality is already achieved. However, in a cluster at

the edge or cloud, there can be a mix of different resource types, and therefore, the

jobs must be analysed before any resource scheduling policies can be applied.

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 85 of 148

Platforms are the key components of the FRACTAL solutions. They offer the means

to perform real-time analytics in the Cloud or at the edge depending on the

requirements of FRACTAL applications.

However, the heterogeneity of FRACTAL platforms introduce challenges in terms of

deployment and management.

 State-of-the-art distributed computing and machine learning frameworks and

dedicated hardware need to be evaluated with respect to the environment

defined by FRACTAL applications (i.e., real-time constraints, heterogeneity,

and large distributed networks).

 In FRACTAL, analytic tasks are performed in real-time, which poses additional

requirements to the deployment framework of machine learning (ML)

microservices in a secure environment. We will evaluate the ML model

deployment strategies for the FRACTAL analytics platform based on the ML

algorithms and the targeted Service Level Agreements (SLAs). This will lead

to the design and implementation of the ML model deployment framework for

edge analytics.

 Realtime analysis at the edge strives interfacing between the platforms and

network, QoS management, network management, and the resilience of the

platforms in terms of resource and security.

 Currently, ML applications communicate with the top-level scheduler through

a resource request/release system in the state-of-the-arts platforms. There is

no existing protocol for allowing schedulers or applications to optimize or scale

down resource utilization.

In FRACTAL, we aim to leverage the existing solutions pertaining to the edge and

distributed computing and extend their capabilities towards the realization of real-

time FRACTAL applications. This requires the development of a new type of scheduler

that considers the heterogeneity of FRACTAL platforms and the needs/constraints of

the business verticals. The performance of the scheduler needs to be monitored by a

novel QoS framework and supported by the underlying network via innovative

solutions. Furthermore, the FRACTAL framework must ensure the resiliency of

FRACTAL platforms and applications. We aim to demonstrate the applicability and

usefulness of the FRACTAL distributed machine learning platforms in the field.

6.4.3 Data management

The data management approach defines a systematic perspective on critical

components that are needed to establish businesses breaking organizational borders

between public entities, private companies, and consumers. Data strategy

incorporates views for (but not limited to) data owner consent, technical foundation,

culture, business, and metrics.

The data architecture relies primarily on the data flow from sources to consumers:

data mediation (collection), data refining and storing, and data offering. Secondarily,

the architecture focuses on making data usable: data governance as well as security

and privacy. Governance covers a wide range of topics for cataloging the data, access

control, ownership, traceability, and performance to name some. The FRACTAL

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 86 of 148

project defines the components to fulfil the data strategy to ensure data can be

shared and used by the stakeholders.

In FRACTAL we aim to enable real-time applications which require low latency

communication for efficient performance. Addressing this challenge requires a fresh

view of the design and management of data on the network level. Particularly, we

need to ensure smooth data flow for FRACTAL applications. The novel design and

management solutions should rely on adequate network traffic model and system

level simulator. These two components combined will enable tracing bottlenecks and

vulnerabilities in network and system architecture, including evaluation and reliability

prediction (e.g., network level delays, blocking probability, forced termination

probability) of real-time FRACTAL applications.

6.4.4 Security and privacy

The analysis of large-scale data in AI and ML on distributed platforms (edge

computing) raises important questions from the information security standpoint.

These questions gravitate around matters such as ownership, storage, privacy, and

protection, among others. Such matters echo moral and legal concerns as security

breaches could lead to compromise of private data and sensitive information,

consequently, harming individuals, businesses, and governments in the process.

Considering the high stakes, development and deployment of AI and ML in

applications such as Industrial IoT and Cyber-Physical Systems (CPS) should be met

with information security measures from the outset of a system’s lifecycle to the later

stages of use and maintenance.

In terms of privacy, different forms of differential privacy are quickly becoming

established as the standard approach for privacy-preserving machine learning. Most

current deployments are based on local differential privacy, which allows strong

individual privacy guarantees but can seriously compromise the utility of the data.

There are emerging research results in combining differential privacy with secure

multi-party computation that allow much higher utility, but further research is needed

to make these practical at scale and in the edge computing context.

In FRACTAL, we aim at addressing the need for information security measures in

secure system design, development, and application by considering different aspects

of security in edge computing context. Such aspects include security and privacy

challenges in edge computing, emerging security regulations and legislations (e.g.,

GDPR) and their influence on edge computing, current and emerging security threats

and risks in edge computing, and available techniques and practices for building

security into edge computing. By studying and considering these aspects, we shall

propose new security approaches that account for seamless integration of security

within edge computing context.

6.4.5 AI ethics

IoT (Internet-of-Things) devices, CPSs and AI are becoming increasingly ubiquitous.

Autonomous vehicles are starting to be active in the traffic and nearly every large

website uses varying degrees of AI to e.g., to provide recommendations to its users.

Large tech corporations are currently developing their own multi-purpose AIs (IBM

Watson etc.). Though these systems affect nearly every individual in developed

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 87 of 148

countries and even in the developing world, they are largely developed by private

organizations with little outside influence.

Most of these systems are black boxes. Outside observers seldom know what data

goes into the box, and sometimes not even the developers know exactly what

happens with the data. The only clear thing is what the system ultimately does with

the data in terms of actions. However, when designing systems with large societal

impacts, it is important to know exactly why they act the way they do. When an

autonomous vehicle gets into an accident, those involved will want to know why, if

only to determine who is to be held accountable.

In designing systems that affect virtually everyone, regardless of whether they

personally use the system or not, ethical design principles are needed. Transparency

is needed for accountability and responsibility to be possible.

The approach taken by FRACTAL is to enable Ethically Aligned Design into practice

within the FRACTAL framework context. The aim is to enhance trust in the system

analysis, design, construction, deployment, and evaluation phases. Tasks are defined

to deal with ethics-related concerns such as accountability, responsibility,

transparency, and privacy. As the result, potential conflicts for enabling real-time

AI/ML processing products & environments are identified and strategies are defined

to overcome the raised concerns. Empirical evaluation of the proposed strategies is

performed in use cases.

Additional key approach adopted by FRACTAL project refers to ambition of studying

aspects that can be automated in the process of ethical analysis. Any action requiring

human control and oversight is a potential bottleneck and thus a risk factor from a

performance viewpoint. It is also a quality issue since humans are prone to errors

when systematic decision making is expected. This is required by an ethical concept

called fairness. Automation will be implemented by means of a prototype of a

recommender system.

6.5 Inference requirements

Inference refers to the runtime functionality where the AI application predicts, makes

decisions, or provides recommendations in its operating environment. We describe

the inference requirements in relation to the following aspects:

 Level of autonomy (e.g., AI application provides recommendations, or it acts

independently to fulfil goals)

 Distribution of inference: are there a number of nodes contributing to the

inference results? (e.g., model splitting, model pruning, model ensembling)

 Co-operativity of distributed agents (i.e., are the agents able to seek a global

maximum in learning effectiveness and efficiency, or do they look for some

equilibrium?)

 Decision/action environment of the FRACTAL agent (i.e., what is the agent

specifically making decisions/predictions/recommendations about? On what

data?)

 Goals and subgoals (i.e., what is the agent aiming for?)

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 88 of 148

Section 6.5.1 defines the needs set by the use cases for inference in the context of

the above-mentioned aspects.

6.5.1 Use case needs for inference

UC1: Improving the quality of engineering and maintenance works

through drones

AI application 1) “Supervision of critical structures as bridges or viaducts,

where images of the structural status will be collected

through the use of UAVs, systematizing the visual inspection

in near-real-time to detect failures and cracks in the

concrete surface.”

2) “Monitoring of both workforce and machinery within a

construction area, by deploying a WSN that provide

information about the status and location of the workers in

real time”.

Autonomy No autonomy required.

Distribution Local inference only.

Co-operativity N/A

Environment 1) Agent will provide predictions based on video images in a

machine vision setting.

2) Agent will provide proximity alerts in a wireless mobile

sensor network setting.

Goals 1) Detection of structural faults.

2) Safety of workers.

Table 31 – UC1 inference needs

UC2: Improving the quality of automotive air control

AI application Predictive maintenance of the components in an automobile

engine air-path.

Autonomy No autonomy required.

Distribution Local inference only.

Co-operativity N/A

Environment Agent will provide predictions of future engine faults using

runtime sensor data of physical products within a powertrain

(in-vehicle data capturing the behavior of components such

as turbochargers, oil pipes, valves or coolers) or runtime

sensor data from testbeds for powertrains (endurance runs,

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 89 of 148

such as contactors and fuses used in testbenches and

batteries).

Goals Anticipation of engine air-path problems before they occur.

Table 32 – UC2 inference needs

UC3: Smart meters for everyone

AI application A low-cost machine-vision based application to read

conventional meters.

Autonomy No autonomy required.

Distribution Local inference only.

Co-operativity N/A

Environment The fractal RISC-V platform will be interfaced with a low

power camera that can take pictures of the meter. In a

second step, the platform must analyze the picture and

extract the meter stand. The main challenges of this task

will be to reliably detect digits in an image with a pattern

recognition algorithm, on a platform with only a few 100 kB

of memory and in a power envelope of a few milliwatts such

that the device can remain active for multiple years.

Goals Read conventional meters remotely with machine vision.

Table 33 – UC3 inference needs

UC4: Low-latency Object Detection as a generic building block for

perception in the edge for Industry 4.0 applications

AI application A machine vision-based object detection and recognition

algorithm in form of a Low-Latency Object Detection (LLOD)

building block.

Autonomy No autonomy required.

Distribution Local inference only.

Co-operativity N/A

Environment “The LLOD building block takes as an input a video stream

generated from the camera. The stream is handed to a

device that runs algorithm for computer vision on top of it.

Once the frame processing is finished the device publishes

the results on the display. The output is localization of the

objects in the image and their classification based on the

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 90 of 148

group that they belong. All this will be performed in real-

time as the input video stream flows.”

Goals Enhance automation processes with the intelligent capability to

detect and recognize objects visually:

 The LLOD shall be able to detect and locate the objects

in an input image.

 The LLOD shall be able to recognize the detected objects.

 The LLOD shall perform detection and recognition of all

objects in the image through a single observation.

 The inference of LLOD shall be able to process the input

images in real-time.

 The operation of the inference of LLOD shall be isolated

within the edge node.

Table 34 – UC4 inference needs

UC5: Increasing the safety of an autonomous train through AI

techniques

AI application On-board AI-enabled computing platform for autonomous

train operations.

Autonomy Autonomous operation of train velocity, doors.

Distribution Local inference only. Some interaction with platform-based

sensors or systems can be introduced?

Co-operativity N/A

Environment The agent will detect platform area based on train

localization information (odometry sensors, balise

information…) and different visual pattern (visual

sensors) detection/identification (characteristic patterns

which identifies train platforms). Platform detection

functionality will enable CV&AI based automatic train

approximation to accurate train stop.

 The agent will perform precise localization inside

platform area using visual patterns detection,

identification and tracking in order to reach accurate

stopping point and managing automatic train operation

(traction and brake commands, ATO functionality). The

visual patterns will be designed and chosen to maximize

the detection and identification processes in any possible

lightness and meteorological conditions. On the other

hand, these patterns will be installed according

predefined precise distances to obtain physical accurate

measurement from correctly calibrated visual sensors.

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 91 of 148

 The agent will manage automatic safe door enabling

(ERMTS functionality) making sure the train is

completely stopped in the platform area (using visual

sensors) avoiding a) door opening operation if the train

and platform doors are not precisely aligned and b) door

closing operation if any passenger is getting in/out the

train.

Goals Correct automatic platform detection.

 Accurate automatic stop at door equipped platforms,

aligning the vehicle and platform for correct passenger

transfer.

 Safe passenger transfer, with a correct detection of the

passengers who are getting in/out the train (in platform

area) avoiding any door closing operation before all

train’s doors are free of crossing-passengers.

Table 35 – UC5 inference needs

UC6: Elaborate data collected using heterogeneous techniques

AI application A smart totem is equipped with smart sensors and actuators

like, for example cameras that collect data and implement

AI based content analysis providing output and actuations.

Autonomy Autonomous interaction with users.

Distribution Distributed decision-making (i.e. activity) among AI agents

in each totem.

Co-operativity Agents are fully co-operative.

Environment Smart totems, each with:

o A number of sensors (video, audio, proximity)

and actuators (audio setup & video screen for

selected content).

o An AI agent, capable of detecting user age,

gender, proximity, other user context based on

sensor data, and interacting with the user by

selecting content.

 Clients interacting with the totems by way of the totem’s

actuators.

 AI agents in each totem co-operating for inference and

learning.

Goals Overall goal is to maximize the impact of personalized

advertisements and product recommendations, driving

customers to buy products.

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 92 of 148

Each node should support AI solutions to process images

collected by cameras to:

 detect user age

 detect user gender

 detect people at totem proximity

 count people in totem proximity

 compute heatmap

 detect crowd intensity and variation

 detect (nice to have) level of attention

The node should support AI solutions to process audio signal

collected by microphones to:

 detect speaker age

 detect speaker gender

 detect speaker language

The node should support AI solutions to process

heterogeneous data to:

 select content/info to be provided

 select the output channel among those available (e.g.,

video, audio, etc.)

 select eventual further output/actuations

Table 36 – UC6 inference needs

UC7: Autonomous robot for implementing safe movements

AI application “The "Smart Physical Demonstration and Evaluation Robot"

(SPIDER) is an autonomous robot prototype. Within this use

case, the Cognitive Edge Node developed in FRACTAL will be

integrated in the autonomous robot SPIDER and evaluated

against its applicability for performing computationally

intensive relevant vehicle functions of variable complexity at

the edge of the network (near the source of the data) while

still being able to guarantee extra-functional properties

(dependability, timeliness) for preserving safety- and

security operational behaviors.”

