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2 Summary

This deliverable covers the main research outcomes from T6.2, which focus on the
development of an open-source software component to provide the Edge platform
with self orchestration and independence mechanisms at various levels, from the
physical hardware (HW-Level Edge Controller), the node (Edge Controller & Custom
Orchestrator) and the runtime operations (Runtime Manager). All these mechanisms
are  built  to  provide  an  open-source  implementation  of  the  edge  controller
infrastructure.

There are four main sections (4, 5, 6 and 7) in D6.2: 

Sections  4  and  5  are  dedicated  to  describing  the  Edge  Controller  and  Custom
Orchestrator components’ design and implementation, respectively. In Section 4 all
the design aspects are detailed, with explanations about the design choices made
to fulfill  with the Fractal  characteristics of  the platform.  Section 5 describes the
implementation steps, installation methods, and technical descriptions and aspects
of the components. These two sections are divided into three parts, one for each
reference  platform  architecture  (High-End  node,  Mid-Range  node  and  Low-End
node). 

Section 6 is dedicated to the Hardware-level Edge Controller, which controls the
underlying hardware where the software stack is running, This work comes from
previous developments in D4.4, and in D6.2 the communications and computations
aspects of the HW gateway for multiple-node architectures are included.

Finally,  Section  7  covers  the  Runtime  Manager  design  and  implementation,  a
component  fully  developed  within  the  Fractal  project  which  is  in  charge  of
coordinating and scheduling the operations between multiple running modules.

2.1 Achievements
Throughout this deliverable, the Design and Implementation details of every Fractal
component developed during the course of T6.2 are presented. 

These  components  have  been  developed  with  the  Fractal  objectives  in   mind
(Section  3),  in  order  to  perform  significant  research  activities  and  achieve  a
satisfactory  degree  of  novelty.  The  resulting  Fractal  components  have  a
technological relevance for the project and can be used as a primary tech stack by
the Use Cases to build the solutions for each problematic.

Highlights

 After the development of the T6.2 components, all of the Fractal reference
platforms  (High-End,  Mid-Range  and  Low-End  nodes)  have  a  custom
orchestrator available for each of their tasks. 
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 The  orchestration  capabilities  have  been  implemented  at  all  levels:  (1)
Physical  hardware  (HW-Level  Edge  Controller)  (2)  Application  level  Edge
Controller (Custom Orchestrator and Edge Controllers) and (3) Runtime and
communication level (Runtime Manager).

 A  complete  set  of  instructions  and  software  tools  has  been  provided  to
orchestrate  the  platforms,  and  no  additional  tools  to  support  missing
functionalities are needed.

 Data ingestion tools are proposed for each of the three reference nodes. For
each  of  the  tools  proposed,  installation  and  usage  steps  are  provided
together with documentation, so that the Use Cases have a wide range of
transformation and ingestion tools to extract and load data from and into
different data sources.

 Storage  tools  (databases)  are  proposed  for  each  of  the  three  reference
nodes. Several databases have been selected, installed, and tested into each
of the platforms, providing a complete set of options for each of the data
sources available. There are relational, non-relational, IoT oriented and time-
series oriented data bases as options, so the Use Cases can choose which
options suits their solution and data formats.

Lowlights

 The resulting software components  may lack of  testing and may present
bugs or inconsistencies,  specially if  they are new developments  and new
code which has not been implemented into productive environments. These
inconsistencies will be addressed during T6.3 which is dedicated to testing
and  validation  of  the  results  from  T6.1  and  T6.2,  and  will  later  be
implemented into the Use Cases.

 The technological  challenge of this  task was higher than expected at the
beginning of the task. This challenge made it necessary to extend the task
such that the resulting components had the necessary quality in terms of
code and functionalities, extending the development phases and providing
also  extra  time  to  generate  the  adequate  documentation  in  the  form of
training material, demos, and usage videos.

Results

WP6T62-01 - Data Ingestion 

https://github.com/project-fractal/WP6T62-01-data-ingestion

WP6T62-02 - Federated Data Collection 

https://github.com/project-fractal/WP6T62-02-Federated_Data_Collection

WP6T62-03 - Run time Manager
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https://github.com/project-fractal/WP6T62-03-Runtime-Manager

WP6T62-04 - Hardware Edge Controller

https://github.com/project-fractal/WP6T62-HW-Edge-Controller

WP6T62-06 – Orchestration (Edge controller) 

https://github.com/project-fractal/WP6T62-06-edge-controller-orchestrator

WP6T62-06 - Orchestration (Mid-range node orchestrator) 

https://github.com/project-fractal/WP6T62-06-mid-range-orchestration

WP6T62-06 – Orchestration (Low-end node orchestrator)

https://github.com/project-fractal/WP6T62-06-low-end-node-orchestrator
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3 Introduction 

Following the working structure of D6.1, this deliverable has been divided into three
main sections, the Edge Controller design, the Edge Controller implementation, and
the  Hardware  level  edge  controller.  each  one  referring  to  one  of  the  main
processing architectures of the proposed FRACTAL platforms. The Edge Controller is
a FRACTAL component both at the software and hardware levels that provides the
edge  nodes  of  orchestration  mechanisms  to  be  able  to  schedule  workloads
dynamically,  considering  the  workload  parameters  to  optimize  the  available
resources.

At the software level  (Sections 4 and 5),  the Edge Controller was designed and
implemented for the three main reference platforms described below:

The first platform is the High-End node, which relies on an ARM64 architecture, and
is  the  most  powerful  of  the  platforms  in  terms  of  processing  capabilities  and
computation (for example, the Xilinx VERSAL board). 

Secondly,  the  Mid-Range  node  is  an  intermediate  platform  based  on  RISCV-64
architectures,  typically  running on less powerful  platforms and MPSoCs,  but  still
being able to perform most AI inference operations, low-weight training, and with a
low power consumption. 

Lastly, the Low-End node is based on RISCV-32 architectures, running on resource
restrained platforms (usually PULP platforms) which can perform AI operations with
a very low power consumption.

A hardware-level edge controller is a H/W Edge orchestration used in the Gateway
of the Network-on-Chip (Interface that connects the on-chip with the off-chip) to
schedule the injection time of messages from Network-on-Chip (NoC) to the off-Chip
and vice versa. The Hardware-level Edge Controller aims to reduce the message
collision  in  Hierarchical  Systems  with  multiple  nodes  by  using  a  precomputed
schedule. It also ensures the synchronization of Multiple nodes.

Objectives and Approaches

The  design  of  the  different  Edge  controller  was  done  considering  the  overall
objectives of the FRACTAL Project:
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Objective 1 Design and Implement an Open-Safe-Reliable Platform to
Build Cognitive Nodes of Variable Complexity

Objective 2 Guarantee FRACTAL nodes and systems extra-functional
properties  (dependability,  security,  timeliness  and
energy-efficiency)

Objective 3 Evaluate and validate the analytics approach by means
of  AI  to  help  the  identification  of  the  largest  set  of
working  conditions  still  preserving  safety  and  security
operational behaviors.

Objective 4 To integrate fractal communication properties (scale free
networks) to FRACTAL nodes.

Table 1: FRACTAL Project Objectives

Given that  T6.2 belongs to  WP6,  which is  focused on building  a communication
framework for the FRACTAL Platform, the Edge Controller focused on complying O4,
while  also approaching O2,  searching that  the systems composing the FRACTAL
nodes are self and context aware, and can adapt to changes in their own resource
capabilities and the external nodes’ status.

The SW-level Edge Controller was designed following a two-fold approach, the multi-
node communications and the One-node communications.

Multi-node  communications  refer  to  different  nodes  in  the  same  network
communicating  between  each  other.  In  a  typical  IoT  architecture,  nodes
communicate between them (bottom-up) or directly with a centralized node (top-
down) which is in charge of the load and task balancing between the nodes. The
Edge Controller design was done such that the components developed in T6.2 can
serve both purposes, allowing for bottom-up and top-down orchestrations, with a
single implementation. 

The main goal of Multi-node communications is to provide the nodes with context
awareness, in such a way that the nodes know what the system resources of all of
the other collaborating nodes are, being able to fractally adapt to overloads and re-
allocate the tasks over free nodes.

One-node  communications  are  all  communications  happening  inside  one  node
between its different components. This means managing the information inside the
node itself, without any of this information being exposed to other nodes, and the
node itself is taking the appropriate decisions based on this data.

This  concept  of  a  node  taking  decisions  on  its  own  status  without  considering
external  inputs  is  called  self-orchestration,  and is  a  key  capability  in  intelligent
systems,  because  nodes  must  be  able  to  operate  by  themselves  even  if  the
communications to all other nodes are lost. The most paradigmatic examples are
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self-driving  and  autonomous  cars,  which  must  be  able  to  keep  on  driving
autonomously even if they are going through a tunnel, where there is no signal
reception.

The objective of the Edge Controller components is to provide the FRACTAL platform
of  orchestration  capabilities,  without  the  need  of  a  heavy  resource-consuming
external orchestrator like Kubernetes, and being able to monitor the node resources
and take decisions based on the targeted parameters.  Secondary objectives are
described in Table 2:

Orchestration 
capabilities

Provide the FRACTAL platform of orchestration capabilities

System resources 
monitoring

The FRACTAL platform must be able to know the system 
resources of individual nodes, and also the surrounding nodes 
(self-awareness and context-awareness capabilities).

Simple extensibility The design must be done such that the orchestration and 
resource monitoring capabilities are easily extendable and 
non-rigid, so they can be broadened in the future with new 
implementations by the open-source community. 

Platform independent The implementation must be done taking into account that the
platforms have architectural and resource differences, but the 
code must be as inter-operable between platforms as possible 
to avoid divergency between the developments. 

Containerized solution Container virtualization is the preferred deployment method 
for the Edge Controller. Other installation and deployment 
methods on bare-metal and VMs will be studied.

Table 2: Edge Controller objectives
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4 Edge Controller design

This  section  refers  to  the  Software  Edge  Controller  design.  The  Hardware  Edge
Controller design and implementation are described in Section 6. 

The Software  Edge  Controller  (simply  referred  to  as  the  Edge  Controller  during
Sections 4 and 5) is a software stack that can be deployed on an arbitrarily large
number of nodes (from 1 to potentially any number of nodes) to monitor the status
of each of the nodes separately. The information gathered from each of the nodes is
then collected and analyzed, giving the system the capability of knowing the overall
state of the system, and each node will know the status of each of its neighboring
nodes, providing context-awareness and self-awareness capabilities to the Fractal
Edge Platform.

During  this  Section,  the  design  of  the  Edge  Controller  is  described  and  its
components  and  main  functionalities  are  explained  for  each  of  the  reference
platforms (High-End node, Mid-Range node and Low-End node).

4.1 High-end node (ARM64)
The Edge Controller design was done following a modular design, in a way that all
the  components  of  the  Edge  Controller  can  work  independently  (similarly  to  a
microservice approach) on different nodes. For the High-end and Mid-range nodes,
the components were designed and developed trying to keep the compatibility as
high as possible,  so the developments done for  the High-End node will  also run
properly  on the Mid-range nodes.  The main differences in  design will  be  at  the
Ingestion & Storage capabilities, given that the processor architecture is different,
some databases and storage tools may not be available for the RISC-V architecture,
so alternatives will be studied to cover all the Fractal technological stack.

The High-End node refers to the reference platform for the Xilinx VERSAL board,
which has an ARM64-bit architecture.

4.1.1 One-node Edge controller
The  One-node  Edge  controller’s  goal  is  to  monitor  the  system  resources  and
translate all the data about the system processor and HW usage into readable data.
It was designed based on the Resource Manager microservice, as it can be seen in
the following Figure:
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The  Resource  Manager  is  in  charge  of  getting  all  the  information  about  the
Hardware  system,  CPU  usage,  memory  available,  storage,  and  any  relevant
information that could be used to monitor the overall  system load. To build this
microservice, the glances Python package has been targeted, as it is a lightweight
tool that can be run on most Linux OSs and is able to provide diverse information
like the processor sensor’s operating temperatures. 

In addition to glances, a second process collects the information about the node and
transforms  it  into  a  readable  format,  providing  this  information  to  the  Custom
Orchestrator, which will later make decisions based on the collected information to
optimize  the  system  performance  by  applying  restrictions  or  rescheduling
workloads inside the node. 

The two main components of the Resource Manager are:

1. Glances https://pypi.org/project/Glances/
2. Edge-monitoring (developed during Fractal T6.2)

Glances  is  a  Python  package  focused  on  system monitoring  which  scrapes  and
presents a large amount of information through a terminal or web interface. It can
be  easily  installed  on  most  Linux  distributions.  It  is  easy  to  use,  utilizes  low
resources, and can be used in a containerized application.

A container has been created packaging the glances Python package to monitor and
expose this information via a node port, where an API is exposed to be requested
the information about the system. More details on the implementation can be found
on Section 5.1.

Figure 1: One-node Edge controller architectural design
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The Edge-monitoring tool is a Python program packaged inside another container,
which  performs  periodic  requests  on  the  already  exposed  glances  API,  and  is
responsible of gathering all the system information and translating it into a readable
format for the custom orchestrator, based on a set of metrics.

Some important aspects about the Edge-monitoring tool:

1. It can be chosen what parameters to monitor, CPU, memory, processor load,
or alerts.

2. It must be specified what container orchestrator the node is using, whether it
is Kubernetes or Docker (orchestrator-less).

3. Hostname,  port,  IP,  set  of  resources to  monitor  and  orchestrator  can  be
provided via a YAML file.

This architectural design is completely scalable, as it will be shown in the design of
the Multi-node Edge controller, which uses this modular microservices to build a
system that monitors the resources of potentially any number of nodes.

More details about the implementation can be found on Section 5.1.

There is another microservice that works together with the Resource Manager to
complete the Fractal Orchestration capabilities, the Custom Orchestrator.

The Custom Orchestrator  is  a (containerized)  system to monitor  the  containers,
tasks,  and  processes  being  run  on  your  system  processor.  It  can  dynamically
schedule, start, stop, and up or down scale your processes. for the high-end and
mid-range nodes. It has been designed in a modular way, this means that it can be
operated  from  both  architectures  following  the  same  design,  and  orchestrate
containers from a docker host or K8S control plane, having very similar capabilities
independently of the processor architecture and the reference platform being used,
and  being  able  to  use  both  docker  and  K8S  as  container  orchestrators,
implementing orchestration capabilities for docker hosts and improving the already
existing K8S orchestrating operations by adding custom orchestration capabilities
and a full awareness of the status of each of the nodes in the cluster (from 1, to N
number of nodes). 

For  deployments  consisting  of  a  single  node  cluster  (One-node  Edge  controller
deployments),  the  custom  orchestrator  is  deployed  together  with  the  resource
manager and the node exporter (glances container) in the same node. This is done
by building and deploying three container images which work together as a typical
microservices architecture. The metrics exporter container is in charge of gathering
all the information about the CPU and hardware available resources, then, these
resources are  used by the resource  manager  container  and an updated tainted
nodes list is sent to the custom orchestrator container, who ultimately is in charge
of applying  the  appropriate  restrictions depending on the container  orchestrator
that is specified in the node's configuration file.
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4.1.2 Multi-node Edge controllers
To keep the architecture as modular and re-usable as possible, the Multi-node Edge
controller was built as an extended capability of the already designed One-node
Edge controller, where the Resource Monitoring tool is deployed to all the nodes of
the Fractal environment to be monitored. Then, these nodes are monitored by a
dedicated Master node which will gather the information of every node.

The Multi-node Edge controller architecture is described in the Figure below:

As it can be seen in the design architecture, there is an arbitrarily big number of
nodes,  and  each  node  is  running  a  Resource  Manager  instance.  The  Resource
Manager consists of the previously described glances container, which gathers and
exposes the HW system information via a dedicated web server with a REST API.
The  Master  Node  will  then  be  running  the  Node-monitoring  Resource  Manager
container,  with  a  provided  YAML  configuration  file,  where  all  the  nodes  on  the
Fractal  environment are specified, and the Master Node will  gather the resource
information for each node, even if these nodes are disconnected temporarily from
the network or new nodes are added. Note that, as the Resource Manager is able to
run both the glances container and the node-monitoring tool, every single node on
the cluster can still monitor itself, or other nodes, which means that each node is
fully aware of the status of:

1.- Itself

2.- Surrounding nodes

Figure 2: Multi-node Edge controller architectural design
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3.- Overall resource status of the whole cluster

Thus, providing the self-awareness and context-awareness capabilities of the Fractal
platform.

Finally,  the  Custom Orchestrator  being  run  on  the  Master  node  is  in  charge  of
managing the K8S API so that enhanced orchestration methods can be applied into
the cluster. This is achieved by deploying a pod or container which is in charge of
getting an updated list of tainted notes from the resource manager, and applying
certain actions on all the K8S resources which it is given permissions to modify. The
usual set-up would be a custom orchestrator pod which is in charge of applying the
restrictions to the control plane and master node, so when the tainted node list gets
updated in the custom orchestrator container, these taints can directly be applied.
The most usual taint is “No-Schedule”, which avoids new pods to be created into
the restricted node.

4.1.3  Custom Orchestrator
The custom orchestrator is designed in a way that keeps the compatibility between
the different architectures, i.e., ARM, RISC-V, and X86-64, as much as possible. To
achieve this matter, the communication protocol is implemented from scratch by
defining the message schema handled by sockets directly. This new implementation
requires no external libraries and dependencies for the systems. The design also
follows the principle of microservice programming and makes the scalability of the
systems easy. There are three primary services. As illustrated in Figure 3, the first
part is the API server, the second component is the service manager, and the last is
the executor daemon. The main functionality of each service is explained as follows.

 API server: As the name of this component hints, it is developed to make
user  interaction  with  the  system more  accessible.  It  sends  the  requests
directly to the manager service and does not communicate directly with the
nodes  on  which  the  daemon  service  is  running.  In  this  way  of  the

Figure 3: The general architectural view of the Orchestrator
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communication model, the service provides separate storage or a repository
for future tasks. 

 Service Manager: The Service Manager is the core component of the system
here. From the architectural point of view, it has four essential functions. The
connection factory is responsible for handling connections from the executor
nodes.  It  accepts  new  connections  and  passes  its  instance  to  the  node
handler. The node handler maintains the connection, tries to keep it up, and
makes the executor node ready for other procedural activity by submitting
that information to the task scheduler. The task scheduler is closely related
to the node handler and always waits for new tasks incoming from the API
server, which is handled by the request handler. The request handler bridges
the API server and the service manager. Any requests made by the user will
be delivered and governed by this function in the service manager. 

 Executor: This piece of software is the part of the node/container/machine on
which you want that task to be run. It  constantly communicates with the
Service Manager, sends its status, and waits for a task to be assigned by
keeping  the  socket  connection  open  to  the  server.  By  decoupling  this
component  from the Service  Manager,  it  is  easier  to  scale  out  or  in  the
runners according to the requirements of the load in the system. The time to
wait for a runner to be up and running is eliminated by provisioning them
before scheduling any tasks.  Practically,  it  is possible to add up as many
runners as we need, and a single instance of the Service Manager will handle
the load. 

4.1.4 Ingestion & Storage capabilities
Ingestion & Storage capabilities refer to the set of tools that are available for the
Fractal platform and that will be used to collect data from different data sources and
store these data in the most optimal database for each use case.

Here is provided a set of tools for ingestion & storage together with a description of
each tool  and their main features.  Instructions  on how to implement  and install
these tools can be found in Section 5 (implementation).

Ingestion

Data ingestion becomes a crucial task in IoT and Edge computing scenarios where
the data sources are very diverse, and relying on powerful and flexible ETL (Extract,
Transform,  Load)  tools  is  a  must  in  the  Fractal  Platform.  Multiple  choices  are
provided  for  data  ingestion  tools,  so  the  vast  majority  of  scenarios  can  be
approached.

For the High-End Node, it must be noted that ARM64 is the most popular processor
architecture for IoT devices and Edge computing frameworks. This is why it has the
most complete set of tools to be installed. For this component, two open source ETL
tools are proposed, one for Java and one for Python programming languages:
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Java based tool: 

Apache NiFi

Although  Java  is  not  the  preferred  programming  language  in  Edge  computing
architectures,  an  exception  is  to  be made with Apache  NiFi  as the  overall  best
performing  open-source  ETL  tool  available.  It  is  widely  used  for  data  stream
processing and counts with a wide and active community.  If  an ETL and stream
processing tool is required, Apache NiFi is highly recommended and reliable.

Python based tools:

In case that Python is preferred over Java for your specific application, or Apache
NiFi  lacks  any  specific  functionality  required  for  your  use  case,  two other  open
source and Python-based alternatives are given:

Apache Spark (PySpark)

Apache  Spark  is  a  multi-language  engine  for  executing  data  engineering,  data
science, and machine learning on single-node machines or clusters.