Autonomy The agent is an autonomous, wheeled robot, capable of

independent movement.

Distribution Local inference only.

Co-operativity N/A

Environment Sensors:

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 93 of 148

 VAL-UC7 four lidar sensors with at least 16 lines each

and a range of minimum 50 meters.

Actuators:

 hardware interface and safety controller, motion

controller, sensor interfaces, user interfaces.

3D simulated environment.

Proving ground for real hardware tests.

Goals Co-execution of safety- and security relevant functions with

AI functions on a single hardware platform.

Table 37 – UC7 inference needs

UC8: Improve the performance of autonomous warehouse shuttles for

moving goods in a warehouse

AI application Handling, storage, and retrieval of warehouse goods by

automated shuttles are optimized using Artificial intelligence

techniques. AI will also optimally organize and analyze the

masses of generated data, in order to improve the

warehouse throughput.

The automated shuttle systems shall operate as agents of

swarm intelligent system to improve its reliability. To

eliminate the need for a central coordinator in which

communication failures could de-stabilize the system. Real-

time Information (e.g., diagnostics, battery health, task)

hosted on the shuttle operation are registered in the AI

database (Big data).

Autonomy Shuttle agents make autonomous decision on, e.g., routing

and sequencing. No central controller.

Distribution Fully distributed decision making (swarm intelligence) by

shuttle agents.

Co-operativity Agents are fully co-operative.

Environment Sensors:

 To be defined

Actuators:

 To be defined

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 94 of 148

Goals Improve smart warehouse throughput. Delays in

warehouse operation are critically undesirable since they

have a domino effect on the supply chain.

 Minimize human interruptions resulting from faults.

 Establish uninterrupted communication between the

shuttles by exploiting machine learning techniques on

the aggregated data obtained from signal connectivity

monitoring.

 Predictive maintenance: Task that previously led to

failure or low performance will be optimized and

corrected to improve the warehouse availability.

 Adaptive system: A shuttle system that will adapt

independently to new situations within the warehouse.

 Power optimization and improved storage strategy: By

optimizing the location of high-velocity goods, while

spreading them out in an optimal way to minimize

congestion and to improve the retrieval efficiency.

Machine learning will be exploited to establish the

desired optimal values.

 Route optimization: Aggregated data of route-patterns

and delivery efficiency will be exploited through AI

application to obtain a higher throughput for the

warehouse.

 Pick-up order (Productivity): Using supervised learning

techniques with inputs – accumulated pickup list to

schedule an optimized system directed picking (Output

– result of the best pattern).

 Defined bulk processing of orders. Bulk information is

given to a SWARM including expected timing. The

SWARM resolves the solutions to deliver as specified.

Table 38 – UC8 inference needs

Proposal:

AI application N/A

Autonomy Ranging from fully autonomous agents to a hierarchical

model of arbitrary depth where a higher-level agent may

exert some control over the lower level agents associated

with it.

Distribution Ranging from local inference to distributed inference over

the FRACTAL hierarchy.

Co-operativity Ranging from co-operative agents to multi-agent systems

where at least some of the agents are non-co-operative.

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 95 of 148

Environment N/A

Goals N/A

Table 39 – Proposed requirements for inference

6.6 Learning requirements

Learning refers to the functionality where the AI application is provided data on its

operating environment and the application learns how to fulfil its goals. Learning may

be conducted in a separate, offline phase, before production usage (runtime).

Alternatively, learning and inference may be intertwined such that they alternate or

even happen simultaneously. We describe the learning requirements in relation to

the following aspects:

 Distribution of learning (i.e., centralized, federated, decentralized?)

 Co-operativity of learning (i.e., are the agents able to seek a global maximum

in learning effectiveness and efficiency, or do they look for some equilibrium?)

 Model selection / model architecture

Section 6.6.1 defines the needs set by the use cases for learning in the context of

the above-mentioned aspects.

6.6.1 Use case needs for learning

UC1: Improving the quality of engineering and maintenance works

through drones

AI application 1) “Supervision of critical structures as bridges or viaducts,

where images of the structural status will be collected

through the use of UAVs, systematizing the visual inspection

in near-real-time to detect failures and cracks in the

concrete surface.”

2) “Monitoring of both workforce and machinery within a

construction area, by deploying a WSN that provide

information about the status and location of the workers in

real time”.

Distribution No distribution of learning required.

Co-operativity N/A

Model No requirements on model or model architecture.

Table 40 – UC1 learning needs

UC2: Improving the quality of automotive air control

AI application Predictive maintenance of the components in an automobile

engine air-path.

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 96 of 148

Distribution No distribution of learning required. Federated learning or

other distributed learning architecture could enhance both

efficiency and effectiveness of learning.

Co-operativity N/A

Model No requirements on model or model architecture.

Table 41 – UC2 learning needs

UC3: Smart meters for everyone

AI application A low-cost machine-vision based application to read

conventional meters.

Distribution No distribution of learning required. Federated learning or

other distributed learning architecture could enhance both

efficiency and effectiveness of learning.

Co-operativity N/A

Model No requirements on model or model architecture.

Table 42 – UC3 learning needs

UC4: Low-latency Object Detection as a generic building block for

perception in the edge for Industry 4.0 applications

AI application A machine vision-based object detection and recognition

algorithm in form of a Low-Latency Object Detection (LLOD)

building block.

Distribution No distribution of learning required. Pre-trained model.

Co-operativity N/A

Model Pre-trained CNN (YOLO).

Table 43 – UC4 learning needs

UC5: Increasing the safety of an autonomous train through AI

techniques

AI application On-board AI-enabled computing platform for autonomous

train operations.

Distribution No distribution of learning required. Federated learning or

other distributed learning architecture could enhance both

efficiency and effectiveness of learning.

Co-operativity N/A

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 97 of 148

Model Must support ONNX.

Table 44 – UC5 learning needs

UC6: Elaborate data collected using heterogeneous techniques

AI application A smart totem is equipped with smart sensors and actuators

like, for example cameras, that collect data and implement

AI based content analysis providing output and actuations.

Distribution The node should/could support distributed learning

approaches (e.g., federated learning).

Co-operativity All agents are assumed fully co-operative.

Model Age & Gender classifier: FPGA-based CNN

implementations for edge devices.

 Possibly other models for context awareness.

Table 45 – UC6 learning needs

UC7: Autonomous robot for implementing safe movements

AI application The "Smart Physical Demonstration and Evaluation Robot"

(SPIDER) is an autonomous robot prototype. Within this use

case, the Cognitive Edge Node developed in FRACTAL will be

integrated in the autonomous robot SPIDER and evaluated

against its applicability for performing computationally

intensive relevant vehicle functions of variable complexity at

the edge of the network (near the source of the data) while

still being able to guarantee extra-functional properties

(dependability, timeliness) for preserving safety- and

security operational behaviors.”

Distribution No distribution of learning required. Federated learning or

other distributed learning architecture could enhance both

efficiency and effectiveness of learning.

Co-operativity N/A

Model Unknown.

 Reinforcement learning based 3D simulated

environment available.

Table 46 – UC7 learning needs

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 98 of 148

UC8: Improve the performance of autonomous warehouse shuttles for

moving goods in a warehouse

AI application Handling, storage, and retrieval of warehouse goods by

automated shuttles are optimized using Artificial intelligence

techniques. AI will also optimally organize and analyze the

masses of generated data, in order to improve the

warehouse throughput.

The automated shuttle systems shall operate as agents of

swarm intelligent system to improve its reliability. To

eliminate the need for a central coordinator in which

communication failures could de-stabilize the system. Real-

time Information (e.g. diagnostics, battery health, task)

hosted on the shuttle operation are registered in the AI

database (Big data).

Distribution Distributed learning between agents. Independent and

identically distributed (IID) data may be assumed.

Co-operativity Agents are fully co-operative.

Model DNN? To be defined.

Table 47 – UC8 learning needs

Proposal:

AI application N/A

Autonomy Ranging from local learning to distributed (e.g. federated)

or fully decentralized in the FRACTAL hierarchy.

Co-operativity Ranging from co-operative multi-agent learning to non-co-

operative multi-agent learning.

Model N/A

Table 48 – Proposed requirements for learning

6.7 Run & development environment requirements

In this section, an overview of the environment requirements is offered for developing

and running AI artifacts. It is important to notice here that these two phases are

separated, which means that the development environment (researcher computer)

and the run environment (FRACTAL node) are actually different systems. They both

will be closely related for technological alignment, but many development tools may

be included that the run environment may not need.

Apart from this, the environment design must accomplish some basic features to

obtain a good user experience. Ideally, it should provide a wide range of possibilities

in terms of tools and technologies, in order to offer a flexible work methodology, and

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 99 of 148

also taking into an account the development process phases to provide an optimal

workflow. The environment development must facilitate the complete process of

computation.

In order to make the first approximation to the development environment, we

assume that the target FRACTAL devices will be Linux based, providing a so flavored

OS capable of providing a basis for the installation of the major part of the

technologies mentioned on this section. The definition of a complete Run &

Development environment for AI techniques on the Edge is a complex task, and for

this reason this design will be enriched during the project, providing a solution to the

necessities it may arise.

6.7.1 Available tools

On one hand, the FRACTAL node should be able to support different programming

languages to permit the usage of some of the predominant tools on the AI field.

C, C++ runtime should be included. Also, other managed languages such as Python

or Java are also strongly recommended.

This will ensure compatibility with many of the current ML/DL (deep learning)

technologies (Python), and advanced analytics technologies (Java JVM), which

include strategies to distributed computation management.

Moreover, from the development environment perspective, it could be useful to

identify some tools (such as IDEs, learning frameworks, etc.) for defining a common

development methodology for the FRACTAL project.

Once this is defined, the development environment should include tools for the

generation of ML, DL models. For this, some of the most used tools at the present

could be included, such as TensorFlow, PyTorch, Spark ML, etc. The generated models

should then be able to run on the FRACTAL nodes. At the present, there exist several

tools and projects that provide different functionalities to manage the model

deployment. The principal phases may include model exposition for obtaining

predictions, re-training, etc. In the analysis and selection of these tools, the model

lifecycle management design (previously defined in this WP) should be considered.

To give some examples, MLFlow, Apache Submarine, etc.

Moreover, the support of advanced analytics tools is proposed for the FRACTAL

node. These could suppose great benefits from the interoperability perspective of the

nodes, as these tools are already designed for distributed execution paradigm. Some

of them could be ETLs (Extract, Transform, Load) (such as Apache NiFi/MiNiFi), data

storages (SQL flavored), message queueing systems (such as Apache Kafa, Rabbit

MQ), real-time event processing systems/CEP motors (such as Apache Flink),

notebook tools for data science (Zeppelin, Jupyter).

Finally, focusing on neural networks the FRACTAL node should be able to support the

Open Neural Network Exchange (ONNX) standard for machine learning

interoperability. This standard will ease the process of using a variety of frameworks,

tools, runtimes and compilers and will facilitate the use of the Low Energy Deep

Learning Library (LEDEL) (see 8.2.2.2).

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 100 of 148

6.7.2 Usable technologies / technology stacks

Technology stack is a set of tools for implementing some intended IT idea. As a

rule, a tech stack consists of programming languages, frameworks, libraries, various

development tools and programming approaches themselves. The synthesis of all of

the above determines the viability and competitiveness of the application, its

functionality, scalability, and further maintenance. FRACTAL is a large project that

will need a large technical stack to maintain the integrity and performance of the

application. Multiple layers of programming languages and frameworks will be

necessary to perform for different data conditions. Scalability for further

developments (vertical) or the addition of new users (horizontal).

Tech stacks and data ecosystems are some of the many technological services

available for technological application development and maintenance. These systems

allow the development to build and implement an application or service in a

centralized environment where all of the tools (development, data ingestion and

treatment, and AI processes) can work cooperatively to each other.

In this respect, a use case could involve all of the steps related to data treatment,

starting from edge data collection, data processing, data analysis and input for later

in situ solution making. This highlights the necessity of a robust tool infrastructure

capable of addressing each of the processes.

For the FRACTAL scenario, it seems important to keep the architecture as modular

as possible and, for this reason, containers and microservice technologies could

be studied as possible approaches. Here, several technologies can be found, such as

Docker and Kubernetes.

Also, apart from the tools mentioned on the previous section, further tool stacks could

be considered for the purpose of designing the FRACTAL technological approach. An

example of this could be the Apache Foundation Hadoop Ecosystem for including

advanced analytics capabilities in the node. Some relevant tools could include

resource managers (such as Apache YARN), that permit to control computational

resources over different nodes in a cluster. This kind of technologies are able to

allocate resources for executing containers over the nodes of a cluster, and some of

them are exploring the approach using FPGAs instead.

These topics should contribute to the definition of the definitive tech stack. However,

many research and decision-making steps should be carried out prior to achieving

this. Also, the decision making in the platform (WP3 PULP, VERSAL) design will be

fundamental, as the included technologies (such as programming languages) will

define the ability to use these approaches. The advancements on the WPs and UCs

will help to identify further necessities and naturally evolve the technological

approach for the Run & Development environment.

6.7.3 Interoperability & integrations with other systems

From the software perspective, a microservice approach could contribute to

maintain the interoperability between the modules of the solution. Ideally, some

common API format could be defined in order to capture “FRACTAL microservice”

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 101 of 148

communication requirements. Besides, APIs could be documented in a unified

manner (using tools such as doc-swagger). For building microservices, technologies

such as API REST, Web Services, etc. could be used.

Also, predefining tools for some of the data lifecycle phases could assure

integrations between systems and services. Here, interesting approaching could be

found, such as using message queuing systems for sharing and enriching data

between nodes and the outer world.

It is also important to consider AI model interoperability between systems. For

example, adopting approaches for exporting ML models to PMML to assure

interoperability between programming languages.

6.7.4 Continuous integration / DevOps platform

A DevOps platform (development and operations platform) is a very helpful tool for

project management and milestones. DevOps platforms give developers tools and

automation capabilities to perform and manage continuous delivery. They are very

useful to speed up the development and to use the available tools.

Using a DevOps platform will provide an agile, flexible and easy way of releasing

software and management of the project development. Different DevOps phases and

platforms may be useful here, to give some examples:

 Version control, using a technology as Gitlab.

 Automated build and deployments, using for example Jenkins that

provides support for building, deploying and automating a project and working

on continuous integration.

 Functional and non-functional testing, such as Junit.

 Monitoring, such as Naggios.

 Provisioning and change management, such as Docker.

6.7.5 Use case needs for run & development environment

UC1: Improving the quality of engineering and maintenance works

through drones

AI application 1) “Supervision of critical structures as bridges or viaducts,

where images of the structural status will be collected

through the use of UAVs, systematizing the visual

inspection in near-real-time to detect failures and cracks in

the concrete surface.”

2) “Monitoring of both workforce and machinery within a

construction area, by deploying a WSN that provide

information about the status and location of the workers in

real time”.

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 102 of 148

Development

environment

Supposing the nodes are built on a Linux OS.

Programming

languages

To be defined once the platform definition is clear.

Supported languages must be known, being Java and

Python probably necessary for data management and AI

model development.

Data management Hadoop Ecosystem tools support is recommended (Java

support required) to obtain distribute execution and

management of data.

AI model

deployment

TensorFlow.

Interoperability

& integration

Although more information is required, the edge node is

expected to have container support.

Continuous

Integration

(DevOps)

Note that this is a proposal, other platforms or technologies

may be chosen. But compatibility with DevOps approach

tools should be contemplated (Git, Jenkins, docker, ...)

Table 49 – UC1 run & development environment needs

UC2: Improving the quality of automotive air control

AI application

Predictive maintenance of the components in an

automobile engine air-path.

Development

environment

LinuxOS required for UC2.

Programming

languages

To be defined once the platform definition is clear. C++

compiler is a must, and Python required for TensorFlow

development.

Data management

N/A

AI model

deployment

TensorFlow framework models required.

Interoperability

& integration

Although more information is required, the edge node is

expected to have container support.

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 103 of 148

Continuous

integration

(DevOps)

Note that this is a proposal, other platforms or

technologies may be chosen. But compatibility with

DevOps approach tools should be contemplated (Git,

Jenkins, docker...)

Table 50 – UC2 run & development environment needs

UC3: Smart meters for everyone

AI application

A low-cost machine-vision based application to read

conventional meters.

Development

environment

Linux is feasible, but lighter OS like littleKernel, Zircon,

Nuttx or FreeRTOS are preferable.

Programming

languages

To be defined once the platform definition is clear.

Data management

N/A

AI model

deployment

No specific requirement for AI operation.

Interoperability

& integration

Although more information is required, the edge node is

expected to have container support.

Continuous

integration

(DevOps)

Note that this is a proposal, other platforms or

technologies may be chosen. But compatibility with

DevOps approach tools should be contemplated (Git,

Jenkins, docker, ...)

Table 51 – UC3 run & development environment needs

UC4: Low-latency Object Detection as a generic building block for

perception in the edge for Industry 4.0 applications

AI application

A machine vision-based object detection and recognition

algorithm in form of a Low-Latency Object Detection (LLOD)

building block.

Development

environment

The LLOD shall be able to run application on top of the

system software that will control its operation.

 The RISC-V processor shall run 64-bit Linux

operating system.

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 104 of 148

Programming

languages

To be defined.

Data management

N/A

AI model

deployment

TensorFlow/Caffe/Darknet frameworks shall be supported

by the edge node for generation of the inference.

Interoperability

& Integration

Although more information is required, the edge node is

expected to have container support.

Continuous

integration (DevOps)

Note that this is a proposal, other platforms or technologies

may be chosen. But compatibility with DevOps

approach tools should be contemplated (Git, Jenkins,

docker...)

Table 52 – UC4 run & development environment needs

UC5: Increasing the safety of an autonomous train through AI

techniques

AI application

On-board AI-enabled computing platform for autonomous

train operations.

Development

environment

The board shall have Linux OS.

Programming

languages

The board shall have C++ compiler.

The HW accelerators should be programmed with OpenCL.

Data management N/A

AI model

deployment

The HW accelerators shall be compatible with TensorFlow’s

framework outputs (nice to have).

Interoperability

& integration

Although more information is required, the edge node is

expected to have container support.

Continuous

integration (DevOps)

Note that this is a proposal, other platforms or technologies

may be chosen. But compatibility with DevOps approach

tools should be contemplated (Git, Jenkins, docker...)

Table 53 – UC5 run & development environment needs

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 105 of 148

UC6: Elaborate data collected using heterogeneous techniques

AI application

A smart totem is equipped with smart sensors and

actuators like, for example cameras that collect data and

implement AI based content analysis providing output and

actuations.

Development

environment

The Node shall have Linux OS such as Ubuntu or

Petalinux.

Programming

languages

The Node shall have a C++ compiler and related standard

libraries.

Data management Not specified

AI model

deployment

The Node shall be able to execute TensorFlow-Keras

framework models, or other standard Machine Learning

APIs.

 The HW accelerators shall be compatible with

TensorFlow-Keras framework outputs.

 OpenCV Library.

Interoperability &

integration

Although more information is required, the edge node is

expected to have container support.

Continuous

integration

(DevOps)

Note that this is a proposal, other platforms or

technologies may be chosen. But compatibility with

DevOps approach tools should be contemplated (Git,

Jenkins, docker...)

Table 54 – UC6 run & development environment needs

UC7: Autonomous robot for implementing safe movements

AI application

The "Smart Physical Demonstration and Evaluation Robot"

(SPIDER) is an autonomous robot prototype. Within this use

case, the Cognitive Edge Node developed in FRACTAL will

be integrated in the autonomous robot SPIDER and

evaluated against its applicability for performing

computationally intensive relevant vehicle functions

of variable complexity at the edge of the network (near the

source of the data) while still being able to guarantee extra-

functional properties (dependability, timeliness) for

preserving safety- and security operational behaviors.”

Development

environment

Linux - Main functions of the VAL-UC7 shall be

implemented on a Linux platform. Most suitable

distributions would be Ubuntu 16.04, Ubuntu 18.04 or

derivates.

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 106 of 148

Programming

languages

C++ or Python API

OpenCV Library (not mandatory)

Data management Not specified.

AI model

deployment

C++Suite - Main functions of the VAL-UC7 shall be

implemented with C++ on Linux. Thus, a compiler, and a

debugger are necessary and not mandatory a profiler. The

compiler needs to support at least C++11 functions.

Interoperability &

integration

Although more information is required, the edge node is

expected to have container support.

Continuous

integration (DevOps)

Note that this is a proposal, other platforms or technologies

may be chosen. But compatibility with DevOps approach

tools should be contemplated (Git, Jenkins, docker...)

Table 55 – UC7 run & development environment needs

UC8: Improve the performance of autonomous warehouse shuttles for

moving goods in a warehouse

AI application

Handling, storage, and retrieval of warehouse goods by

automated shuttles are optimized using Artificial

intelligence techniques. AI will also optimally organize and

analyze the masses of generated data, in order to improve

the warehouse throughput.

The automated shuttle systems shall operate as agents of

swarm intelligent system to improve its reliability. To

eliminate the need for a central coordinator in which

communication failures could de-stabilize the system. Real-

time Information (e.g. diagnostics, battery health, task)

hosted on the shuttle operation are registered in the AI

database (Big data).

Development

environment

Linux with RT Patch as Operating System

Programming

languages

No languages specified.

Data Management Not specified

AI model

deployment

To allow predictive maintenance features to be developed,

machine learning is required in order to predict failures of

certain parts and devices.

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 107 of 148

Interoperability &

integration

Although more information is required, the edge node is

expected to have container support.

Continuous

Integration

(DevOps)

Note that this is a proposal, other platforms or technologies

may be chosen. But compatibility with DevOps approach

tools should be contemplated (Git, Jenkins, docker...)

Table 56 – UC8 run & development environment needs

Proposal:

Development

environment

The platform should support Linux OS, although other

choices may be made by any UC if required.

Programming

languages

C/C++ should be included, and also including Java and

Python is recommended to operate ML/DL/advanced

analytics tools.

Data management

Whenever data management is required, distributed

computing tools (such those from Hadoop Ecosystem) may

be available/supported.

AI model

deployment

Most common libraries and tools support, TensorFlow,

Pytorch, etc. Also support/availability for a model

deployment technology such as MLFlow is recommended.

Interoperability &

integration

Container support is recommended.

Continuous

Integration

(DevOps)

Compatibility with DevOps approach tools should be

contempled (Git, jenkins, docker...)

Table 57 – Proposed requirements for run & development environment

6.8 Requirements flowing down to WP3

Objective 1:

Open-Safe-Reliable and low power node architecture

These requirements flow down to the FRACTAL node building blocks by WP3

(hereafter referred to as the “WP3 platform”).

 The WP3 platform shall support a POSIX operating system [VERSAL/PULP]

o The WP3 platform should support multithreading.

 The WP3 platform shall support a C/C++ runtime (versions TBD).

[VERSAL/PULP]

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 108 of 148

 The WP3 platform shall support Tensorflow and Tensorflow Federated

runtime libraries (versions TBD). [VERSAL/PULP]

 The WP3 platform shall support Python libraries (versions TBD). [VERSAL]

 The WP3 platform SHOULD support ONNX standard (version TBD).

[VERSAL/PULP]

 The WP3 platform shall support Java Runtime (to allow distributed

execution management technologies) (version TBD) [VERSAL/PULP]

 The WP3 platform may support MLFlow or other ML lifecycle management

platform [VERSAL/PULP]

Table 58 – WP5 requirements flowing down to WP3

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 109 of 148

7 Mutable and fractal communications

This section relates to objective O4 and pillar 4 and it describes the communication

techniques addressed in WP6.

The goal of Mutable and fractal communications in FRACTAL is to design, develop and

deploy the FRACTAL system engineering framework considering a microservices and

containers-based software implementation. It consists of: (i) a processing platform

at the edge with connection to different IoT devices and cloud platforms; (ii) and an

edge controller infrastructure (in the cloud) to manage and control the edge nodes

update and operation. This solution will follow a fractal configuration improving the

scalability from Low Computing to High Computing edge node.

In the context of communication techniques, the evaluation of the ML model

deployment strategies is essential for the FRACTAL node analytics platform based on

the ML algorithms and the targeted future Service Level Agreements (SLAs). This will

lead to the design and implementation ML model deployment framework for edge

analytics. In FRACTAL node analytic tasks are performed in real-time, which poses

additional requirements to the deployment framework of ML microservices in a secure

environment. Realtime analysis at the edge strives interfacing between the platforms

and network, QoS management, network management with SDN, and the resilience

of the platforms in terms of resource and security. Currently, ML applications

communicate with the top-level scheduler through a resource request/release system

in the state-of-the-arts platforms. The challenge is that there is no well-defined

existing protocol for allowing schedulers or applications to optimize or scale down the

resource utilization.

Requirements flowing down to WP3 are described in the section 7.5.

CPS Communication Framework

CPS Communication Framework for the connection of a wide range of IoT devices

and well-known cloud platforms.

FRACTAL will consider novel communication (i.e., 5G) and storage techniques

enabling network scalability following a fractal configuration. Besides OT and IT-

oriented communication middleware, this pillar also encloses the distributed resource

management and orchestration techniques that are necessary to drive the distributed

FRACTAL node infrastructure.

FRACTAL edge computing for data processing

Optimized data (video and audio) processing based on AI approaches. Such

processing will be executed on the edge in the heterogeneous applicative domain.

Beside the edge processing, the wireless communication capabilities will be evaluated

through delay and processing point of view as heavy data transmission will cause

additional delay also to the cellular network side.

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 110 of 148

Communication protocol implementation

Surveillance of critical industrial and logistic environments. Usage of the low power

communication protocol for further localization system integration.

Test platform for 5G M2M communication

A cellular radio modem is integrated into a small set of FRACTAL IoT nodes and their

operation is tested and verified at the OULU 5G Test Network. Depending on the use

case, the most suitable radio is selected for a node and several measurements will

be executed, i.e., delays, throughput and power consumption. The variety of wireless

technologies is available in 5GTN portfolio from 5G to NB-IoT and LoRa technologies,

on top of the different measurements tools that are in the use of experiments.

Figure 22 – Blocks from the Cognitive System to adapt for guaranteeing pillar 4

7.1 Edge node design and implementation

This section is focused on providing a requirement description of the edge node

design and implementation.

This requirement set has a purpose to develop and deploy the necessary edge

computing infrastructure. For this purpose, a preliminary analysis of existing open-

source edge computing-based software platforms, such as e.g., Apache Kura, EdgeX

Foundry, StarlingX, OpenEdge KubeEdge or MS IoT Edge etc., must be done in order

to select a reference implementation. The required set of software components and

tools useful for the FRACTAL engineering framework should be selected and updated

to enable core functionalities such as e.g., application provisioning and scheduling,

application containerization and deployment or dynamic balancing of workload to the

available infrastructure resources. In addition, the architecture should be based on

to core microservices for common operation and the scheduler; components

developed in WP5 for including specific processing capabilities depending on the

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 111 of 148

domain will also be updated to be deployed within the FRACTAL engineering

framework.

As a set of requirements, three channels should be defined:

 The interconnection between the edge infrastructure and IoT devices (e.g.,

sensors, actuators)

 The interaction with the cloud; and

 Internal communication between the required software components.