Faust

Faust is a stream processing library that processes from Apache Kafka streams,
built in Python. It supports the following extensions:

Name Version Bundle

Rocksdb 5.0 pip install faust[roscksdb]

redis aredis 1.1 pip install faust[redis]

datadog 0.20.0 pip install faust[datadog]

statsd 3.2.1 pip install faust[statsd]

uvloops 0.8.1 pip install faust[uvloop]

eventlet 1.16.0 pip install faust[eventlet]

yaml 5.1.0 pip install faust[yaml]

Table 3: Available Faust extensions

The main advantage of Faust is that it is a Python library and fully based on Python,
so you can integrate it with any other Python library or system as long as you have
a Kafka stream to process. Faust can publish and consume from Kafka streams and
perform stream processing operations in a distributed manner.
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Others:

A third alternative is given as a flow-based programming tool, Node-RED, written in
JavaScript and commonly used as an IoT data flow tool because of the big number
of plugins available from the community.

Node-RED consists of a Node.js based runtime that you point a web browser at to
access the flow editor. Within the browser you create your application by dragging
nodes from your palette into a workspace and start to wire them together. Then.
with a single click the application is deployed back to the runtime where it is kept
running.

Storage

Data  storage  refers  to  open-source  databases  available  to  install  to  the  ARM64
processor architecture, providing a complete set of options to cover a wide range of
applications into IoT and Edge deployments.

For  ARM64  Linux-based  devices,  two  open  source  data  collections  tools  are
proposed, one being relational and the other being a non-relational database.

Relational Database: CrateDB

A relational database, stores information in tables. Often, these tables have shared
information between them, causing a relationship to form between tables. This is
where a relational database gets its name from.

CrateDB is a distributed SQL database management system. It is designed for high
scalability since it is open source and written in Java, and it includes components
from  Facebook  Presto,  Apache  Lucene,  Elasticsearch,  and  Netty.  CrateDB  was
developed  with  the  intention  of  putting  IoT  data  to  use  and  supports  IoT  data
analytics: Time series, AI, geospatial, text search, joins, aggregations, etc.

Non-Relational Database: MongoDB

A non-relational database, sometimes called NoSQL (Not Only SQL), is any kind of
database that doesn’t use the tables, fields, and columns structured data concept
from relational databases. There are various types of NoSQL databases.

MongoDB is  a document-oriented database software.  It  is  classified as  a NoSQL
database application. It makes use of JSON-style documents with schemas.

Other alternatives

The two databases described above are the recommended databases for storing
data in the Fractal High-End node, and the ones for which an installation guide is
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provided. However, the list of available databases is very extensive and a list of
good alternatives is provided: 

InfluxDB: NoSQL database for Time-Series data.

Apache Cassandra: High-performance NoSQL database.

Apache IoTDB: High-performance database for Time-Series data.

SQLite: Highly-portable embedded relational database.

4.2 Mid-range node (RISC-V64)
The  Mid-Range  node  refers  to  FPGA  boards  and  MPSoCs  with  a  RISC-V64-bit
architecture. The Edge Controller has been designed to be compatible with both the
High-End and Mid-Range nodes. This means that the previously described design is
also applicable to Fractal nodes with a RISC-V64 architecture processor.

For validation purposes, the Python glances module was installed in a RISCV node
with a Linux OS, obtaining similar results to the ones in the ARM64 devices, and
containers running in the RISC-V machines showing similar performances.

The rest of the components are Python scripts and programs which will be able to
be  executed  in  any  node  with  Python  installed,  no  matter  what  the  processor
architecture is.

4.2.1 One-node Edge controller
Figure 1 shows the One-node Edge controller architecture design for the High-End
node.  This  architecture  is  still  valid  for  Mid-Range  nodes,  based on  a  Resource
Manager that collects and processes the information about the processor’s status,
and a Custom Orchestrator which takes actions based on this information.

The main difference between the One-node and Multi-node edge controllers for both
reference platforms the high-end node and the mid-range node is the container
orchestrator to be used by the system. Although there are some lightweight K8S
distributions for RISCV64 architectures available, they are not still mature enough to
be used for production solutions. For this reason, Docker has been chosen to be the
container  manager  platform.  Based  on  some  rules  determined  by  the  host’s
resources, containers can be dynamically scheduled on docker hosts which have
their daemons exposed. These rules are based on CPU and memory limits which can
be set for restrictions to be applied. 

For  each  loop  in  the  execution  of  the  tainted  nodes  list  update,  the  customer
orchestrator takes into account if the nodes were previously tainted in the past or
they have been recently tainted. For each of these two cases, different actions are
taken, in an increasing degree of restriction. For newly tainted nodes, the already
running containers and tasks in the host have their resources limited by applying
restrictions in the number of CPUs that they can use and also by restricting the
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available memory for them. In the next iteration, it will  be checked whether the
node was already tainted in the past or not, and in that case, containers will be
periodically stopped and rescheduled into the other available nodes if any, until the
orchestrated node is free in resources again. When the nodes are finally untainted,
restrictions on them are lifted, but the overall edge controller orchestrator is still
monitoring their resources in case any further orchestration is needed.

4.2.2 Multi-node Edge controller
For  edge controller  deployments  in  multiple  nodes architectures,  where each of
them is running a Docker instance which is in charge of managing their containers
that are being run, the Custom Orchestrator is able to apply a set of restrictions on
the nodes separately,  rescheduling containers  from exhausted nodes into  nodes
with a lower process pressure. 

Containers can be dynamically stopped and started between the different nodes,
maintaining the overall pressure of the cluster low enough for all the processes to
be executed properly. Before containers are stopped on an exhausted node, some
preventive measures are taken, for instance, when a single node appears to be
exhausted on resources, all the containers running on that host see their available
resources limited in terms of CPU and memory. If these measures are not enough
and the host is still exhausted by the execution of the container processes, these
containers are reallocated into the rest of the nodes. 

4.2.3 Custom Orchestrator
As mentioned in section 4.1.3, the current design and implementation of the custom
orchestrator let the component run smoothly on different architectures, including
the RISC-V.  The acquired libraries in this  component  are the generally  available
python libraries that come with its installation. Moreover, the system calls featured
in this component are chosen to be as general as possible to maintain compatibility
between the OS distributions. 

In some cases, the mid-range nodes are located behind a NAT network. In this case,
the means of direct control of the nodes are limited. Without a pingable IP address
of the node, it is impossible to send commands or updates to the nodes. To address
this issue, the connection is always established by the executor node. It should be
mentioned  that  the  Service  Manager  must  have  an  IP  address  that  can  be
recognizable by those nodes. When the connection is established from the side of
the executor,  the Service Manager  will  maintain  the  connection by sending and
receiving primary status  data;  for  example,  it  can be the information about  the
memory and CPU (that can be informative for the decision of the scheduler). 
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4.2.4 Ingestion & Storage capabilities
For the mid-range node, it must be taken into account that some of the packages
required to install the different ETL and database tools and databases may not be
available for the RISCV64 processor architecture.

Implementation and installation steps are provided for the available tools in Section
5, together with references to the official documentation which provides building
steps in case the source code ought to be built from source. 

For ETL tools, the same tools are proposed for both the High-end and Mid-range
nodes, so the installation may result more complex in RISCV systems because of the
non-availability of pre-built  packages. In the case of database and storage tools,
options which have available packages for the RISCV64 architecture are provided
which simplify the installation.

Once installed, the usage and functionalities of the recommended tools should be
the  same  in  both  the  Mid-Range  and  the  High-End  node,  only  differing  in  the
computing capabilities and limitations of one platform over the other.
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5 Edge controller implementation

This section is devoted to the implementation of the Edge Controller components.
The  implementation  will  include  both  the  code  design  details,  giving  thorough
information about how the different components are built and work from the inside,
how they connect and work together and how the interaction between the different
components brings context-awareness and self-awareness capabilities to the Fractal
platform where they are deployed.

Finally, it will include the installation steps and how-to-use starting guides, for the
users  of  the  Fractal  platforms  to  have  a  reference  document  to  visit  when
implementing the Edge Controller into their technological stacks.

5.1 High-end node (ARM64)
5.1.1 One-node Edge controller
As described in Section 4.1.1, the Edge controller is composed of two main services,
the Resource Manager and the Custom Orchestrator. 

The Resource Manager is the component in charge of collecting and processing
all the information about the system status. This is done through the glances Python
package, which is executed in the web server mode by the glances –w command.

This  command  exposes  a  REST  API  in  port  61208  (which  has  been  chosen  as
default)  with  all  the  collected  information.  This  API  is  documented  at
https://github.com/nicolargo/glances/blob/fieldsdescription/docs/api.rst ,  where  all
the information about what do the monitored resources mean can be found. 

This REST API has been containerized with the following Dockerfile: 

FROM ubuntu:21.10

RUN  apt-get  update  &&  DEBIAN_FRONTEND="noninteractive"
TZ="America/New_York" apt-get install -y tzdata

RUN apt-get install glances -y

RUN useradd -ms /bin/bash metricsexporter

USER metricsexporter

WORKDIR /home/metricsexporter

EXPOSE 61208

https://github.com/nicolargo/glances/blob/fieldsdescription/docs/api.rst
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COPY glances.conf /etc/glances/glances.conf

ENTRYPOINT glances -w

Notice that the base image is ubuntu:21.10, but any other Linux distro will be fine if
there is a preference. During the image build, a user metrics exporter is created to
avoid the container to be running with the root user, glances is installed and then
executed as a web server.

To deploy this container into a Docker host, run the following command:

docker run -d --network=host --pid=host --hostname 
metricsexporter <image_name>

Where <image_name> is the name of the Docker image you built before (by
default it will be metrics-exporter), and the rest of the flags mean:

-d : Run this container in detached mode, so it will not use the current terminal
session.

--network=host : Use the container host’s networking interface to expose the
API. This parameter is required to be able to access the API from outside the
container (especially in the Multi-node Edge Controller) 

--pid=host : This allows the container to access the host’s processes. This way
the rest of the host’s processes and containers can be monitored, otherwise
only the glances container process will  be shown which is of  no interest for
monitoring purposes.

--hostname metricsexporter : Set the container’s hostname.

Once the glances container is deployed on the node to be monitored, another
container has to be deployed, with all the software and scripts to make use of
the information exported by the glances container.

This is done through the following Dockerfile:

ARG PYTHON_VERSION=3.9.13

FROM python:${PYTHON_VERSION}

RUN useradd -ms /bin/bash resource_manage
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USER resource_manager

WORKDIR /home/resource_manager

COPY  --chown=resource_manager:resource_manager  utils
/home/resource_manager/utils

COPY  --chown=resource_manager:resource_manager
requirements.txt /home/resource_manager/requirements.txt

COPY  --chown=resource_manager:resource_manager  nodes.yaml
/home/resource_manager/resource_manager/nodes.yaml

COPY  --chown=resource_manager:resource_manager
resource_manager.py /home/resource_manager/resource_manager.py

RUN python3 -m pip install --upgrade pip

RUN pip install -r requirements.txt

ENTRYPOINT python3 resource_manager.py

As in the glances container, a dedicated user is created in the image build to avoid
using  the  root  user.  Then,  all  the  necessary  files  for  the  Resource  Manager  to
monitor the exposed information by the metrics-exporter container are copied into
the container, and finally the resource_manager.py script is executed.