New components for enabling the communication with different IoT devices using

standard protocols (e.g., KNX, Modbus, BACnet, OPC UA, etc.) or proprietary

protocols from the use cases within the FRACTAL project should be developed and

deployed inside the engineering framework. Special attentions should be paid to the

design and development of wireless communication interfaces taking into account

reliability and real-time requirements. To make it easier to create intelligent

components, as a requirement a device abstraction layer could offer a unified

interface for devices, regardless of the device type or connectivity protocol and

without the need-to-know details of a specific protocol. A generic data model, as well

as a common interface to communicate with the cloud, should be defined as well as

implemented and deployed in order to guarantee interoperability among different

data sources, the edge and the cloud. These two channels should consider wired

connectivity (based on Ethernet) and wireless connectivity (based on 5G cellular

protocol if technically possible or, at least, 4G protocol). Furthermore, analysis and

evaluation of IT and OT convergence in real-time requirements will be performed. As

a requirement, different communication alternatives in terms of architecture

(orchestration or choreography) and communication protocols (e.g., HTTPS, Kafka,

AMQP, etc.) should be analyzed and chosen for microservices' internal interaction.

Requirements for appropriate mechanisms to support remote monitoring, resource

management and dynamic reconfiguration of the edge nodes should be set. These

key capabilities will enable the FRACTAL paradigm in a heterogeneous distributed

infrastructure such as the one considered in this project. In this sense, functionalities

for remote monitoring and management of the FRACTAL nodes should be provided,

allowing nodes to remotely start and stop applications, as well as deploying and

uninstalling software components. Moreover, automatic mechanisms to dynamically

allocate the available distributed resources to the demanding applications will be

provided. This feature is key to supporting the desired levels of availability and fault

tolerance, whilst ensuring the scalability of the overall FRACTAL system.

7.2 Edge center controller infrastructure

This section is focused on providing a description of the edge controller infrastructure

required for the use case’s correct performance.

The design of the edge control infrastructure is closely related to the technological

election of the components for the FRACTAL nodes, in terms of the actual tools that

will be used. As this is a work in progress, we will describe in this section a

theoretical approximation to the edge controller infrastructure, specifying the

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 112 of 148

functionalities needed to be accomplished to ensure the FRACTAL ecosystem correct

behavior. The actual implementation will be completely defined as the WPs advance.

However, and to provide some examples of the technologies that could be used here,

we will make the assumption that the FRACTAL nodes will have a Linux based OS.

Similarly, to the separation of environments previously proposed on section 0, which

proposed to distinguish between the Run Environment and the Development

Environment, the edge infrastructure will be divided into two main environments.

This will encompass a central platform (i.e., machine/cloud for the administration of

the nodes/services) from which the actual nodes will be governed. This aspect

highlights the necessity for a set of interactions between the FRACTAL nodes and the

edge data centers which are specified below.

The main objectives of the edge center controller are closely related to the DevOps

methodological approach, which for instance includes real time monitoring, artifact

deployment and version control. Also, control over the edge is related to data

governance, management and alarm tracking. Real time monitoring occurs through

the local control of the different FRACTAL nodes, which are also interconnected. For

this reason, robust and secure connections must be established in order to ensure

distributed services performance.

It is important to keep in mind one of the objectives of the project, which is the

interoperability of the nodes, and the ability they will have to join strengths in order

to build a larger entity. From this perspective, one could think about different layers

of nodes, where we will find nodes closer to the data origins dealing with data

ingestion services, and distributed applications running over several nodes as we get

further away from the source. This association of nodes to build larger distributed

services is closely related to the phase of the data processing (ingestion, storage,

etc.) and the demands (in terms of volumetry) of data origins. From this point of

view, it is important to consider modular architectural designs, based on containers

and microservices.

 Edge data lifecycle: ingestion functionalities

Primary services over the data lifecycle should have the ability to operate distributed,

allowing both horizontal and vertical scalability.

The data ingestion process should take into account the varying data origin and types.

At this point, the node should provide several functionalities, such as real-time

analysis, model prediction, storage, and intercommunication with other services in

general.

These features could align with an ETL (Extract, Load, Transform) following the data-

in-motion approach. Several tech stacks are already available to accomplish this task.

An example being the Apache Foundation Hadoop Ecosystem (Cloudera stacks) for

including advanced analytics capabilities in the node, which also allows easy

scalability and high-availability. More concretely, for instance the tool Apache Nifi

assures these functionalities, and aligns with the edge computing paradigm through

the MiNiFi agents, where edge control mechanisms are included.

 Characteristics of the communication network and protocols

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 113 of 148

There exist multiple approaches to capture the communication requirements of an

edge computing scenario. The FRACTAL nodes as defined in the use case would be

IoT devices interconnected to each other and to the FRACTAL edge center, which

would ultimately be connected to the cloud. The aim of the FRACTAL approach should

be focusing on light reliance on the cloud, so most part of data treatment must be

done in the nodes themselves, assuring fast analysis and response capability.

However, the edge controller should be aware of the status of the different nodes

under its govern. This ranges from the simple knowledge that the device is there and

up (heartbeat exchange), to more complex tasks such as deployments, version

control, etc.

IoT communication protocols are required, some examples could be C2, MQTT and

CoAP. Further research will help to elucidate more precisely the characteristics and

requirements of the IoT devices, so a protocol choice can be made.

 Basic functionalities and core services

One of the innovative aspects the FRACTAL project revolves around is modularity

(keeping the architecture divided into independent modules which are able to work

separately). Microservices emerge as a valid approach for this problem, through the

modularization of the classical monolithic server-side application into independent

services9. These services are therefore loosely-coupled as do not depend on each

other for their performance, providing flexibility to the whole architecture.

Although further research on the use case’s scenario is still required before specifying

which functionalities will be required, an edge scenario should presumably provide:

metadata storage and treatment, alerts and notifications, logging and auditing

mechanisms, automatic updating tools, failure or error monitoring and prediction,

self-maintenance, or a registry & authentication system, to mention some.

The integration and interoperability of such microservices, however, must be

addressed. As microservices can be developed following different programming

strategies, they need APIs to communicate, which must also be specified.

It is important to keep in mind approaches such as containers, which provide an

implementation technology for microservices. These are represented by lightweight

images and work as a self-contained and independent application which, after

deployed, is fully isolated10. This container configuration requires a management tool

for the automation and coordination during the container lifecycle. Technologies such

as Kubernetes are widely used, and also with resource management tools such as

YARN or Mesos.

9 Leppanen, T., Savaglio, C., Loven, L., Jarvenpaa, T., Ehsani, R., Peltonen, E., … Riekki, J. Edge-Based
Microservices Architecture for Internet of Things: Mobility Analysis Case Study. 2019 IEEE Global
Communications Conference (GLOBECOM). (2019).

10 Pahl, C., & Lee, B. Containers and Clusters for Edge Cloud Architectures -- A Technology Review. 2015
3rd International Conference on Future Internet of Things and Cloud. (2015).

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 114 of 148

7.3 Validation of the edge computing architecture

Validation of the edge computing software engineering framework require functional

testing and non-functional testing at different levels in the systems:

- At a component level, validating the functionality and data flow of the

different software components (i.e., microservices) that comprise the edge

computing framework.

- At a system level, validating the overall system end-to-end operation, in

terms of functionality and performance, along with blocks of components

interaction and system integration with the final ecosystem of each use case.

Considering the basic functionalities of the FRACTAL edge node, at a component level,

the validation of the edge computing framework needs at least to address the

following aspects:

Functional tests:

- Validation of sensor compatibility and use case-specific testing, depending

on the final purpose of the sensors. Functionality and data flow of

components in charge of handling data flows from sensors or external

devices must be validated.

- Validation of the integration with different types of devices and platforms

through existing interfaces, by means of different IoT data protocols.

Adaptation to framework internal data model must be also validated.

- Validation and testing of data filtering, processing, and analytic

components to ensure that the system can operate as required.

Non-functional tests:

- Validation of the performance of the device and sensor communication

with the edge computing node, validating the latency and quality of service

levels as the number of devices connected to the system increases.

- Validation of the scalability of the edge node, ensuring that it can handle

and process requests without affecting latency as the system scales up in

the number of connections with IoT data platforms or interfaces being

used to communicate.

- Load and stress testing to ensure that the data filtering and processing

performance is not affected by the number of devices and connections.

In addition to the validation of the main components of the edge computing

framework, the validation at a system level is also needed:

Interoperability:

- Validation of the interoperability across all the integrated components to

ensure the compatibility and data interaction with other devices.

Functional tests:

- Validating the basic system functionalities as software component

management and update, dynamic reconfiguration and remote

monitoring, as well as validating data flows between the system and its

connected ecosystem.

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 115 of 148

Non-functional tests:

- Performance, reliability, and scalability testing to validate data flow and

ensure that performance remains unaffected by variations in scale.

- Validation of system latency between main blocks of components,

ensuring that this speed remains unaffected by the addition of new blocks

into the edge computing framework.

Methodology for validation of microservice systems

Microservices use well-known technologies, such as RESTful APIs or message queues,

for which the software industry already has well-established testing tools and best

practices. The main challenges with microservice architectures are, on one hand, the

large number of services that can compose an application, along with the

dependencies between them, and on the other hand, that each microservice needs

to function properly despite other microservices that they depend on are unavailable

or not responding properly.

In this context, continuous validation becomes essential for building, testing, and

deploying containerized microservices to ensure that the overall system operates in

accordance with its objectives, to automate the deployment process of new versions

of the artifacts and to reduce the risks of releasing updates and unexpected downtime

due to failures and irregular operating conditions.

In order to enable an automated validation of the system operation, it will be required

that every single software component (i.e., microservice) provides a definition of its

external interface, along with an automated unit-testing of its source code.

Integrated in CD/CI tool, such as Jenkins, where the unit-testing will be executed,

and if it is successful, the code will be packed into a container and a set of container

self-test will be provided to ensure that all the components of the container are

working correctly and the interface will be also validated to be as the one previously

defined.

If all tests executed on a microservice development machine, then the microservice

will be deployed on a test environment, based on the final target architecture, where

functional and load integration testing will be performed, checking also possible

issues caused by orchestration if used, life cycle management and communications.

As long as the microservice passes all tests on the target test environment, then it is

safe to deploy it to the production environment.

7.4 Integration, testing and validation of standalone

communication sub-systems

This task will focus on communications to and from the Fractal nodes. The activities

include integration and testing the FRACTAL nodes’ wireless communications

capabilities with a stand-alone communications subsystem.

The assumption in the start of the designs is that communications modules will be

connected to the FRACTAL node by USB-C, USB3.0 or Ethernet, thus, both wired and

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 116 of 148

wireless communications are utilized, depending on use cases and requirements,

such as power consumption and data rates. According to the initial requirements in

the use cases, there are several nearly opposite demands for communication to be

fulfilled, i.e., from 300 Mb/s to only a few bytes per day and from node-to-node direct

communications to over-the-air provided updates.

Due to the different requirements, several wireless means will be utilized. This will

include both unlicensed and licensed wireless technologies. The most popular

unlicensed ones are Wi-Fi, Bluetooth and LoRa technologies as the licensed include

3GPP specified technologies from 4/5G to NB-IoT and LTE-M.

Wi-Fi can offer hundreds of Mb/s over a fairly short distance while LoRa support low

power transmission over a long, up to tens of kilometers distance, range. Bluetooth

can be used for mesh type of communications between the nodes.

The counter part in the 3GPP defined technologies are 4/5G which can offer up to

Gb/s of data rates, while both NB-IoT and LTE-M variants support long distances and

low power consumption for the use of FRACTAL nodes.

The FRACTAL nodes with its’ wireless connectivity options will be tested in the 5GTN

network of OULU to validate the performance in conjunction with a real-life wireless

state-of-the-art network. The 5GTN as a live test network supports all the above-

mentioned different technologies and it has already a wide range of devices

integrated into the network. There will be pre-tests done with even wireless CAN

adapters that will be used, for example, in UC 2.

The 5GTN is currently built mainly on Rel. 15 supporting HW and SW, but the network

itself is constantly being updated with recently completed Rel 16. features. Different

parameters that will be tested during the validation include e.g., data rate, latency,

block error rate and end-to-end delays. For Rel. 16 communications jitter testing it

may become important in industrial use cases with Time Sensitive Network

(Industrial Ethernet over wireless) are available.

7.5 Requirements flowing down to WP3

Objective 1:

Open-Safe-Reliable and low power node architecture

These requirements flow down to WP3.

 GAIA-X:Technical Architecture compability

 Dynamic adaption capability (Dynamic adaptation of cloud and edge service

is of key importance to enable the seamless integration of cloud

infrastructure and edge equipment)

 Efficient rerouting of the information from IoT devices to the containers and

the inter-container communication

 Flexible online reconfigurability

 Integration and interoperability of microservices

 API management

https://www.data-infrastructure.eu/GAIAX/Redaktion/EN/Publications/gaia-x-technical-architecture.pdf?__blob=publicationFile&v=5

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 117 of 148

 MLOps (related to DevOps) - Automated orchestration and certification (to

certify the state of the edge node from firmware state to software layer,

e.g., ML models in use are accurate) on the edge including

Commission/decommission of the edge and deployment framework of ML

microservices in a secure environment

 GPU enablement

 Support for controllability and observability

 Multi-user massive MIMO (multiple-input and multiple-output) enablement

 Targeted future Service Level Agreements (SLAs) definitions

 Unlicensed and licensed wireless technologies enablement

 The WP3 platform shall support implementations for Command and Control

(C2) protocols

Table 59 – WP6 requirements flowing down to WP3

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 118 of 148

8 Node architecture and building blocks

This section relates to objective O1 and pillar 1 and it describes the architecture and

building blocks addressed in WP3. Therefore, it provides the requirements of those

hardware and software components upon which the remaining layers of the stack

and the UCs build. Hence, technologies in this chapter lay at the bottom of the

FRACTAL stack, as depicted in Figure 23.

Figure 23 – Blocks from the Cognitive System for pillar 1

This chapter details, for both baseline platforms, i.e., Xilinx VERSAL and RISC-V

based ones, how requirements from the UCs, as well as from WP4/5/6 are captured

to some good extent, together with the node and building block requirements for

each platform, classifying them across hardware and software parts.

8.1 VERSAL-based node

The Xilinx VERSAL System on Chip (SoC) is expected to be deployed as part of the

VCK190 Evaluation Kit board, which provides support for several I/O interfaces and

memory devices. The requirements from the UCs on the VERSAL hardware platform

often related to the components in the SoC or the board, which, based on our

analysis, should be supported. Those requirements are detailed in the following table

for the different UCs building on the VERSAL platform identifying what components

should capture them.

UC REQUIREMENT MEANS

UC1 VERSAL node SoC

UC2 Non-volatile memory Board

UC2 ≥ 4 cores (parallel processing) SoC (2+2 Arm cores)

UC2 ≥ 16 GB RAM Board

UC2 10 MOP/s to 1 GOP/s processing performance SoC

UC4 Low Latency Object Detection (LLOD): CPU and

hardware accelerator

SoC

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 119 of 148

UC4 LLOD: Powerful enough to run the inference

without any stall as the video streams flows.

SoC

UC4 LLOD: Re-configuration of the hardware for

different inference models

SoC

UC5 ≥ 4 cores SoC (2+2 Arm cores)

UC5 Handle with multi-threading applications SoC

UC5 ≥ 60 GFLOPS SoC

UC5 ≥ 16 GB DDR RAM Board

UC5 HW acceleration SoC

UC5 HW acceleration based on Graphics Processing

Unit (GPU)

SoC

UC6 ≥ 1 High Definition (HD) camera Board

UC6 ≥ 1 microphone Board

UC6 HW acceleration SoC

UC6 HW acceleration based on GPU SoC

UC6 Modular and scalable architecture SoC

UC6 Store data locally in a secure manner Board

UC6 Control an interactive touchscreen display Board

UC6 Control an audio speaker Board

UC6 Hardware for convolutional neural networks

applications

SoC

UC8 ≥ 2 cores SoC (2+2 Arm cores)

UC8 Handle with multi-threading applications SoC

UC8 ≥ 800 MHz SoC

UC8 ≥ 32 GB eMMC or similar memory Board

UC8 ≥ 4 GB DDR RAM Board

Table 60 – UC requirements for the VERSAL hardware platform

Similarly, the following table reports a number of requirements from the UCs related

to the software support of the VERSAL platform. Those generally relate to whether

the platform supports Linux, math libraries and Open Computing Language (OpenCL).

UC REQUIREMENT MEANS

UC1 Linux SoC+board

UC2 Linux SoC+board

UC2 Math libraries SoC+board

UC4 Linux 64-bits SoC+board

UC5 Linux SoC+board

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 120 of 148

UC5 HW accelerators should be programmed with

OpenCL

Vitis

UC6 Linux SoC+board

UC6 Monitoring system able to measure response

time of tasks

Linux and Vitis

UC8 Linux SoC+board

Table 61 – UC requirements for the VERSAL software platform

All the requirements captured from WP4/5/6 flow down for VERSAL

software/hardware platform as listed below:

WP REQUIREMENT LOCATION/FEATURE

WP4 The system should produce decisions at least at

10 Hz rate, possibly at a 30Hz rate.

SoC (RPU)

WP4 Time-triggered communication shall be

supported for interaction between Fractal nodes

SoC

WP5 The WP3 platform SHALL support a Portable

Operating System Interface (POSIX)

Linux, Real Time

Operating System (RTOS)

WP5 The WP3 platform SHALL support a C/C++

runtime (versions to be defined).

Linux

WP5 The WP3 platform SHOULD support

multithreading.

WP5 The WP3 platform SHALL support Tensorflow

and Tensorflow Federated runtime libraries

(versions to be defined)

Linux

WP5 The WP3 platform SHALL support Python

libraries (versions to be defined)

Linux (Python with

binding for Xilinx

RunTime)

WP5 The WP3 platform SHOULD support Open

Neural Network Exchange (ONNX).

Linux + Vitis

WP6 Flexible online reconfigurability SoC

WP6 Support for controllability and observability SoC

WP6 Unlicensed and licensed wireless technologies

enablement

SoC + board extensions

Table 62 – WP4/5/6 requirements for the VERSAL software /hardware platform

8.1.1 Hardware requirements

The VERSAL architecture combines different engine types with a wealth of

connectivity and communication capability and a network on chip (NoC) to enable

seamless memory-mapped access to the full height and width of the device.

Intelligent Engines are artificial intelligence Engines for adaptive inference and

advanced signal processing compute, and DSP Engines for fixed point, floating point,

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 121 of 148

and complex MAC operations. Adaptable Engines are a combination of programmable

logic blocks and memory, architected for high-compute density. Scalar Engines,

including Arm Cortex-A72 and Cortex-R5F processors, allow for intensive compute

tasks.

Figure 24 – VERSAL SoC schematic

Following subsections will detail the characteristics of the hardware components

available in VERSAL Adaptive Compute Acceleration Platform (ACAP), especially those

related to safety, security and low power and cognitive awareness, whose

particularities will be described separately.

8.1.1.1 Safety, security and low power management

As shown in the Figure 24, VERSAL has a centralized Platform Management Controller

(PMC) that boots the device after power on reset. However, this subsystem includes

other functionalities related to power management, safety or reliability. The PMC

handles device management control functions such as device reset sequencing,

initialization, boot, configuration, security, power management, dynamic function

eXchange (DFX), health-monitoring, and error management. Further details are

provided next.

Firmware running on the Platform Management Controller (PMC) is available with

code examples for user run-time power management, but basic services are provided

already. Processor sleep/wake and clock frequency-reduction features (section 5.2,

8.1.2.1) would be developed along the requirements of the UCs. Solutions of essential

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 122 of 148

concepts for power analysis and run-time management on VERSAL might be

supplemented with implementation in WP4.

Safety requirements can be mapped on the VERSAL platform by hardware support

for concepts of partitioning and isolation. Redundancy management is provided using

the Platform controllers and RPUs and Hypervisors are readily available to isolate

guest OS using the built-in coherency features of the interconnect and MMU features.

Along with these features the modular firmware services (section 5.3, 8.1.2.1) that

are targeting the new VERSAL platform still need review for fit for particular designs.

Insights should become available as reference designs for these isolation concepts.

This would include restrictive/coherent access for shared memories and shared

peripherals and using self-test libraries (LBIST) at runtime.

Security management on the VERSAL platform leverages from Secure Booting seen

in earlier Xilinx platforms, where the firmware partitions to be loaded can be

controlled with secure aspects (authenticity, confidentiality). The root of booting is a

hardware state machine that validates the hardware against golden hash values and

evaluates the eFuses. After this, only the ROM Code Unit (the RCU) in the PMC is

starting with further system checks and configuration (CDO based). It finally securely

loads the PLM, which is then in charge for all further images under partial user control,

like ARM TrustZone, platform firmware, AIE firmware and bitstreams.

The same security features apply to multi-partition loading of OSs, exchanging

bitstreams at runtime (DFX) and AI engine firmware. Along with these principles the

fallback boot handling and field update features need to be defined. One-time

programmable nodes like eFuses are available but are not easily demonstrated with

the development kits as this permanently restricts debug capabilities.

8.1.1.2 Cognitive awareness

Since FRACTAL involves several use cases, each of them having different computing

and hardware accelerating requirements, available hardware accelerator

implementation options need to be considered. The characteristics and architecture

of the different compute engines available in VERSAL heterogeneous platform are

described in this subsection.

In general, the choice of acceleration hardware, whether PL or AI Engines, depends

on the type of algorithm and data ingress and egress paths. Scalar Engines provide

complex software support. Adaptable Engines provide flexible custom compute and

data movement. Given their high compute density, AI Engines are well suited for

vector-based algorithms. Based on this, it must be considered that:

 Scalar processing elements like CPUs are very efficient at complex algorithms

with diverse decision trees and a broad set of libraries. However, these

elements are limited in performance scaling. Application control code is well

suited to run on the scalar processing elements.

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 123 of 148

 Programmable logic can be precisely customized to a particular compute

function, which makes them best at latency-critical real-time applications

(e.g., automotive driver assist) and irregular data structures (e.g., genomic

sequencing). However, algorithmic changes have traditionally taken hours to

compile versus minutes.

 The AI Engine processors deliver more compute capacity per silicon area

versus PL implementation of compute-intensive applications. AI Engines also

reduce compute-intensive power consumption by 50% versus the same

functions implemented in programmable logic (PL) and also provide

deterministic, high-performance, real-time digital signal processor (DSP)

capabilities. Because the AI Engine kernels can be written in C/C++, this

approach also delivers greater designer productivity. Signal processing and

compute-intensive algorithms are well suited to run on the AI Engines.

VERSAL specific AI Engines are an array of very-long instruction word (VLIW)

processors with single instruction multiple data (SIMD) vector units that are highly

optimized for compute-intensive applications, specifically DSP and AI technology,

such as machine learning. These AI engines provide multiple levels of parallelism

including instruction-level and data-level parallelism.

FPGA accelerator introduction

Hardware accelerator is a specialized component of SoC to perform computer vision

tasks. The component is a field programmable gate array (FPGA) solution consisting

of multiple Processing Elements (PE) for supporting computation parallelism at fine-

grain granularity. A pre-trained Convolutional Neural Networks (CNN) for image

processing is usually deployed on top of the accelerator. The key advantage of the

accelerator is the utilization of the wide concurrency that CNN inference exhibits.

The architecture of the accelerator is devised in two directions:

 The architecture of PEs and

 The architecture of the memory hierarchy

PE is a small, specialized component that performs CNN operations. It consists of a

multiply accumulate unit, an adder unit, a unit for non-linear Leaky ReLU operation

and a pooling unit. In addition, the PE has a control unit that drives the data through

operational units. The PEs are interconnected between to pass the data from one to

the other.

The memory is devised in form of a hierarchy to improve timing performance and

energy consumption by exploiting temporal reusability of CNN’s parameters. This is

achieved through small and fast buffer memories located near the PEs. While one

buffer supplies the PEs with data the other one prefetches the anticipated data from

DRAM and vice versa. PEs also have a local memory in the form of registers to keep

the current input and output data. Each operation on PE requires at least two memory

read and one memory write. If all these accesses are performed directly on the off-

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 124 of 148

chip DRAM memory the generated latency and the amount of consumed energy would

make the accelerator not adequate to deal with high computation workload of CNN.

The hardware accelerator is configurable and flexible since it is an FPGA solution,

thus making configurable the number of PEs as well as the size of the deployed local

memories. Such an approach gives us the opportunity to have customized accelerator

topology for different CNN types, while the architectural design of the PEs and the

memory hierarchy remain the same.

Based on these appreciations, in the beginning of the project the main approach is

not only to analyze, understand and determine the requirements coming from every

UC, but also the proposed roadmap in order to achieve use case objectives. These

inputs will potentially determine the required hardware development needed for

providing cognitive awareness to FRACTAL node based on VERSAL platform.

Reference architecture of a cognitive edge computing node with FRACTAL properties

will be defined and a common repository of generic qualified components will be set

up. Particular attention will be paid on providing flexible computing nodes, that are

reusable by others and that efficiently support the software on providing acceleration

for the learning part.

Several acceleration approaches (e.g., approximate computing on general-purpose

CPUs, GPUs, custom AI/Machine Learning (ML)-oriented accelerators on Field-

Programmable Gate Array (FPGA), Component Off The Shelf (COTS) AI/ML-oriented

accelerators, etc.) will be considered, evaluated and compared in order to identify

the best ones for the different FRACTAL nodes also with respect to extra-functional

properties (e.g., timing performance, power consumption, etc.).

8.1.1.3 Integration

The VERSAL platform provides support for integration of heterogeneous compute

elements with emulation and co-simulation in the Xilinx Vitis development

environment. To use these features, the proper and shareable addition of FRACTAL

elements like acceleration kernels in PL or the AI Engines requires packaging for this

tooling. Adding such elements in the context of the tools further sets requirements

for OS layer in an edge device. In the VERSAL ecosystem, services of the Xilinx

runtime (XRT) are commonly used to set up and operate these accelerator

components. These services restrict and define the form of the accelerators and need

to be followed in the design. Also, this must be supported with insight into the

application partitioning between the heterogeneous compute elements in the VERSAL

devices, i.e., the type of kernel and topology, e.g., for memory resources.

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 125 of 148

8.1.2 Software requirements

8.1.2.1 Safety, security and low power management

As shown in the Figure 24 (section 8.1.1) and described in section 8.1.1.1, VERSAL

has a centralized Platform Management Controller (PMC) that handles device

management control functions.

Power efficient designs require usage of complex system architectures with several

hardware options to reduce power consumption and usage of a specialized CPU to

handle all power management requests coming from multiple masters to power on,

power off resources, and handle power state transitions. In addition, there are other

resources like clock, reset, and pins that need to be similarly managed.

The platform management is available to support a flexible management control

through the PMC. This platform management handles several scenarios and allow the

user to execute power management decisions through its framework (equivalent to

what it is done in Linux, which provides basic power management capabilities like

CPU frequency scaling). However, some limitations apply. Because of the

heterogeneous multi-core architecture of VERSAL, individual processors can’t make

autonomous decisions about power states of individual components or subsystems.

Instead, a collaborative approach is taken, where a power management API

delegates all power management control to the platform management controller. This

PMC is the key component in coordinating the power management requests received

from the other processing units, and the coordination and execution from other

processing units through the power management API. This framework manages

resources such as power domains, power islands, clocks, resets, pins and their

relationship to CPU cores, memory, and peripheral devices.

So, while it is not yet defined, the provided power management API could be used,

since this platform management framework abstracts the complexity associated to

administrate the power-management of a multiprocessor heterogeneous system.