The  resource_manager.py  script  is  where  the  main  loop  of  the  component  is
executed. First, the nodes.yaml file is read with all the information about the nodes
to be monitored. The syntax and usage of this file will be detailed in the Multi-node
Edge controller section. Then, the nodes availability is checked, and for the nodes
not available, a list of down-nodes is created.

For the alive nodes, the information is requested to their respective glances REST
APIs, and this information is parsed into manageable formats, and then processed
by importing the infotreatment.py.

Once  the  information  has  been  parsed  into  Python  objects,  it  is  sent  to  the
actions.py script, which takes decisions based on pre-defined rules.

For example, if CPU and memory are being monitored, alerts will be sent by the
program if any of these parameters go over 80%. These percentages and alerts are
customizable and can be adjusted fit the user needs.

Finally,  if  any of the nodes is noted to have an active alert, it is listed into the
Tainted nodes list, which will be handled by the Custom Orchestrator.
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Once the Custom Orchestrator comes into play, it first reads the Tainted nodes list,
which refers to the list of nodes that have some of their parameters too high or
exhausted on resources so they need actions to be taken on them. 

5.1.2 Multi-node Edge controller
It was mentioned in the previous section that a file called  nodes.yaml is copied
inside  the  resource  manager  container.  This  file  is  where  all  the  nodes  to  be
monitored are included, detailing what resources must be monitored from each of
them,  what  orchestrator  they  are  using  and  other  useful  information  for  the
resource manager script to be able to find the nodes. This is an example of a 2-node
configuration:

- node:

    hostname: "fractal-node1"

    IP: 192.168.0.83

    port: 61208

    orchestrator: "docker"

    resources: ["cpu","mem"]

- node:

    hostname: "fractal-node2"

    IP: 192.168.0.111

    port: 61208

    orchestrator: "kubernetes"

- custom-orchestrator:

    hostname: “fractal-orchestrator”

    IP: 192.168.0.23

With this configuration, both nodes will be monitored, but notice that the first node
has a dedicated array of resources to be monitored, including “cpu” and “mem”. In
this case, only these two resources will be monitored, and for the second node, all
the resources will  be monitored, including cpu, mem, processing load and alerts
given  by  the  glances  service.  For  deployments  where  a  custom  orchestrator
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container is running, another node must be added to the nodes.yaml configuration
file. This custom orchestrator node will give the resource manager the information
about what host is running the custom orchestrator container, so that it can send
the  updated  tainted  notes  list.  For  One-node  deployments,  the  customer
orchestrator  will  of course be the host  running all  the orher services and being
orchestrated by itself

The  main  difference  between  the  deployments  in  One-node  and  Multi-node
architectures is that this nodes.yaml file must be provided with a list of nodes to
monitor in the Multi-node architecture, while in the One-node, the nodes.yaml file
must only contain information about the node where the Edge Controller is being
run (hostname can even be set as localhost if running outside a container).

For Multi-node deployments, the Resource Manager will be aware of the status of all
surrounding  nodes  specified  in  the  nodes.yaml  file,  and  it  will  be  in  charge  of
sending  an  updated  list  of  Tainted  nodes  and  exhausted  nodes  to  the  Custom
Orchestrator, which will then take the necessary actions.

The Edge Custom Orchestrator will receive this list of tainted nodes together with
the resource which is  the cause of  the alert,  so the appropriate actions can be
taken.

If the node is being orchestrated by K8S, the custom orchestrator pod is able to
apply paints on the control plane and master node, so that node is no longer able to
schedule pods until the taint is lifted. For the custom orchestrator pod to be able to
apply taints to a given K8S node, it must be granted permissions by the role-based
access control policies. Other actions that this pod can take include rescheduling
pods, creating deployments, services, and virtually any other resource that should
be orchestrated externally to ensure that the system resources stay low enough for
the processes to be completed normally on each of the cluster nodes.

5.1.3  Custom Orchestrator
In  the  previous  sections,  it  was  mentioned  that  this  component  has  three sub-
components with different functionalities and specific roles. In order to make this
component run in the cluster of nodes, first, it is important to have a view of the
nodes on which this component will run. The proposed single-node and multi-node
views  are  both  supported  by  this  component.  However,  it  is  required  that  the
master node has an IP address reachable by other nodes in the system. So, the first
component  to  be  initialized  is  the  Service  Manager.  The  following  instructions
provide a step-by-step guide to set it up. First, it is required to clone the repository
from the GitHub.

$ git clone https://github.com/vahidmohsseni/k8s-manager 

$ cd k8s-manager/backend-service-manager
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$ pip install –r requirements.txt

$ python service.py

The above commands will run the main service in a machine. Note that this service
will use port 5555 (to listen to the API Server) and 5556 (to listen to the Executors)
of the machine, so it is necessary to check if it is not already in use. If the port is
unavailable, it can be changed from the file `server.py`.

The next step is to make the API server run and connect to the above service. The
API server can be run on any node which can have network access to the machine
that the service manager is running on. For the following guide, it is assumed that
the code base is already cloned.

$ cd k8s-manager/api

$ pip install –r requirements

$ python app.py

The written steps will  run the API server on port 5001 of the machine. Again,  if
necessary, it is possible to change the port to any arbitrary number. The example
assumes that the API server and service manager are running on the same machine
with the default configuration. However, the mechanism for changing the IP address
of the destination is available in the `controller/v1.py` directory. In case there is a
change in the port of the service manager, it is a must to replace the default port in
the directory mentioned above.

The final service to be run is the executor service. The executor service should be
running on those nodes that will run the tasks and functions in the cluster of the
devices. The number of nodes can be any number starting from 1. Although this
custom orchestrator is designed to handle large-scale applications, if the number of
nodes is  more than 500,  the  service  manager's  node requires  at  least  1 GB of
bandwidth and more than 16 processing cores.

$ cd k8s-manager/frontend-service-manager

$ pip install –r requirements.txt

$ python service.py

In case of a change port in the service manager, the default configuration of these
executors  should  be  changed.   And once  more,  the  executor  nodes must  have
network access to the service manager.
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All the functionalities provided by the service manager are accessible through the
API  server.  The  API  server  has  a  RESTful  design  so  that  a  frontend  UI-based
application can be developed for it to take the ease-of-use advantage of the system.
However, the following list provides the curl-based API calls for the system to run
any tasks on the nodes. It should be mentioned that the requirements for the tasks
(to  be  run  on  those  executors)  must  be  already  satisfied.  In  other  words,  the
executor nodes should be capable of running the tasks with the given commands.

Explanation URL curl parameters

Get list of tasks /api/v1/tasks/ -X GET

Create a new task /api/v1/tasks/
<task_name>

-X POST -F 
"file=@<filename>" 
-F "cmd=<args for 
python including 
file name>" -F 
"rt=<return type>"

Delete a task /api/v1/tasks/
<task_name>

-X DELETE

Stop a task /api/v1/tasks/
<task_name>/stop

-X POST

Start a stopped task /api/v1/tasks/
<task_name>/start

-X POST

Check Status of a task /api/v1/tasks/
<task_name>/status

-X GET

Table 4: Custom orchestrator API reference

5.1.4 Ingestion & Storage capabilities
For  the  High-End  node,  all  the  chosen  ETL  and  database  tools  have  pre-built
packages that can be directly installed on ARM64 devices without needing to build
the code from source. Here we provide installation and usage steps for each of the
tools described in Section 4.1.3:

Ingestion

Prerequisites
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Make  sure  that  your  system  has  the  following  available  dependencies  before
installing each of the ingestion tools

Apache NiFi 

 Requires Java 8 or Java 11
 Supported OS:

o Linux, Unix, Windows, macOS
 Local installation:

o Download the binaries or Sources from the Official Download Page
 Docker installation:

o Download the images from the Official NiFi DockerHub

Apache Spark (PySPark) 

 Python3.8 or above
 pip3
 Java 8 or later with JAVA_HOME section
 For ARM users, PyArrow is required for PySpark SQL, if PyArrow installation

fails, try installing PyArrow >= 4.0.0

Node-RED 

 Local installation: A supported version of Node.js.
 Docker installation: Docker Engine
 From source:

o A supported version of Node.js
o A git client
o The grunt-cli npm module installed locally.

Faust

 Python3.6 or above
 A running Kafka broker

Installation steps

Apache NiFi

 Download

First, and assuming you are working on a Linux OS, download the tarball file from
https://nifi.apache.org/download.html . Then, decompress the file into the desired
installation directory.

 Starting Apache NiFi

Decompress and untar into desired installation directory
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Make  any  desired  edits  in  files  found  under  /conf  to  match  your  deployment
requirements.

At a minimum,  it  is  recommended editing the nifi.properties file  and entering a
password  for  the  nifi.sensitive.props.key  (see  System  Properties  below).  This
nifi.properties file has many configuration aspects that should be reviewed before
starting the application, like ports where to expose the HTTP/HTTPs user interfaces,
user/password credentials, network interfaces to use, etc.

Once you have configured your NiFi environment, from the /bin directory, execute
the following commands by typing ./nifi.sh <command>:

 start: starts NiFi in the background
 stop: stops NiFi that is running in the background
 status: provides the current status of NiFi
 run: runs NiFi in the foreground and waits for a Ctrl-C to initiate shutdown of

NiFi
 install: installs NiFi as a service that can then be controlled via systemctl as:

o service nifi start
o service nifi stop
o service nifi status

These commands are used to control your application process, stop and restart the
service, or check the application status. Once your application is running, you can
visit the UI at (by default) https://localhost:8000.

By default, the installation script generated a random username and password that
can be edited in the nifi.properties file. If using the default configuration (which is
highly deprecated), the credentials can be found in the application logs at logs/nifi-
app.log, under the Generated Username and Generated Password lines.

To change the Username and Password you can execute the command:

$ ./bin/nifi.sh set-single-user-credentials <username> 
<password>

And then access the dashboard where you can create your dataflows from the User
Interface  at  https://localhost:8443/nifi  (again,  it  is  recommended  to  change  this
default port in the NiFi properties file).

 Docker container deployment

Once you are familiar with how NiFi works and are able to install it and deploy the
application  on  bare  metal  servers,  you  are  ready  to  deploy  NiFi  as  a  Docker
container. While you can directly run a Docker container, it is highly encouraged to
install  the application first  to  get  a  deeper insight  on how it  works and how to
configure it.
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The Official Docker Image can be found on NiFi's Official DockerHub, where you can
also find all the required information to configure and run the container.

 

PySpark

Apache  Spark  is  a  multi-language  engine  for  executing  data  engineering,  data
science, and machine learning on single-node machines or clusters.

PySpark is available as a Python3 package, it can be installed by executing:

pip install pyspark

Take into account that Spark requires the following Python package dependencies:

 

NodeRed

To install NodeRed there are two possibilities:

 Installing with npm

sudo npm install -f --unsafe-perm node-red

Figure 4: Apache Pyspark dependencies



Copyright © FRACTAL Project Consortium 32 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

And confirm the installation was successful in the end of the command output:

+ node-red@1.1.0

added 332 packages from 341 contributors in 18.494s

found 0 vulnerabilities

 Installing with Docker (recommended)

docker run -it -p 1880:1880 -v node_red_data:/data --name 
mynodered nodered/node-red

This command will create a Docker container and a data volume at /data for your
node-red  container.  Going  to  http://localhost:1880  will  bring  you  to  the  User
Interface

 

Faust

To install Faust, just run:

pip install faust

This command will install Faust in your system as a Python package.

Storage

Installation

CrateDB

 Package-based method (Linux)

This method is suitable for Debian, Ubuntu, RedHat and CentOS based systems.

 Debian/Ubuntu

First of all you will need to add CrateDB package repository to your system.
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# Install prerequisites.

apt-get install sudo

sudo apt-get install curl gnupg software-properties-common 
apt-transport-https apt-utils

# Import the public GPG key for verifying the package 
signatures.

curl -sS https://cdn.crate.io/downloads/deb/DEB-GPG-KEY-crate 
| sudo apt-key add -

# Register with the CrateDB package repository.

[[ $(lsb_release --id --short) = "Debian" ]] && 
repository="apt"

[[ $(lsb_release --id --short) = "Ubuntu" ]] && 
repository="deb"

distribution=$(lsb_release --codename --short)

sudo add-apt-repository "deb [arch=amd64] 
https://cdn.crate.io/downloads/${repository}/stable/ $
{distribution} main"

Now update the package sources:

sudo apt update

You should  see a success  message.  This  indicates  that  the  CrateDB package  is
successfuly registered. Now you can install CrateDB:

sudo apt install crate

Once installed you can control the crate service with systemctl utility program:

sudo systemctl <command> crate
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Replace COMMAND with start, stop, restart, status and so on.

 Red Hat/CentOS

First of all, you will need to add CrateDB package repository to your system.

# Install prerequisites.

yum install sudo

# Import the public GPG key for verifying the package signatures.

sudo rpm --import https://cdn.crate.io/downloads/yum/RPM-GPG-
KEY-crate

# Register with the CrateDB package repository.

sudo rpm -Uvh 
https://cdn.crate.io/downloads/yum/7/x86_64/crate-release-7.0-
1.x86_64.rpm

With everything set up, you can install CrateDB:

sudo yum install crate

Once installed you can control the crate service with systemctl utility program:

sudo systemctl <command> crate

Replace COMMAND with start, stop, restart, status and so on.

 

 Docker

CrateDB  and  Docker  are  great  matches  thanks  to  CrateDB’s  shared-nothing,
horizontally scalable architecture that lends itself well to containerization.
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In order to spin up a container using the most recent stable version of the official
CrateDB Docker image, use:

docker run --publish=4200:4200 --publish=5432:5432 crate

MongoDB

 Package-based method (Linux)

Assuming you are using an Ubuntu system, import public GPG Key for MongoDB
using:

wget -qO - https://www.mongodb.org/static/pgp/server-6.0.asc |
sudo apt-key add -

The operation should respond with an OK.

Create  the  list  file  /etc/apt/sources.list.d/mongodb-org-6.0.list for  your  version  of
Ubuntu. The following example is for Ubuntu 20.04 (Focal).

echo "deb [ arch=amd64,arm64 ] 
https://repo.mongodb.org/apt/ubuntu focal/mongodb-org/6.0 
multiverse" | sudo tee /etc/apt/sources.list.d/mongodb-org-
6.0.list

Reload the local package database.

sudo apt update

Install MongoDB packages:

sudo apt-get install -y mongodb-org

Once installed you can control the MongoDB service with systemctl utility program:

sudo systemctl COMMAND mongod
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Replace COMMAND with start, stop, restart, status and so on.

 Docker

MongoDB can run in a container. The official image available on DockerHub contains
the community edition of MongoDB and is maintained by the Docker team.

In order to spin up a container using the most recent stable version of the official
MongoDB Docker image, use:

docker run --name mongodb -d -p 27017:27017 mongo

5.2 Mid-range node (RISC-V64)
5.2.1 One-node Edge controller
For the RISCV architecture, there are steps to follow to build the edge orchestrator
are essentially the same that must be followed in the high-end node to build the
necessary containers. The resource manager and the metrics exporter should be
the  same  container  images  but  built  dedicatedly  for  different  processor
architectures.  However,  the custom orchestrator  container  plays  a  major  role  in
RISCV platforms,  because there is  no stable K8S distribution available for  these
nodes to  take care  of  dynamic  container  deployment  and management.  Docker
Engine must be used as the container manager, and the custom orchestrator will be
the system in charge of providing Fractal orchestration capabilities to the host.

The custom orchestrator container image is built with the following Dockerfile:

ARG PYTHON_VERSION=3.9.13

FROM python:${PYTHON_VERSION}

RUN useradd -ms /bin/bash custom-orchestrator

COPY  --chown=custom-orchestrator:custom-orchestrator  utils  /home/custom-
orchestrator/utils

COPY  --chown=custom-orchestrator:custom-orchestrator  requirements.txt
/home/custom-orchestrator/requirements.txt

COPY  --chown=custom-orchestrator:custom-orchestrator
custom_orchestrator.py /home/custom-orchestrator/custom_orchestrator.py

RUN pip install --upgrade pip

RUN pip install --no-cache-dir -r /home/custom-orchestrator/requirements.txt



Copyright © FRACTAL Project Consortium 37 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

USER custom-orchestrator

WORKDIR /home/custom-orchestrator

ENV FLASK_APP=custom_orchestrator.py

ENTRYPOINT flask run --host=0.0.0.0 --port=9999

During the execution of the container,  a Flask API  is run, which contains all  the
required  methods  for  the  resource manager  to  send the  updated list  of  tainted
notes and the custom orchestrator to apply the adequate actions over the Docker
daemon.

When a node is included in the list to be tainted for the first time, the first action to
be taken by the orchestrator is to limit all the resources that containers being run
on the node have access to, by limiting the CPUs and free memory available for
these containers. if the node is not untainted for a given period of time, then the
orchestrator will take more severe actions, stopping the containers one by one until
the node gets out of the tainted list. Once the processor pressure gets low enough
and the node is finally untainted, that restrictions over the node are lifted, except
for their resource limiting on the containers being run, to avoid the processor from
overloading again.

5.2.2 Multi-node Edge controller
For Multi-node edge controller deployments, the nodes.yaml configuration file must
be provided to the resource manager container, the same way it is done for the
high-end  node  platform  deployment.  The  resource  manager  will  use  the
configuration file to get a complete list of the nodes to be monitored and being part
of the cluster, and also to know which node will be in charge of running the custom
orchestrator container.

Once the deployment has been done, with the metrics exporter being run on each
node  of  the  cluster,  the  resource  manager  scraping  the  information  about  the
system  processor  for  each  node,  and  the  custom  orchestrator  running  on  the
master node of  the cluster,  the setup is  ready to  start  orchestrating  on Docker
Engine hosts by managing the containers being run, stopped, and started on each
of the nodes, while also limiting the resources available for exhausting containers.

The  Edge  Controller  ultimately  allows  the  Fractal  node  to  have  dedicated
orchestration  capabilities  by  running  a  piece  of  software  which  also  makes  the
platform and the overall system context aware. Each of the nodes in the cluster has
access to real-time information about the state of itself and the state of all the other
nodes in the fractal environment. It also overcomes the difficulties that arise from
running containerized solutions in platforms which have no support or stable K8S
distributions.



Copyright © FRACTAL Project Consortium 38 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

5.2.3 Custom Orchestrator
In  the  design section,  it  was noted that  the design of  this  component  uses the
native and general  libraries of  python to maintain  compatibility among different
hardware architectures. So, as a general rule, the component can run with the exact
instructions  provided  for  the  high-end  nodes.  However,  the  decoupled
implementation of this component allows for running the components on different
machines. With this feature, executing the service manager on a node with enough
resources and fault tolerance is recommended.

5.2.4 Ingestion & Storage capabilities
For the Mid-End node, all the chosen ETL and database tools the software packages
must be downloaded from the official repositories and built from source following
the instructions on the documentation.

Ingestion

Prerequisites

Make  sure  that  your  system  has  the  following  available  dependencies  before
installing each of the ingestion tools

Apache NiFi 

 Requires Java 8 or Java 11
 Supported OS:

o Linux, Unix, Windows, macOS
 Local installation:

o Download the binaries or Sources from the Official Download Page
 Docker installation:

o Download the images from the Official NiFi DockerHub

Apache Spark (PySPark) 

 Python3.8 or above
 pip3
 Java 8 or later with JAVA_HOME section
 For ARM users, PyArrow is required for PySpark SQL, if PyArrow installation

fails, try installing PyArrow >= 4.0.0

Node-RED 

 Local installation: A supported version of Node.js.
 Docker installation: Docker Engine
 From source:

o A supported version of Node.js
o A git client
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o The grunt-cli npm module installed locally.

Faust

 Python3.6 or above
 A running Kafka broker

Source code download links:

Apache NiFi: 

https://www.apache.org/dyn/closer.lua?path=/nifi/1.18.0/nifi-1.18.0-source-
release.zip

Apache Spark (PySpark):

https://spark.apache.org/docs/latest/api/python/getting_started/
install.html#installing-from-source

Node-RED (build from GitHub using npm):

git clone https://github.com/node-red/node-red.git

cd node-red

npm install

npm run build

npm start

Faust:

Download the latest version from https://pypi.org/project/faust/

$ tar xvfz faust-0.0.0.tar.gz

$ cd faust-0.0.0

$ python setup.py build

# python setup.py install

https://spark.apache.org/docs/latest/api/python/getting_started/install.html#installing-from-source
https://spark.apache.org/docs/latest/api/python/getting_started/install.html#installing-from-source
https://www.apache.org/dyn/closer.lua?path=/nifi/1.18.0/nifi-1.18.0-source-release.zip
https://www.apache.org/dyn/closer.lua?path=/nifi/1.18.0/nifi-1.18.0-source-release.zip
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Storage

These instructions have been executed on a RISC-V64 virtual machine with Debian
OS running on Qemu with the following specifications:

root@debian-riscv64:~# uname -a  

Linux  debian-riscv64  5.16.0-5-riscv64  #1  SMP  Debian  5.16.14-1  (2022-03-15)
riscv  

64 GNU/Linux  

root@debian-riscv64:~# lscpu  

Architecture:          riscv64  

  Byte Order:          Little Endian  

CPU(s):                4  

  On-line CPU(s) list: 0-3  

NUMA:  

  NUMA node(s):        1  

  NUMA node0 CPU(s):   0-3

Given the nature of RISC-V64, there is a notable lack of package release for the
architecture.  Thus,  the  need  for  compiling  source-code  is  usually  a  must  for
complex applications. Compiling source-code is never a trivial task and providing a
guide for it goes beyond the scope of this deliverable.