However, in necessary case, adaptation of the PMU unit proposed in sections 8.2.1.1

and 8.2.2.1 could be considered.

Related to security issues, those applications that require device-level security could

implement boot image encryption and authentication, functionalities that are

supported by VERSAL.

Complimentary safety or security features not provided natively by VERSAL platform,

could make use of the PL and processing units to implement required functionalities

(e.g., software module to provide redundancy or spatial and temporal partitioning

management). Related sections for RISC-V platform can be read as reference.

8.1.2.2 Cognitive awareness

Regarding the software services for cognitive awareness, there are no concrete

platform requirements.

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 126 of 148

8.1.2.3 Integration

Complex heterogeneous accelerators based on programmable logic potentially have

hundreds to thousands of computing cores, either hard-cores (ARM complex), soft-

cores (e.g., Microblaze or RISC-V in programmable logic), ASIC (e.g., the AI engine)

or soft IPs (e.g., a neural accelerator in programmable logic). This might cause

serious issues when all of them require accessing the shared resources, such as the

DRAM memory banks via the on-chip AXI interconnect and ports. This aspect might

not be captured at design time, but show up when the system is integrated, and the

(benchmark or realistic) workloads are deployed onto the platform, representing a

showstopper for performance in predictability. This will be analyzed in detail for the

domain of, and it will be proposed a mixed hardware/software solution to mitigate

contention over the shared memory and more generally in shared resources. These

methodologies might involve both ad-hoc application-specific circuits, and software

level artifacts, such as OS driver extensions and/or novel hypervisor architectural

design.

8.2 RISC-V (PULP) based node

The FRACTAL project from the beginning decided to provide two different platforms

addressing different needs. Applications that need a more mature technology and SW

support and need higher performance would target the Xilinx VERSAL platform. For

UCs that have lower performance requirements (closer to IoT applications) the RISC-

V based open-source PULP (Parallel Ultra Low Power) platform provides a second and

flexible architecture that can be tailored to applications. As part of the PULP platform,

there are several different single, multi-core and multi-cluster systems. As a basic

platform, FRACTAL will use the single core PULPissimo system, but UC owners will be

free to use any other implementation that fits their requirements. PULPissimo and

other PULP based systems have already been implemented on a variety of FPGA

based platforms, any of which can be used by the UCs.

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 127 of 148

Figure 25 – PULPissimo SoC schematic

The requirements from the UCs on the RISC-V hardware platform as well as the

means to satisfy them are as reported in the following table.

UC REQUIREMENT MEANS

UC1 PULP node SoC

UC3 512 kB on-chip memory SoC

UC3 2 MB off-chip memory Board

UC3 4 MB Flash memory for weights Board

UC3 Encrypt the program SoC (HWcrypt)

UC3 Small form factor SoC

UC3 Real time clock SoC+board

UC3 UART Interface SoC+board

UC3 Camera interface Board

UC3 SPI, I2C, I2S, USB interfaces SoC+board

UC3 Deep sleep currents <10uW SoC

UC3 PULP node SoC

UC4 LLOD: CPU and hardware accelerator SoC

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 128 of 148

UC4 LLOD: Powerful enough to run the inference

without any stall as the video streams flows.

SoC

UC4 LLOD: Re-configuration of the hardware for

different inference models

SoC

UC4 Shall support M extension for multiplication SoC

UC4 Should support “V” extension for data-level

parallelism

SoC (not PULP)

UC4 Should support “P” extension for data-level

parallelism

SoC (not PULP)

UC7 A FPU for double precision operations SoC

UC7 ≥ 2 cores (nice to have) SoC

UC7 ≥ 2 GB RAM Board

UC8 ≥ 2 cores SoC

UC8 Handle with multi-threading applications SoC

UC8 ≥ 800 MHz SoC

UC8 ≥ 32 GB eMMC or similar memory Board

UC8 ≥ 4 GB DDR RAM Board

Table 63 – UC requirements for the RISC-V hardware platform

Similarly, several requirements from the UCs relate to the software support of the

RISC-V platform. Those generally relate to whether the platform supports Linux.

While several systems from the PULP platform family support Linux, the support is

not available for all systems at the moment. Especially symmetric multiprocessing

(SMP) Linux support is not really an option for smaller scale implementations. UC

owners are in discussions with ETH to discuss different options.

UC REQUIREMENT MEANS

UC1 Linux SoC+board

UC3 OS littleKernel (lk), Zircon, freeRTOS or NuttX SoC+board

UC4 Linux 64-bits SoC+board

UC7 Linux SoC+board

UC8 Linux SoC+board

Table 64 – UC requirements for the RISC-V software platform

All the requirements captured from WP4/5/6 flow down for RISC-V

software/hardware platform are listed below:

WP REQUIREMENT LOCATION/FEATURE

WP4 PMUs measuring multicore interference. BSC performance

monitoring unit for safety

[Hardware Requirements]

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 129 of 148

BSC safety and security

software support for the

performance monitoring unit

(PMU) [Software

Requirements]

WP4 Interfaces to create redundant processes

which execute with some staggering.

BSC software-only diverse

redundancy support for

safety [Software

Requirements]

WP4 Process/task privilege management or

information obfuscation means for the PMU.

BSC safety and security

software support for the

performance monitoring unit

(PMU) [Software

Requirements]

Support for Machine, User &

Supervisor RISC-V privilege

modes if a rich OS is

implemented [Hardware

Requirements]

WP4 The system should produce time-bounded

decisions (reworded from “The system

should produce decisions at least at 10 Hz

rate, possibly at a 30Hz rate.”)

Use cases can use platform

features to implement this

requirement

WP5 The WP3 platform SHALL support a POSIX

operating system

PULP systems support

POSIX based operating

systems. However,

applications that require

heavy support from an

operating system are

probably not best suited for

the PULP systems used in

this project.

WP5 The WP3 platform SHOULD support

multithreading.

There are PULP systems that

support multithreading.

Although this is not the main

systems that are intended

for UCs, UC providers are

welcome to use them.

WP5 The WP3 platform SHALL support a C/C++

runtime (versions TBD).

PULP platform supports all

common C/C++

development environment

runtimes.

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 130 of 148

WP5 The WP3 platform SHALL support Tensorflow

and Tensorflow Federated runtime libraries

(versions TBD).

Tensorflow generated

graphs can be efficiently

mapped to PULP based

systems. However, the PULP

based systems are not

meant or designed to

replace common Linux

running computing nodes.

They are highly efficient

specialized architectures for

data centric processing.

WP5 The WP3 platform SHOULD support ONNX. For using the LEDEL library

and facilitate the

interoperability of the

models.

WP5 The WP3 platform shall support Java Runtime

(to allow distributed execution management

technologies) (version TBD)

TBD in D2.3

WP5 The WP3 platform may support MLFlow or

other ML lifecycle management platform

TBD in D2.3

WP6 The WP3 platform shall support

implementations for Command and Control

(C2) protocols

TBD in D2.3

Table 65 – WP4/5/6 requirements for the RISC-V software/hardware platform

8.2.1 Hardware requirements

FRACTAL involves several UCs each with different computing requirements. In the

first part of the project, the goal is to understand and determine the requirements

from every UC that potentially could use the experimental FRACTAL node based on

RISC-V cores.

The hardware requirements for the system can be divided into two categories.

a) the processor core

b) the system that includes the core, the memory and all the peripherals.

For the processor core we identify the following parameters:

 Word size (64/32 bit): RISC-V is a flexible implementation that allows cores

with different bit widths. PULP platform currently has three different 32bit

cores and one 64bit core.

 ISA extensions (yes/no): An attractive part of RISC-V is the ability to add

custom instructions to the processors without interfering with the standard

instructions. There is great freedom (with some limitations) to add such

instructions, however the SW environment has to be adapted to take

advantage of such extensions.

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 131 of 148

For the system we further identify the following parameters:

 Architecture (single core/many-core/multi-cluster): PULP platform is

organized around systems that have different compute capabilities. For

smaller applications, systems with a single processor core are available. ETH

has had great success with cluster-based many-core architectures for IoT

applications and for more demanding applications, multi-cluster architectures

are also available.

 Heterogeneous acceleration (yes/no): For certain applications, the system can

be enhanced by domain-specific accelerators. The PULP architecture has been

designed to be flexible to add a series of accelerators with relative ease.

 Memory size (kB): All PULP based systems use a hierarchy of local memories,

not necessarily caches. On-chip memory is a crucial parameter that

determines the area (cost) and performance (speed, power) of the system.

Several applications require larger on-chip memories to be efficient, and the

memory requirement of the system is an important parameter to determine

the suitability of the chosen platform.

Common performance parameters such as circuit area, maximum operating

frequency, power consumption, energy per operation are dependent on the

implementation technology and as explained in section 8.2.1.3, such parameters will

be estimated depending on the chosen implementation technology for each use case.

The common platform will furthermore be enhanced as part of the FRACTAL project

for safety, security and low power (section 8.2.1.1 below) and cognitive awareness

(section 8.2.1.2) whose parameters will be described separately.

8.2.1.1 Safety, security and low power management

Performance monitoring unit for safety

A multicore interference-aware Performance Monitor Unit (PMU) will provide safety

support for verification, validation and deploying safety measures during operation.

Additionally, it will allow secure access to PMU information. The PMU is an advanced

statistical unit including controllability and observability channels that will be used to

deal with timing interference concerns in safety-critical real-time applications on top

of the PULP-related SoCs.

The PMU can be divided in the following components:

 Maximum-Contention Control Unit (MCCU): Provides control and quality of

service to the shared resource, holding one quota counter per each core,

which is set to the maximum number of cycles that such core can use that

shared resource. It allows implementing safety measures on top.

 Request Duration Counter (RDC): Are a series of registers which monitor and

measure each event duration when trying to access a shared resource,

recording the maximum latency observed. It helps timing verification (e.g.,

Worst-Case Execution Time estimation).

 Cycle Contention Stack (CCS): Provides interference information about when

a contender tries to access a shared resource that is being used by another

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 132 of 148

contender. With this information, a contention stack is generated to measure

the amount of interference created by each contender. It provides diagnosis

capabilities for timing validation and during operation.

The PMU is Advanced Microcontroller Bus Architecture compliant (AMBA-compliant),

all registers can be accessed to be read or written through Advanced eXtensible

Interface (AXI) or Advanced High-performance Bus (AHB) interfaces. The PMU is fully

customizable and can be tailored to a wide variety of multicore architectures,

including those based on RISC-V architecture. The PMU’s control and parametrization

will be done by software with an appropriate library.

Safety and security support for the Interconnect

Implementation of hardware support for safety and security for the interconnection

architecture or network-on-chip (NoC) in the RISC-V platform requires including

support to improve isolation capabilities of the RISC-V multicore platform to achieve

predictability, fault containment and security. Developments will be provided on top

of an AXI compliant interconnect. This interconnect will be used to interconnect RISC-

V cores and accelerators with memory devices. The NoC will also incorporate

debugging information to allow the PMU to obtain accurate timing information for the

SoC components that are connected to the NoC.

Suggested safety features

Use cases that plan to integrate on PULP platform have not expressed strong

requirements related to safety features, either because they are in a prototype phase

or because they will address safety at the system-level.

Therefore, this section includes suggestions for additional features, in a “bottom-up”

fashion, that could be integrated in the processor cores or the SoC for future needs.

These features relate to the following generic safety requirements:

 Availability: readiness of the system when needed and ability to recover from

a failure

 Predictability: ability to predict how a system will behave with given inputs

 Real-time and controlled timing execution: ability to meet hard deadlines

 Reliability: ability to resist to wear-out and harsh environmental conditions

 Integrity: ability to retain data uncorrupted

 Explainability: capability to explain why a system is behaving as it is (pre-

requisite for predictability)

 Observability: ability to observe the detailed system state

 Simplicity (limited complexity): ability of a system to be understood end-to-

end in a concise manner

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 133 of 148

Processor core-level safety features (suggestions)11:

 Ability to invalidate/flush the cache and Translation Lookaside Buffer (TLB) to

return to a known state (predictability)

 Ability to define non-cacheable address chunks for peripherals (predictability)

 Ability to disable caches (higher predictability at the expense of performance)

 Ability to disable predictions, such as branch predictions (higher predictability

at the expense of performance)

 Availability of local memory, such as scratchpad or locked lines/set in the L1

cache (strong real-time and higher predictability for critical processes)

 Performance counters:

o Cache usage (hit, miss…)

o TLB usage (hit, miss…)

o Exceptions

o Executed instructions

o Branch predictions

o Timestamp (number of clock cycles)

 MMU and privilege levels (to implement a Linux-like OS or a hypervisor for

safety-critical applications that require one)

Some of the above core-level features will be developed for the OpenHW Group’s

open-source CVA6 core (32/64-bit Linux-capable RISC-V core derived from PULP 64-

bit ARIANE core developed by ETH Zürich).

We can have several processor cores in the SoC. Some applications may choose to

host safety-critical processes on a dedicated core or several cores. Therefore, the

following features are suggested:

SoC-level safety features (suggestions):

 Ability to dedicate core(s) for safety-critical processes (explainability and

simplicity, increased protection against interferences)

 Primitives for spatial partitioning, e.g., cores that do not include a Memory

Management Unit (MMU) shall not be able to read from/write to critical

address spaces. This can be implemented through a memory protection unit,

also called PMP in the RISC-V context (integrity)

 Configurable QoS with fixed or bounded latency between safety-dedicated

core(s) and main memory / interface controllers through the interconnect

(predictability).

 The QoS control can be:

o static (defined at power up)

o pseudo-static (defined when launching a new process or application)

o dynamic (run-time adaptive)

11 The text between brackets () identifies the generic safety requirement that is

addressed by the feature.

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 134 of 148

 Ability to route interrupt sources to different cores (Predictability: non-critical

interrupts should not be handled by cores processing critical tasks.)