Instead, we will focus on databases that can be easily installed and should work as
an out-of-the-box solution.

MySQL

MySQL  is  maybe  the  most  popular  open-source  database  and  it  comes  with  a
release package for Debian on RISC-V architecture:

apt-get install mysql-server

Once installed you can control the server with systemctl.

Apache IoTDB
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The IoTDB database runs on Java which does have release packages for RISC-V.
First, we need to install some preliminary packages.

apt install default-jdk curl unzip

Download and unzip the binaries:

wget https://dlcdn.apache.org/iotdb/0.13.2/apache-iotdb-0.13.2-all-bin.zip 

unzip apache-iotdb-0.13.2-all-bin.zip -d

We can start the database server with:

nohup sbin/start-server.sh >/dev/null 2>&1 &

To start a client, we can then run:

# Start the client  

sbin/start-cli.sh -h 127.0.0.1 -p 6667 -u root -pw root

5.3 Low-End node (PULP RISC-V32)
As a result of WP3, Nuttx RTOS was ported to the PULP low-end systems to offer a
Posix completable application environment. See D3.6.

While the system is limited, it still offers a nice abstract development environment. 

5.3.1 Cloud communications
As discussed on D3.6 the Nuttx based PULP (RISC-V) node is not able support high
end tools such as Python and Java. However, the system took an approach to utilize
c/c++ tools. As an example, an Azure IotHub was integrated to the Nuttx. Low-end
connectivity framework is presented on figure below.

Nodes connect to cloud, where they are orchestrated based on their identity (e.g.
keyhash). After acceptance they become visible to the application. 
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The  framework  Low-end  nodes  were  verified/demonstrated,  by  using  ESP32-C3
embedded RISC-V devkit using the build in WIFI. The connectivity was based on
Azure IotHub, however, the actual mechanism implemented is abstract. Other IoT-
implementations are possible to utilize (Google, Amazon, etc.) 

The main idea is that if the connectivity implementation below changes, the Fractal
low-end Nuttx application does not need to change.

The code clip below is from the existing demo application. 

Keys:
Here the security is based on keys, built in binary. 

I “real” system, each individual device should have individual keys flashed at the
production.  Based on those individual  production keys each of  the units  can be
individually accepted/revoked from the cloud.
https://docs.microsoft.com/en-us/azure/iot-dps/concepts-symmetric-key-attestation?
tabs=linux#group-enrollments
// This is group key for fractal-demo (normally _NOT_ included on device binary)
static const uint8_t shared_group_key[] = {
       0xc6, 0xd3, 0x82, 0x3c, 0xf2, 0x3e, 0x99, 0x33, 0xfd, 0x27, 0xa6, 0xab, 0xc7,

0x28, 0xe4, 0xd9, 0xd5, 0x2c,0xc7, 0x6c, 0xb3, 0xd2, 0xa9, 0x25, 0x81, 0xcc,
0x3a, 0x1c, 0x32, 0x34, 0x7a, 0x24, 0xd7, 0xb8, 0x7d, 0xa2, 0xe5, 0x8f,0x0f,
0xc8, 0x20, 0xb0, 0x6f, 0x6e, 0x9d, 0x9b, 0xb4, 0x96, 0x4e, 0x0c,0xec, 0xc2,
0xe9, 0x30, 0x07, 0x29, 0xb6, 0xbf, 0xa2, 0xf6, 0x2c, 0x25, 0x03, 0x97

};
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The  main  application  below is  the  task  that  performs  the  main  functionality  of
demo-case.  Function  do_provisioning() connects  to  cloud  and  if  succeed  the
system  sends/receives  data  by  do_send_datatest() function.  Note  actual
manipulation  of  LED  and  reading  sensors  is  not  presented  here,  but  on  RTOS
systems that is quite trivial.

int main(int argc, char **argv)

{

    do_exit = false;

    (void) IoTHub_Init();

 

    led_init();

    led_set_value(1);

 

    THREAD_HANDLE *handle;

    ThreadAPI_Create(&handle, run_ui, NULL);

 

    ui_set_registration_state("none");

    ui_set_registration_reason("");

    ui_set_connection_state("none");

    ui_set_connection_reason("");

    ui_set_temperature("??.?");

    ui_set_humidity("rh: ??.?");

    ui_set_led_state(led_get_state());

 

    signal(SIGINT, intHandler);

 

    while (do_exit == false) {
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        do_provisioning(device_id);

 

        if (strlen(g_iothub_connection_string) != 0) {

            do_send_datatest(g_iothub_connection_string, device_id);

        } else {

            printf("Can't send data: no connection string available.\n");

        }

 

        sleep(5);

    }

 

    printf("Exitting...\n");

 

    // Free all the sdk subsystem

    IoTHub_Deinit();

 

    return 0;

}

Behind  do_provisioning() and  do_send_datatest() are  the  IotHub
implementations. For details see the code above.

5.3.2 Task scheduling
Nuttx is a posix compatible OS, and it supports posix tasks. Example code above is
one task. There can be multiple parallel tasks in the system and each task may
have multiple threads. Communication between tasks typically/threads happen by
sockets or by variables (protected by mutexes).

Limited memory and processing requirements must be considered when defining
the system.
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Tasks  can  be  started  automatically  I.e.  by  /etc/int.d/ or  manually  from terminal
command line.

5.3.3 Ingestion & Storage capabilities
Nuttx supports normal posix sockets, where data flow control can be handled e.g.
by signals. With adequate driver various communication mediums may be added.
Thus, the socket is a typical way connect communication interfaces.  Such as:

 Ethernet
 Wifi
 1.5G to 6G
 Serial, can, RS485
 USB

Nuttx  supports  normal  posix  file  system.  With  adequate  driver  various  storage
mediums may be added. Such as:

 Read only file system allocated on processor Flash
 Read/write flash file system on system board
 MMC card interface with removable media
 SATA interface for hard disks
 USB 
 Network storage utilizing e.g., NFS

Nuttx systems typically offer a console interface. Normally that is used for testing
and development purposes. Typically, it is via serial port and it offers (linux style)
tools to control and monitor applications and daemons on the system.
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6 Hardware-level Edge Controller

The  hardware  edge  controller  controls  the  underlying  hardware,  such  as
communications  and  computations.  The  underlying  hardware  is  based  on  a
network-on-chip (NoC)  multicore  architecture  that  supports  heterogeneous  cores
connected  via  NoC.  The  description  of  the  underlying  NoC-based  multicore
architecture is  reported in contribution D4.4 (WP4).  However,  in this  deliverable
D6.2,  we  report  on  the  HW  gateway  architecture  that  controls  communication
between  multiple  nodes.  The  HW  gateway  controller  follows  a  pre-calculated
schedule computed during design time and configures the network HW gateway
when systems begin to manage network gateway communications, as described in
Section 6.1.1 below.

6.1 Overview of NoC based Multicore Architecture
The NoC-based multicore architecture is the hardware used for computation and
communication in the Fractal Node. As shown in Figure 5, the multicore architecture
consists of a core responsible for computations and NI for accessing the NoC. The
on-chip interconnects a network of routers that connect the different cores within
the chip. We can also see the NGW, the network gateway for accessing the off-chip
domain. The NoC-based multicore follows a time-triggered schedule to control the
communication and computation of  tasks  in the multiple  cores within the node.
Thus, each message communicated within the cores is injected at a predefined time
to avoid message collision.
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6.1.1 Network Hardware Gateway Architecture
On-chip/off-chip  gateways  establish  end-to-end communication  in  heterogeneous
and mixed-critical  networks,  as shown in Figure  6.  An off-chip/on-chip gatewayc
ontrols  the  redirection  of  messages  between  the  NoC  and  the  off-chip
communication network.

The following sections explained the different services of the gateway architecture.

Figure 5: Multiple core architecture
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Message-Classification Service

Message classification is based on the concept of Virtual Link (VL). The concept of
VL  is  used  to  realize  bandwidth  partitioning,  which  is  an  end-to-end  multicast
channel  between  a  sender  component  and  multiple  receiver  components.  The
message  classification  service  is  responsible  for  classifying  incoming  messages
from NI to decide on the appropriate buffer (i.e., VL queues and egress queues)
based on the message type and configuration parameters. In addition, the message
classification service checks the format of the message and its control information,
such as the VL identifier (VLID). If the message has an invalid format, it is discarded.
In addition, the message classification services use the configuration parameters to
check the integrity and validity of the periodic and sporadic messages; this includes
checking the message size and whether the messages arrive with the correct VLID.
In  addition,  the  gateway  verifies  that  the  periodic  messages  arrive  within  the
specified receive windows of the VL.

Message-Scheduling Service

This service guarantees the determinism of the redirection of periodic messages
within the on-chip/off-chip gateway. Each periodic message has predefined timing
parameters,  such  as  a  period  and  a  phase.  According  to  the  predefined
configuration  for  message  scheduling,  this  service  determines  the  times  the
periodic messages are forwarded.

Traffic-Shaping Service

Figure 6: Off-chip/On-chip Network Gateway Services
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This service guarantees the minimum interarrival  time between two consecutive
sporadic messages on the respective VL. The minimum interarrival time is part of
the configuration parameters for each VL.

Relaying of Aperiodic Message

This service is responsible for forwarding aperiodic messages between ingress and
egress queues based on their respective data directions and destination addresses.

Down Sampling 

This service allows message exchange between networks with different periods or
rate  constraints  for  sporadic  messages.  Down  sampling  is  also  required  to
compensate for differences in bandwidths between off-chip and on-chip networks.
As a result, the gateway must redirect a subset of incoming messages to meet the
timing requirements of the destination network. In addition, the redirection needs to
be synchronized between networks to ensure consistent data is forwarded. In the
down sampling service, the gateway sends the most recent periodic message that
arrives before the next send time. The traffic shaper discards all  messages that
arrive within the minimum arrival time for sporadic messages.

Protocol Conversion

The  protocol  conversion  service  encapsulates  and  decapsulates  incoming  and
outgoing  messages.  The  gateway  adapts  the  message  format  and  controls
information according to the communication protocol (e.g., headers with addresses,
flow control information, CRC). In addition, gateways must determine a new address
for  the  destination  network  for  each  incoming  message.  This  computation  is
performed based on the address information of the incoming message and differs
depending on the traffic and network type. For periodic and sporadic traffic, the new
addressing information is either a VLID, a routing path to the final destination, or
another gateway. The routing path is required for source-based routing, which is
common in many NoCs. The VLID or routing path can be determined by looking up
the incoming address information in the gateway configuration. For aperiodic traffic,
the new addressing information is either destination addresses or  a dynamically
computed  routing  path.  The  gateway  can  dynamically  use  the  spanning  tree
protocol to determine the destination address [2].

Egress-queuing Service

The egress queues consist of a periodic egress queue, several sporadic queues, and
an  aperiodic  egress  queue.  Each  sporadic  queue  has  its  priority  level.  The
deterministic  behavior  of  periodic  messages  is  guaranteed  by  the  message
scheduling service (see Message scheduling service in the previous subsection) in
combination  with  a  higher  priority  than  sporadic  messages.  The  deterministic
behavior guarantees that no conflict occurs in the egress queue. Therefore, a queue
that must provide buffer capacity for a single periodic message of maximum size is
sufficient.  To  control  the  resolution  of  conflicts  between sporadic  messages,  we
distinguish multiple queues according to their priorities. These queues are used to
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multiplex the frame flow coming from the internal message queues. The queues
provide  guaranteed  buffer  capacities,  which  can  also  be  realized  by  dynamic
memory allocation. The guaranteed buffer capacities prevent the loss of messages
due to the bounded accumulation of sporadic messages, which is determined by the
rate constraints.

Ingress Queuing Service

The  ingress  queue  consists  of  a  FIFO  queue  for  each  network.  The  incoming
messages from the network are queued in the ingress queue; then,  the ingress
queuing service notifies the message classification service.

Virtual-Link Queuing Service

VL  queues  belong  to  two  groups  :  one  for  the  periodic  messages  and  the
other one for the sporadic messages.

 Periodic  VL  buffers:  Each  periodic  VL  has  one  periodic  VL  buffer,
which  provides  buffer  space  for  exactly  one  message.  In  case  this  buffer
is  full  and  another  message  arrives  with  the  same  VLID,  the  newer
message replaces the old one.

 Sporadic  VL  queues:  Each  sporadic  VL  has  one  queue.  It  is  possible
to store several messages of the respective VL in this queue.

Serialization Service

The serialization  service  forwards  the  messages  from the egress  queues to  the
network  (off-chip  or  on-chip)  according  to  the  priority.  The  highest  priority
is  assigned to  periodic  messages,  whereas aperiodic  messages have the lowest
priority.  Also,  the  serialization  service  uses  either  shuffling  or  timely  blocking
to  resolve  contention  between  different  traffic  types.  The  timely  block
mechanism disables the sending of other messages in the egress queues during
a  guarding  window  prior  to  the  transmission  of  a  periodic  message.  For  the
shuffling  mechanism,  no  guarding  window  is  needed.  In  the  worst-case,  the
gateway delays  a  periodic  message  for  the  duration  of  a  sporadic  or  aperiodic
message of maximum size.

Configuration Parameters

The configuration parameters of the gateway are as follows:

 Guaranteed  buffer  capacity:  Each  ingress  queue,  egress  queue  and  VL
queue  is  associated  with  a  corresponding  guaranteed  minimum  buffer
capacity.  The  buffer  capacity  is  determined  by  the  maximum  message
size  and  the  message  timing.  This  buffer  capacity  can  avoid  message
omissions  of  sporadic  and  periodic  messages  based  on  rate-constraints
and message periods
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 Address  information  of  ports:  The  VL  associated  with  a  port  and  the
data  direction  (from  the  off-chip  network  or  to  the  off-chip  network)
are defined.

 Message  type:  The  message  type  is  defined  such  as  periodic,  sporadic
or aperiodic.

 Timing parameters: In case of periodic messages, the parameters include the
period and phase. For sporadic messages, the interarrival time, the jitter and
the priority are specified. In case of aperiodic messages, no timing parameters
are required.

6.1.2  Processing of Different Traffic Types
This section describes the processing of messages in the off-chip/on-chip gateway.
As  depicted  in Figure  7,  the  network Gateway architecture  consists  of  different
components such as bridge, serialization, ingress, egress, and VL queue layers.

The  message  bridge  handles  incoming  messages  through  timely  redirection,
protocol conversion, monitoring, and configuration services. The network interface
provides the interface between the network and message bridging. It also performs
message  classification  and  serialization.  Each  network  interface  connects  the
gateway either to an off-chip network (TSN) or an on-chip network (ATTNoC).

The ingress layer is invoked by an incoming message from the on-chip or off-chip
network.  The incoming messages are relayed to the bridge layer in the ingress
layer. The bridge layer classifies the incoming messages based on the type (i.e.,
periodic,  sporadic,  and  aperiodic).  Below  we  explain  the  processing  for  each
message type.

Processing of Periodic Messages

Figure 7: Off-chip/On-chip Network Gateway Architecture [1]
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Figure  8 depicts  the  flowchart  for  periodic  message  transmissions.  In  the
classification state, a message analysis function extracts from the periodic message
of the VLID. In case the incoming message does not have a defined VLID in the
configuration parameters, the message is considered invalid. Invalid messages are
dropped in the classification state, while valid messages result in a transition to the
VL buffer state. Based on VLID, the check VL buffer status function retrieves the
buffer identifier from the configuration parameters. Then, it puts the message into
the VL buffer, which provides buffer space for exactly one message. In case this
buffer is full, and another message arrives with the same VLID, the newer message
replaces the old one. The “VL buffer status” for the corresponding VLID is updated
when the message is buffered. Suppose the “VL buffer status” denotes that the
buffer is not empty. In that case, the next transmission time function in the time
triggered  scheduling  state  determines  the  point  when  the  periodic  message  is
relayed according to the communication schedule, thereby ensuring deterministic
communication behavior. At the next transmission time, the pass information to the
redirection function sends the information (i.e., VLID, buffer identifier, and direction)
to the redirection state. In the redirection state, the check VL buffer status function
checks whether the corresponding VL buffer contains a message. This message is
then sent to one of the egress objects according to the direction parameter, where
the  message  is  enqueued  in  a  periodic  egress  queue.  When  the  message  is
removed,  the  “VL  buffer  status”  for  the  corresponding  VLID  is  updated.  These
procedures are performed according to the communication schedule until the “VL
buffer status” indicates that the buffer is empty. The serialization is responsible for
forwarding the message from the egress queues to the on-chip or off-chip network
interface  according  to  the  priority.  The  highest  priority  is  periodic  messages,
whereas aperiodic messages have the lowest priority.  Using these priorities,  the
serialization supports two mechanisms to resolve collisions between the different
types of messages:
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 Timely  block:  According  to the time-triggered schedule,  the serialization
knows in advance the transmission times of the periodic messages. Timely
block means that the gateway reserves so-called guarding windows before
every transmission time of a periodic message. The behavior of the timely
block mechanism is illustrated in Figure  8. The egress queues have four
egress queues with decreasing priorities: one queue for periodic messages,
two queues for sporadic messages (each one for a different priority class)
and one queue for aperiodic messages. The egress-queue status is updated
when a message is enqueued in one of the egress queues.  In case the
status  of  the  egress  queue  is  “not  empty”,  the  timely  block  checker
function in the timely block state verifies that no guarding window is active.
In case of guarding windows, the wait function imposes a delay until the
next trans- mission time of the periodic message. If there is any periodic
message,  this  message is  sent.  Otherwise,  the  process  of  the  flowchart
returns to the egress queue state. In case there are no guarding windows,
the select message function in the send state selects one message out of
the sporadic and aperiodic queues based on the priority and this message
is sent. If the status of the egress queues is still “not empty”, the procedure
is
repeated until the egress queues are empty.

Figure 8: Flowchart for Periodic Messages.



Copyright © FRACTAL Project Consortium 54 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

 Shuffling: If a low priority message is being transmitted while a high priority
message arrives, the high priority message will wait until the low priority
message  is  finished.  Figure  10 shows  the  flowchart  for  the  shuffling
mechanism  within  the  serialization  object.  The  egress  queues  status  is
updated when a message is enqueued in one of the egress queues. In case
the status of the egress queue is “not empty”, the select message function
removes one message from the egress queues based on the priority. The
send function forwards the message to the network interface of the on-chip
or off-chip network interface. If the status of the egress queue is still “not
empty”, the procedure is repeated until the egress queues are empty.

Processing of Sporadic Messages

Figure  11 depicts the flowchart for sporadic message transmissions. The message
analysis  function  in  the  classification  state  checks  incoming  messages.
The size of  the message must  be  below the  maximum message size  according

Figure 9: Flowchart for Timely Block Mechanism 

Figure 10: Flowchart for Shuffling Mechanism.
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to the  configuration parameters of  the VL.  A valid  message is  enqueued in the
corresponding VL queue. When the message is enqueued, the “VL queue status” for
the corresponding VLID is updated. In case the VL queue was empty, the update
time function updates the reception time of the last incoming VL message. This
timestamp is essential for traffic shaping and temporal partitioning. In the sporadic
shaper,  the  sporadic  traffic  regulator  and  controller  function  guarantees  the
minimum  interarrival  time  between  two  consecutive  instances  of  a  sporadic
message on the respective VL. The sporadic traffic regulator and controller function
compute the necessary waiting time for each message based on the time of the
latest incoming VL message. When the waiting time has expired, the redirection
function passes the information (i.e.,  VLID,  buffer identifier and direction) to the
redirection  state.  In  the  redirection  state,  the  remove  message  from VL  queue
function forwards the message from the VL queue to one of the sporadic egress
queues according to the direction and priority parameters. In case the VL queue has
another message, the time of the last incoming VL message is updated. This step
allows  the  sporadic  traffic  regulator  and  controller  function  to  send  the  next
message after the minimum interarrival time. This procedure is repeated until the
“VL  queue  status”  is  “empty”.  Thereafter,  the  serialization  is  responsible  for
forwarding the message to the network interface of the off-chip or on-chip network
as explained in the previous subsection.

Processing of Aperiodic Messages

Figure 11: Flowchart for Sporadic Message.
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Aperiodic messages have no timing constraints on successive message instances
and no real-time guarantees. Therefore, the incoming messages are inserted into
the corresponding aperiodic egress queue. The “egress queue status” is updated
when  the  message  is  enqueued.  After  that,  the  serialization  is  responsible  for
forwarding the message to the network interface of the off-chip or on-chip network.