 Periodic timers (primitive for the scheduler)

Processor core and SoC levels (suggestions):

 The controls of the above features shall only be accessed in the relevant

privilege level. (integrity)

 A debug infrastructure is needed to deploy applications using the above

features.

 Ability to detect, report and correct safety-related errors (ability to recover

from a failure). This includes a hardware diagnostics layer for core and SoC

health monitoring at boot time and periodically during operation.

8.2.1.2 Cognitive awareness

Support for acceleration software technologies

Necessary hardware support will be provided to efficiently execute the LEDEL library

in the RISC-V platform. This includes the efficient interconnection of the LEDEL

supported accelerators to memory and the CPU to accelerator communication. Within

the framework of this task, the possibilities of High-level Synthesis CNN accelerators

for SoC with embedded FPGAs.

LEDEL library will be provided in the RISC-V platform. This software component of

FRACTAL will benefit from the development of different hardware accelerators in

order to efficiently execute several Convolutional Neural Networks architectures on

top.

Accelerator definition

The FPGA accelerator, described in section 8.1.1.2, will be part of the PULP platform

as well.

As stated in 8.1.1.2, an analysis needs to be carried out, in order to determine the

required hardware development needed for providing cognitive awareness. Last two

paragraphs of that section apply to PULP platform as well.

Infrared camera support

In order to integrate the infrared camera module in the RISC-V platform for the iris

diagnosis experimentation, s, so that they meet different requirements in term of

data analysis, image acquisition, pre-processing of data. At same time the scope is

to meet the requirements for the FRACTAL nodes for the expected cognitive

awareness.

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 135 of 148

8.2.1.3 Integration

The PULP Platform has been primarily optimized for efficient ASIC implementations.

FPGA based implementations are used for hardware emulation and to design

demonstrators. This is why, basic mapping (memories to BRAMs, reset logic and a

few others) will be performed. As a result, PULP based FPGA implementations target

mostly modest operating frequencies (50-100MHz) on entry level FPGA boards.

Hardware emulation on an FPGA platform not only enables prototypes that could be

used in in-field demonstrations at a higher Technical Readiness Level (TRL), but also

has the benefit of adding a large variation of interfaces and supporting circuitry as

part of a standard FPGA development platform that readily includes DDR memory,

Flash, SD cards, USB, I2C, HDMI, Ethernet interfaces and many more. Therefore,

FPGA implementations (when compared to actual ASIC implementations) are more

flexible and can more readily be adapted to existing infrastructure.

8.2.2 Software requirements

8.2.2.1 Safety, security and low power management

Safety and security software support for the performance monitoring unit

(PMU)

The PMU component will be accompanied with a developed library to read/write all

PMU’s registers, which includes configuring it and obtaining statistics.

The library will include the functionality of controlling the Maximum-Contention

Control Unit (MCCU) quota counters values and alerting the user when allocated

quotas have been exceeded, as well the capability of doing a close monitoring of the

Request Duration Counters (RDC) and the Cycle Contention Stack (CCS) registers.

As part of these features, the library will include basic capabilities such as:

 Reset and/or initialize all counters or individual counters.

 Read statistics registers.

 Enable and disable PMU’s components: MCCU, RDC or CSS.

 Self-test of PMU’s components.

While not yet defined, the PMU will also include support to manage access rights to

the PMU information and configuration for security purposes.

Software-only diverse redundancy support for safety

A safety element will be provided to reach some degree of diverse redundancy against

common cause faults (CCF): a software-based lightweight Dual-Core Lockstep

(DCLS) will be developed.

This safety feature builds on redundant processes created by the user, as well as a

routine to compare the outcomes of those processes. The solution delivered builds

on the following elements:

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 136 of 148

 A monitor process to orchestrate the execution of redundant applications on

different cores guaranteeing the same dynamic instruction in both redundant

applications never execute simultaneously, thus providing time diversity.

o The monitor issues both redundant threads monitoring their staggering

by building on their local performance monitoring counters.

o Upon the detection of a risk of losing diversity during the next

monitoring period, the monitor stalls the trailing thread during the next

monitoring period.

o If the trailing thread cannot catch up with the head thread during the

next monitoring period, it is allowed to execute normally.

 Outcome comparison at the end of the execution.

Note that this solution has limitations related to the need of both redundant threads

executing exactly the same control path and the same number of instructions, which

is a constraint propagated to the user. Alternatively, we consider providing hardware

support for true DCLS as a best effort option.

Software support for suggested safety features:

Along with the suggested hardware safety features identified above in a “bottom-up”

fashion, the following software support is recommended:

 Mixed-criticality support: The platform shall accommodate safety processing

along with less or not critical processes.

 Temporal partitioning and scheduling: predictability for critical processes

sharing processor resources with other processes.

 Spatial partitioning:

o To protect the integrity and confidentiality of the memory space and

peripherals used by safety-critical processes.

o Other non-memory mapped resources can be partitioned (dedicated

buses, process-core affinity…)

o Can also be used to make access time more predictable by managing

the location of given data (e.g., scratchpad)

 Explicit communication between partitions: primitives to explicitly share data

and send events between partitions that can have different criticality levels.

 QoS and WCET monitoring and control: to leverage related HW controls for

the sake of critical processes (in a mixed-critical context)

 Data mapping tool:

o To correctly exploit spatial partitioning, the SW developer needs to

correctly map data to memory spaces.

o This can be done thanks to the linker and/or a higher-level tool.

 Related documentation and API

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 137 of 148

Low-end OS-support

As an experimental implementation the NuttX RTOS will be integrated to the FRACTAL

PULP node (https://nuttx.apache.org/docs/latest/index.html). NuttX offers a POSIX

compatibility, a sort of limited version of Linux.

The motivation for this work is to be able to use simple processor cores. The energy

consumption and component cost will potentially go down. Services Platforms and

Cognitive Agents layers will have limitations depending how much memory they

require and how much actual processing is required. After all FRACTAL architecture

is designed to delegate the processing intensive tasks to the hardware, efficient

implementation of this interface with NuttX is crucial.

Figure 26 – Comparing Linux and RTOS requirements

The figure above illustrates this. The green circle presents the Linux platforms and

the yellow circle this NuttX approach. Also, on the green area, the FRACTAL libraries

are fully available. Due the NuttX POSIX compatibility the libraries are also available

in the yellow area but with limitations. However, the idea will be that libraries

themselves are not ported; they are just used as a limited set.

If we look at the use cases, the UC3 could utilize this solution best, but also other

use cases where sub nodes need less features and chip price and/or energy

consumption matters.

Yet another experimental option is to use OpenAMP12 together with NuttX and Linux

for the asymmetric multi-core processing. One core is running NuttX and the others

Linux. Linux will be woken up for processing intensive tasks, e.g., for training AI.

Asymmetric operation could be beneficial for various use cases, by potentially

lowering energy need and requiring less resources from the chip.

In the drawing above this means that both the green and yellow circles can be used

in the same application. While the PULP SMP is limited, it may be implemented to

some other target.

12 https://www.openampproject.org/

https://nuttx.apache.org/docs/latest/index.html
https://www.openampproject.org/

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 138 of 148

8.2.2.2 Cognitive awareness

Acceleration support

The cognitive awareness needs, defined by the use cases requirements, will be

fulfilled through the implementation of Artificial Intelligence (AI) algorithms in the

software layer of the FRACTAL node. These AI algorithms will be focused on different

neural network topologies according to the requirements of each use case and will

be specially designed to be able to run on low energy resources. For this task, it will

be provided the Low Energy Deep Learning Library (LEDEL), which will have these

requirements:

 Focused on inference. The LEDEL available in the FRACTAL node will run the

models, but these neural networks will probably need to be trained outside

the LEDEL due to high computational requirements.

 ONNX format. To ensure the compatibility of the models, the LEDEL will use

the Open Neural Network Exchange (ONNX) format. ONNX improves

interoperability using different frameworks in the training step, and also eases

the use of different hardware accelerators (check section 8.2.1.2).

 C++. The LEDEL will be provided in C++ and, therefore, the software platform

will need a C++11 compiler.

 Linux. The LEDEL will work on Linux platforms.

 Other requirements. The LEDEL will need other standard requirements to be

compiled. For example: cmake, eigen, protobuf, etc. These dependencies will

be easily satisfied using the Anaconda environment (Python).

 Support both Fully Connected Neural Networks (FCNNs) and Convolutional

Neural Networks (CNNs). Specific architectures (like Tiny-YOLO for UC4) will

be defined later during the WP5 work.

Finally, some requirements related to the hardware accelerators will be defined

according to 8.2.1.2. In order to use an accelerator, the LEDEL might incorporate

other requirements related to that accelerator (for instance, CUDA support for

NVIDIA GPU).

Infrared camera support

Hardware support for infrared camera module in the RISC-V platform will be granted

in order to handle the iris diagnosis. The sensor should be connected to the RISC-V

platform via the MIPI interface using the drivers already presents in the Linux kernel

of the platform. The RISC-V interconnection will be managed with API and libraries

selected for the purpose of expanding the functionality of the platform. The platform

for data collection, pre-processing of data, data analysis, fault management and

sensor setting will be implemented at software level.

8.2.2.3 Integration

POSIX compatible NuttX operating system will be integrated to the selected PULP

platform(s). A necessary development environment and tools will be produced with

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 139 of 148

C/C++ support. Integration of service and agent layers are based on UC needs and

NuttX resources.

Additionally, study the integration of OpenAMP asymmetric interface between Linux

and Nuttx will be carried.

Regarding the integration of the LEDEL in the FRACTAL platform, the library will be

provided in C++ code. In order to use the LEDEL, the code will be compiled to

generate a library that can be included in any project. A detailed documentation will

be generated in order to ease the compilation step according to the defined software

and hardware stacks.

Software integration for infrared camera module in the RISC-V platform will be

granted in order to handle the experimentation of the iris diagnosis. As mentioned

above, the integration between the RISC-V Platform and infrared camera module will

be managed with API and libraries selected for the purpose of expanding the

functionality of the platform. This includes the support for the system integration

process, the sensor configuration and calibration process, the sensor fault monitoring

and the data collection process the whole it should be provided in C++ code.

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 140 of 148

9 Conclusions

This deliverable describes all the use cases of the FRACTAL project, it gives their

context and highlights their objectives and contribution to the FRACTAL goals.

Each demonstrator also provides a set of business and technical Key Performance

Indicators. These KPIs shall be further decomposed, they are at use-case level and

shall be refined first at system level KPIs and then reach technical KPIs at component

level.

The Use Cases are one core element driving the project with its needs and

requirements highlighted in this document. These needs are then appointed to the

“Node Architecture & Building Blocks” (WP3), “Safety, Security & Low Power

Techniques” (WP4), “AI & Safe Autonomous Techniques” (WP5) and “Mutable and

Fractal Communications” (WP6).

Even if this document is just a beginning and still need to be completed, tools will be

used to gather them and track requirements described here. This tracking will allow

to determine, as the project progresses, the coverage (number of requirements

covered by the design) and compliance (number of fulfilled requirements).

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 141 of 148

10 List of Figures

Figure 1 – Top-down approach of the FRACTAL specification 10

Figure 2 – UC1 demonstrator 1 scheme ... 14

Figure 3 – UC1 demonstrator 2 relations description ... 15

Figure 4 – UC1 demonstrator 2 scheme ... 15

Figure 5 – Engine control diagram .. 19

Figure 6 – Physical Air Path diagram ... 20

Figure 7 – Predictive maintenance models link the in-use phase to the development

and the workshop/maintenance phase .. 22

Figure 8 – Overview of UC2 ... 24

Figure 9 – Smart meter diagram... 27

Figure 10 – VER-UC4 Object detection and recognition in industry 34

Figure 11 – CAF Istanbul's fully automated metro ... 40

Figure 12 – Smart Totem illustration ... 45

Figure 13 – Schematic representation of the VAL-UC6. 46

Figure 14 – Smart Physical Demonstration and Evaluation Robot (SPIDER) 51

Figure 15 – Sensor setup for collision avoidance function of VAL-UC7 52

Figure 16 – Blocks from the Cognitive System to adapt for guaranteeing pillar 2 .. 59

Figure 17 – Typical NoC-based MPSoC ... 60

Figure 18 – Fractal security services at node and system level 64

Figure 19 – Blocks from the Cognitive System to adapt for guaranteeing pillar 3 .. 67

Figure 20 – Secure Payload Application Data .. 68

Figure 21 – Encryption techniques and security protocols at the transport layer,

network layer, and link layer .. 69

Figure 22 – Blocks from the Cognitive System to adapt for guaranteeing pillar 4 110