6.1.3 Scheduling Problem in HW Network Gateway
An Optimised Reliable Task and Message Scheduling algorithm (OR-TMS) uses DPSO
to find scheduling solutions given real-time objectives such as minimal makespan, 
total energy consumption, and failure rates of scheduling all tasks [3]. A task 
scheduling instance refers to mapping tasks to potential hosts, creating a 
distribution of tasks for each instance. The energy consumption of routing a 
message from source to destination is the sum of energy dissipated by routers in 
the message route while routing the message. On the other hand, message arrival 
time denotes the instant when all dependent messages arrive at a child task from a 
parent task; This also defines a precedence constraint between dependent tasks. 
For each task scheduling instance, the cost of executing all tasks is directly 
proportional to the schedule makespan, consumed energy, and failure rate. 
Therefore, a lower scheduling cost indicates better schedule instances. The 
objective of OR-TMS is to minimize the schedule execution cost, which depends on 
the DPSO mapping.

DPSO Task and Message Scheduling

DPSO initially  establishes a population  of  TMS instances where each instance is
evaluated  through  its  cost  value.  This  results  in  a  multi-objective  optimization
problem employing  a  weighted  sum of  the  system’s  completion  time  (schedule
makespan), total energy consumption, and failure rates. Next, DPSO minimizes the
cost value of TMS instances, achieving optimization through updating the position of

Figure 12: Flowchart for Aperiodic Message.
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particles while avoiding local convergence. Finally, OR-TMS integrates a Time Slot
Message Scheduler (TSMS) into DPSO. TSMS is used to schedule the message traffic
using conflict-free time slots to avoid signal interference. The pseudo-code for the
DPSO-based task and message scheduling algorithm is shown in Algorithm 1. The
particle’s position Xi represents a solution for scheduling tasks to random hosts. A
better particle position results in a lower cost value. Algorithm 1 is terminated when
changes in particles’ positions do not further result in better cost values.

OR-TMS initially computes each unscheduled task t its top-level cost tlt. Then, all 
unscheduled tasks are sorted by the weight of their tlt. Algorithm 2 applies 
Algorithm 3 to all sorted tasks until scheduling all tasks of a particle’s position. 
Algorithm 4 calculates routes and schedules messages on conflict-free time slots. 
Finally, algorithm 5 inherits the physical interference model of the system to find 
feasible time slots used to transmit every message.

Figure 13: DPSO-based Task and Message Scheduling Procedure
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Figure 14: OR-TMS(T)

Figure 15: Task Scheduling
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Simulation and Evaluation of OR-TMS

Various system application models are generated as random forest fire-directed 
graphs. The dependency and constraints between tasks in the application models 
vary across the models. Figures 17 and 18 illustrate the platform topologies for 
which OR-TMS generates time-triggered schedules for exchanging messages within 
the system. Every access point creates a local network with four static wireless TSN-
enabled hosts with a 50 Mbps data rate. Any node out of energy is assumed a failed
node where time and energy are measured in milliseconds and joules, respectively.

Figure 16: Message Interference Analysis
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Figure 17: System Model (Mesh Topology)
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The convergence rate of OR-TMS refers to the number of iterations for which OR-
TMS converges, and an optimized scheduling solution is found. In evaluating the 
OR-TMS convergence rate, application models of 30, 40, and 50 tasks and 
messages with task deadlines of 2000 mS are used where the experimental step 
size is set to 5. Figure 19 shows a population of 10 particles converges after 15 
iterations for an application model of 30 tasks and messages. For the application 
models of 40 and 50 tasks and messages, OR-TMS converges after 20 and 35 
iterations, respectively. This represents a direct proportionality between the 
application's number of tasks and messages and the convergence rate.

Figure 18: System Model (Ring Topology)
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Figure 19: OR-TMS Convergence Rate
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7 Run-time  manager:  Edge  Controller
communications

7.1 Description
The Runtime Manager is a component developed to coordinate and manage task
scheduling and load balancing operations between modules in one or more fractal
nodes  at  runtime.  RM  performs  the  scheduling  of  various  operations  and  it  is
possible  to  configure  every aspect  of  the  tasks  that  need to  be  performed,  for
example what data needs to be exchanged and when, how and to which module it
has to be sent. In addition, it provides load balancing capabilities using the interface
with the Load Balancer component, sending the task execution to a different node.  

RM was  initially  needed in  VAL-UC6 to  manage  task  scheduling  and  interaction
between the several application modules of the intelligent totem nodes of the use
case. Further details about the implementation in the UC context are reported in
D8.1  -  Specification  of  Industrial  validation  Use  Cases  and  D8.2  -  System
Requirements. 

Considering the aforementioned RM features, we decided to develop the component
to be as much general purpose as possible in order to be used in broader contexts,
so the outcome of the job carried out is the development of a component capable of
being deployed/used in different scenarios.

7.2 Design and Implementation of component
7.2.1 Design
The purpose of the Runtime Manager is to enable communication and data dispatch
among the various  components  installed on the  node,  and to  manage  the load
balancing operations, when needed, by assigning the execution of the activities to a
different  instance  of  the  Runtime  Manager  module  installed  on  another  node.
The module is completely configurable  – in terms of data flow to manage and in
terms of components to communicate with – by means of a set of configuration files
which will be detailed in section 7.2.2.
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This process is represented in the following flow-chart diagram:

Figure 20: Runtime Manager Flow Chart Diagram
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During  the  design  phase,  we  also  analyzed  a  typical  interaction  between  the
Runtime Manger and several applications as an example flow from the dedicated
configuration file. The following sequence diagram depicts a general data flow the
Runtime Manager might have to handle: 

The diagram shows a component triggering the Runtime Manager by publishing a
message on the configured MQTT topic. The trigger message contains information
about the flow that needs to be executed and the payload to be exchanged.

In the particular case depicted in Figure 21, RM sends the payload to Application 1, 
whose result is subsequently sent to Application 2. This, in turn, will return a result 
which, together with that from Application 1, will form the payload for Application 3,
the last part of the data flow, which acknowledges the end of its computations.

7.2.2 Implementation
The Runtime Manager software module has been implemented in Python following
the OOP paradigm. It  is a configurable module based on four configuration files
“load_balancer”,  “nodes”,  “components''  and  “flows”;  each  of  them  serves  a
specific purpose, as suggested by the names: “load_balancer” collects the values of
protocol, ip, port and endpoint needed to contact the Load Balancer; “nodes” and

Figure 21: Runtime Manager Sequence Diagram
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“components”, respectively, contain the information regarding the nodes and the
components in the system which the RM may need to contact; finally, “flows” is the
configuration  file  containing  the instructions  for  the  RM to execute  the multiple
processes  scheduled  by  the  system.  Each  configuration  file  is  in  JSON  format,
except for “flows.conf” which follows the rules explained inside the README in the
project repository, in order to unambiguously define the data flows.

There are two ways to trigger the functionalities of the Runtime Manager: an MQTT
interface and a REST interface. 

The messages received either via MQTT or REST will be forwarded to the Action
Dispatcher module, which instantiates the appropriate object according to whether
the action is to be performed on the current Runtime Manager (Home Execution), or
sent to a Runtime Manager on a different node (LB Execution).

MQTT subscriber service

On launching the MQTT interface script, the RM subscribes to the topic configured
and will be ready to receive any message published on it.

A JSON string published on the configured topic is the standard entry point to the
Runtime Manager, and the method to be used in order to trigger the RM. The JSON
string format is as follows:

{

"id_flow": "1", 

"payload": "0x03abcdefghil"

}

where id_flow is the ID of the flow to be read in the configuration file and executed,
and  payload  is  the  data  which might  be  required to  be  passed to  some of  the
components involved in the execution. 

When triggered via MQTT, the Runtime Manager will always call the Load Balancer
service to know whether it must hand over the execution to a different node (in
which case the Load Balancer will return the ID of the node to contact) or whether it
can perform a “home execution” (in which case the Load Balancer will return null).
In the former case, the file “nodes.config” will provide all the necessary information
regarding the node to call via REST request.

REST API service

On launching the REST interface script, the RM exposes a POST API identified by the
configured endpoint.
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The most straightforward process flow happens when the RM is triggered by a POST
request  to  the  REST  service  exposed,  which  is  dedicated  to  load-balancing
functionalities.  The  JSON object  in  the  body  of  the  POST  request  will  have  the
following format:

{

    "id_flow": "1",

    "is_load_balancing": true,

    "payload": "0x03abcdefghil"

}

where id_flow and payload are as in the previous paragraph, and is_load_balancing
indicates whether we are in load balancing.

In this case, the RM shall avoid the call to the Load Balancer service, and directly
instantiate  the  Home_Executioner  which  will  read  the  requested  flow  on  the
“flows.config” file and then execute it.
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8 Conclusions

In this deliverable we gather all the information about the work that has been done
during the course of T6.2, dedicated to Edge Orchestration and its components.

This deliverable provides details about all the Fractal components developed related
to Edge Orchestration services. 

Sections 4 and 5 are dedicated to Edge Orchestration services at the application
level,  and  are  dedicated  to  the  design  of  these  components,  being  Section  4
focused on the design of their architecture and Section 5 on their implementation.

Section 6 is  focused on Edge Orchestration services at  the Hardware level,  and
Section 7 is based on the Network Orchestration Fractal component (the Run-time
manager).

With the addition of these components into the Fractal ecosystem, the Fractal Edge
platform is provided with ingestion and storage capabilities for all the Fractal Edge
platforms (ARM64, RISCV64 and RISCV32 architectures). This means that any Use
Case being developed with the Fractal components will have at its disposal a wide
collection of tools and strategies that allows them to process data streams with
potentially any data format or source. 

These ingestion tools have been chosen considering the most popular languages
(Java-based,  Python-based  and  JavaScript-based),  so  that  the  platform
administrators will be able to choose based on their preferences.

With  respect  to  the  Data storage  capabilities,  both  relational  and non-relational
databases have been included for the High-End and Mid-End nodes, providing in
each case different alternatives to install and manage the data sinks, from Docker
containers (when available),  package manager installation steps, and build-from-
source installations. 

The Container Orchestrator (K8S, Docker Swarm...) has been a hot topic of research
during  the  course  of  the  project  (WP5  T5.1  and  T5.4,  and  WP6  T6.1).  In  this
deliverable  the  design  and  implementation  of  independent  orchestration
components are detailed, providing novel orchestration strategies that support the
already existing Container Orchestrators, and giving the platform the possibility to
implement orchestration strategies even in orchestrator-less deployments.  These
components have been designed on a micro-services and containerized approach,
which ensure high-availability and resilience of the deployments.

This  deliverable  also  show  the  results  of  T6.2,  providing  Edge  Orchestration
capabilities to all the three reference platforms (ARM64, RISCV64 and RISCV32), at
all  layers  from the  node  layer  (HW-Level  Edge Controller),  the  application  layer
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(Edge Orchestrator and Custom Orchestrator) and process and runtime operations
(Runtime Manager).
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