Figure 23 – Blocks from the Cognitive System for pillar 1 118

Figure 24 – VERSAL SoC schematic ... 121

Figure 25 – PULPissimo SoC schematic .. 127

Figure 26 – Comparing Linux and RTOS requirements 137

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 142 of 148

11 List of Tables

Table 1 – Document history .. 7

Table 2 – List of FRACTAL use cases ... 12

Table 3 – FRACTAL objectives .. 12

Table 4 – VER-UC1 requirements .. 18

Table 5 – VER-UC2 requirements .. 26

Table 6 – VER-UC3 requirements .. 32

Table 7 – VER-UC4 requirements .. 39

Table 8 – VAL-UC5 requirements .. 44

Table 9 – Target TRL for VAL-UC6... 47

Table 10 – VER-UC6 requirements .. 50

Table 11 – VAL-UC7 requirements .. 55

Table 12 – VAL-UC8 requirements .. 58

Table 13 – WP4 requirements flowing down to WP3 .. 66

Table 14 – UC1 DAI needs ... 72

Table 15 – UC2 DAI needs ... 73

Table 16 – UC3 DAI needs ... 73

Table 17 – UC4 DAI needs ... 74

Table 18 – UC5 DAI needs ... 74

Table 19 – UC6 DAI needs ... 75

Table 20 – UC7 DAI needs ... 76

Table 21 – UC8 DAI needs ... 76

Table 22 – Proposed requirements for Distributed Artificial Intelligence 77

Table 23 – UC1 AI performance needs .. 79

Table 24 – UC2 AI performance needs .. 79

Table 25 – UC3 AI performance needs .. 80

Table 26 – UC4 AI performance needs .. 80

Table 27 – UC5 AI performance needs .. 81

Table 28 – UC6 AI performance needs .. 81

Table 29 – UC7 AI performance needs .. 82

Table 30 – UC8 AI performance needs .. 83

Table 31 – UC1 inference needs ... 88

Table 32 – UC2 inference needs ... 89

Table 33 – UC3 inference needs ... 89

Table 34 – UC4 inference needs ... 90

Table 35 – UC5 inference needs ... 91

Table 36 – UC6 inference needs ... 92

Table 37 – UC7 inference needs ... 93

Table 38 – UC8 inference needs ... 94

Table 39 – Proposed requirements for inference ... 95

Table 40 – UC1 learning needs ... 95

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 143 of 148

Table 41 – UC2 learning needs ... 96

Table 42 – UC3 learning needs ... 96

Table 43 – UC4 learning needs ... 96

Table 44 – UC5 learning needs ... 97

Table 45 – UC6 learning needs ... 97

Table 46 – UC7 learning needs ... 97

Table 47 – UC8 learning needs ... 98

Table 48 – Proposed requirements for learning ... 98

Table 49 – UC1 run & development environment needs 102

Table 50 – UC2 run & development environment needs 103

Table 51 – UC3 run & development environment needs 103

Table 52 – UC4 run & development environment needs 104

Table 53 – UC5 run & development environment needs 104

Table 54 – UC6 run & development environment needs 105

Table 55 – UC7 run & development environment needs 106

Table 56 – UC8 run & development environment needs 107

Table 57 – Proposed requirements for run & development environment 107

Table 58 – WP5 requirements flowing down to WP3 .. 108

Table 59 – WP6 requirements flowing down to WP3 .. 117

Table 60 – UC requirements for the VERSAL hardware platform 119

Table 61 – UC requirements for the VERSAL software platform 120

Table 62 – WP4/5/6 requirements for the VERSAL software /hardware platform . 120

Table 63 – UC requirements for the RISC-V hardware platform 128

Table 64 – UC requirements for the RISC-V software platform 128

Table 65 – WP4/5/6 requirements for the RISC-V software/hardware platform ... 130

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 144 of 148

12 List of Abbreviations

ACAP Adaptive Compute Acceleration Platform (relates to VERSAL)

AHB Advanced High-performance Bus

AI Artificial Intelligence

AMBA Advanced Microcontroller Bus Architecture

AMP Asymmetric Multi-Processing

AMQP Advanced Message Queuing Protocol

API Application Programming Interface

ARM Advanced RISC Machines

ASIC Application-Specific Integrated Circuit

ASIL Automotive Safety Integrity Level

ATO Automatic Train Operation

AXI Advanced eXtensible Interface

BWT Burrows-Wheeler Transform

CAN Controller Area Network

CCF Common Cause Faults

CCS Cycle Contention Stack

CD Continuous Delivery

CDO Common Data Object

CEP Complex Event Processing

CI Continuous Integration

CNN Convolutional Neural Network

CoA Collision Avoidance

COTS Component Off The Shelf

CPS Cyber Physical Systems

CPSoS Cyber-Physical Systems of Systems

CPU Central Processing Unit

CS Compressive Sensing

CSS Cycle Contention Stack

CUDA Compute Unified Device Architecture

CV Computer Vision

DAI Distributed Artificial Intelligence

DAI Distributed Artificial Intelligence

DCLS Dual-Core Lockstep

DCT Discrete Cosine Transform

DDR Double Data Rate memory

DevOps Development and Operations

DFX Dynamic Function eXchange

DL Deep Learning

DNN Deep Neural Network

DoA Description of Action

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 145 of 148

DPU Deep-learning Processing Unit

DRAM Dynamic Random Access Memory

DSP Digital Signal Processing

DVFS Dynamic Voltage and Frequency Scaling

DWT Discrete Wavelength Transform

ECU Engine Control Unit

EDP Energy-Delay Product

EGR Exhaust Gas Recirculation

ELT Extract, Load, Transform

EN European Norm

ERTMS European Rail Traffic Management System

EtherCAT Ethernet for Control Automation Technology

ETL Extract, Transform, Load

EU European Union

FCNN Fully Connected Neural Network

FLOPS Floating Point Operation Per Second (and multiples: MFLOPS, GFLOPS)

FPGA Field-Programmable Gate Array

FPU Floating-Point Unit

FPS Frames Per Second

GA Grant Agreement

GB Gigabyte

GDPR General Data Protection Regulation

GPU Graphics Processing Unit

GPGPU General Purpose GPU

HD High Definition

HDMI High-Definition Multimedia Interface

HESoC Heterogeneous Embedded System on Chip

HLS High-Level Synthesis

HW Hardware

Hz Hertz

I/O Input/Output

I2C Inter-Integrated Circuit interface

I2S Inter-IC Sound

IBM International Business Machines Corporation

IC Integrated Circuit

ICT Information and Communications Technologies

ICT International Electrotechnical Commission

IDE Integrated Development Environment

IID Independent and Identically Distributed

IoT Internet of Things

IOU Intersection Over Union

IP Internet Protocol

ISA Instruction Set Architecture

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 146 of 148

ISO International Organization for Standardization

IT Information Technology

JBDC Java Database Connectivity

JVM Java Virtual Machine

KPI Key Performance Index

LBIST Logic Built-In Self-Test

LEDEL Low Energy DEep Learning Library (LEDEL)

LLOD Low Latency Object Detection

LTE Long-Term Evolution

MAC Multiply Accumulate

MB Megabyte

MCCU Maximum-Contention Control Unit

MIMO Multiple-Input and Multiple-Output

MIPI Mobile Industry Processor Interface

ML Machine Learning

MLOps Machine Learning and Operations

MMU Memory Management Unit

MQ Message Queueing

MQTT Message Queuing Telemetry Transport

NB-IoT Narrow Band IoT

NoC Network-on-Chip

OBDC Open Database Connectivity

ONN Operational Neural Network

ONNX Open Neural Network Exchange

OP Operation (and multiples: MOP, GOP...)

OpenCL Open Computing Language

OpenCV Open Source Computer Vision Library

OPC UA Open Connectivity Unified Architecture

OS Operating system

OT Operational Technology

OTA Over The Air

PE Processing Element

PL Programmable Logic

PMC Platform Management Controller

PMCA Programmable Many Core Accelerators

PMML Predictive Model Markup Language

PMP Physical Memory Protection

PMU Performance Monitor Unit

POSIX Portable Operating System Interface

ProfiNET Process Field Net

PTE Power Train Engineering

PTF Power Train Function

PULP Parallel Ultra Low Power

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 147 of 148

QoS Quality of Service

RAM Random Access Memory

RCU ROM Code Unit

RDC Request Duration Counter

ReLU Rectified Linear Unit

REST Representational State Transfer

RISC Reduced Instruction Set Computer

RLE Run-Length Encoding

ROM Read-Only Memory

RPU Real-Time Processing Unit

RT Real Time

RTOS Real Time Operating System

SA Sparse Approximation

SD Secure Digital

SDK Software Development Kit

SDN System Defined Network

SIMD Single Instruction Multiple Data

SLA Service Level Agreement

SMP Symmetric Multi-Processing

SO Shared Object

SoC System on Chip

SPI Serial Peripheral Interconnect

SPIDER Smart Physical Demonstration and Evaluation Robot

SQL Structured Query Language

SW Software

SWARM System Wide Adaptive Ramp Metering

TBD To Be Defined

TCP Transmission Control Protocol

TFLite TensorFlow Lite

TLB Translation Lookaside Buffer

TPU Tensor Processing Unit

TRL Technical Readiness Level

TTY Terminal Type

UART Universal Asynchronous Receiver Transmitter

UAV Unmanned Aerial Vehicle

UC Use case

UDP User Datagram Protocol

UNE Asociación Española de Normalización

USB Universal Serial Bus

VAL Validation

VER Verification

VLIW Very Long Instruction Word

WCET Worst Case Execution Time

Project FRACTAL

Title Platform specification (a)

Del. Code D2.1

 Copyright © 2021 FRACTAL Project Consortium 148 of 148

WiFi Wireless Fidelity

WP Work Package

WS Web Service

WSN Wireless Sensor Network

WSN Wireless Sensor Network

XRT Xilinx RunTime

YARN Yet Another Resource Negotiator

YOLO You Only Look Once

The short names of FRACTAL partners are not considered as abbreviations: ACP,

AITEK, AVL, BEE, BSC, CAF, ETH, HALTIAN, IKER, LKS, MODIS, OFFC, PLC2,

PROINTEC, QUA, ROT, RULEX, SIEG, SIEM, SML, THA, UNIGE, UNIMORE, UNIVAQ,

UOULU, UPV, VIF, ZYLK.

	1 History
	2 Summary
	3 Introduction
	3.1 Organization of the specification

	4 Use case requirements
	4.1 VER-UC1: Improving the quality of engineering and maintenance works through drones
	4.1.1 Description of the use case
	4.1.2 Roadmap to achieve use case KPI and objectives
	4.1.3 Requirements

	4.2 VER-UC2: Improving the quality of automotive air control
	4.2.1 Description of the use case
	4.2.1.1 Applications in the Area of Predictive Diagnostics
	4.2.1.2 Proactive Adaptations (OTA)

	4.2.2 Roadmap to achieve use case KPI and objectives
	4.2.3 Requirements

	4.3 VER-UC3: Smart meters for everyone
	4.3.1 Description of the use case
	4.3.2 Roadmap to achieve use case KPI and objectives
	4.3.3 Requirements

	4.4 VER-UC4: Low-latency Object Detection as a generic building block for perception in the edge for Industry 4.0 applications
	4.4.1 Description of the use case
	4.4.1.1 Object detection and recognition algorithm - YOLO
	4.4.1.2 The hardware platforms
	4.4.1.3 Applications of LLOD

	4.4.2 Roadmap to achieve use case KPI and objectives
	4.4.3 Requirements

	4.5 VAL-UC5: Increasing the safety of an autonomous train through AI techniques
	4.5.1 Description of the use case
	4.5.2 Specific technical objectives
	4.5.3 More generic objectives
	4.5.4 Roadmap to achieve use case KPI and objectives
	4.5.5 Requirements

	4.6 VAL-UC6: Elaborate data collected using heterogeneous technologies
	4.6.1 Description of the use case
	4.6.2 Roadmap to achieve use case KPI and objectives
	4.6.3 Requirements

	4.7 VAL-UC7: Autonomous robot for implementing safe movements
	4.7.1 Description of the use case
	4.7.2 Roadmap to achieve use case KPI and objectives
	4.7.3 Requirements

	4.8 VAL-UC8: Improve the performance of autonomous warehouse shuttles for moving goods in a warehouse
	4.8.1 Description of the use case
	4.8.2 Roadmap to achieve use case KPI and objectives
	4.8.3 Requirements

	5 Safety, Security & Low Power Techniques
	5.1 Interconnection Architecture
	5.2 Low Power Services
	5.2.1 Node level
	5.2.2 System level

	5.3 Safety Services
	5.4 Security Services
	5.4.1 Node level
	5.4.2 System level

	5.5 Development methods in time-triggered scheduling
	5.6 Requirements flowing down to WP3

	6 AI and safe autonomous decision
	6.1 Communication requirements
	6.2 Distribution needs
	6.2.1 Centralization vs. decentralization
	6.2.2 Hierarchy
	6.2.3 Opportunism / dynamicity
	6.2.4 Use case needs for Distributed Artificial Intelligence

	6.3 AI Performance requirements
	6.3.1 Efficiency
	6.3.2 Effectiveness
	6.3.3 Reliability and availability
	6.3.4 Use case needs for AI performance

	6.4 Data & model lifecycle concept
	6.4.1 Embedded and edge machine learning algorithms
	6.4.2 Distributed machine learning platform
	6.4.3 Data management
	6.4.4 Security and privacy
	6.4.5 AI ethics

	6.5 Inference requirements
	6.5.1 Use case needs for inference

	6.6 Learning requirements
	6.6.1 Use case needs for learning

	6.7 Run & development environment requirements
	6.7.1 Available tools
	6.7.2 Usable technologies / technology stacks
	6.7.3 Interoperability & integrations with other systems
	6.7.4 Continuous integration / DevOps platform
	6.7.5 Use case needs for run & development environment

	6.8 Requirements flowing down to WP3

	7 Mutable and fractal communications
	7.1 Edge node design and implementation
	7.2 Edge center controller infrastructure
	7.3 Validation of the edge computing architecture
	7.4 Integration, testing and validation of standalone communication sub-systems
	7.5 Requirements flowing down to WP3

	8 Node architecture and building blocks
	8.1 VERSAL-based node
	8.1.1 Hardware requirements
	8.1.1.1 Safety, security and low power management
	8.1.1.2 Cognitive awareness
	8.1.1.3 Integration

	8.1.2 Software requirements
	8.1.2.1 Safety, security and low power management
	8.1.2.2 Cognitive awareness
	8.1.2.3 Integration

	8.2 RISC-V (PULP) based node
	8.2.1 Hardware requirements
	8.2.1.1 Safety, security and low power management
	8.2.1.2 Cognitive awareness
	8.2.1.3 Integration

	8.2.2 Software requirements
	8.2.2.1 Safety, security and low power management
	8.2.2.2 Cognitive awareness
	8.2.2.3 Integration

	9 Conclusions
	10 List of Figures
	11 List of Tables
	12 List of Abbreviations

