
Co-funded by the Horizon 2020 Programme of the
European Union under grant agreement No 877056.

D6.2 FRACTAL edge controller design and implementation

Abstract:

This deliverable is a part of FRACTAL WP6 T6.2, and details the Edge Controller design and
implementation, a communication & System monitoring component to optimize the overall
system resources of a group of Fractal nodes. The deliverable is divided in three parts, first,
the design and architecture of the Edge Controller is shown, second, the implementation
aspects are provided, together with installation details and usage guidelines. Third, the
Hardware level Edge-Controller and the Runtime Manager components design and
implementation are described.

This project has received funding from
the ECSEL Joint Undertaking (JU) under
grant agreement No 877056

Deliverable Id: D6.2
Deliverable Name: FRACTAL Edge controller design and

implementation
Status: Final

Dissemination Level: Public
Due date of deliverable: M31 March 2023
Actual submission date: 03/10/2023

Work Package: WP6 “CPS Communication Framework”
Organization name of lead

contractor for this deliverable:
Zylk.net

Author(s): Alfonso González, ZYLK
Vahid Mohsseni, UOULU
Anabela Berenguer, UOULU
Matti Vakkuri, HALTIAN
Antti Takaluoma, OFFCODE
Andrianoelisoa Nambinina Rakotojaona, U
SIEGEN
Pascal Muoka, U SIEGEN
Daniel Onwuchekwa, U SIEGEN
Mattia Modugno. ROTECH
Damiano Vallocchia, ROTECH
Nadia Caterina Zullo Lasala, ROTECH

Partner(s) contributing: ZYLK
UOULU
HALTIAN
OFFCODE
U SIEGEN
ROTECH

Copyright © FRACTAL Project Consortium 2 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

Contents
1 History..4
2 Summary..5

2.1 Achievements...5
3 Introduction..8
4 Edge Controller design..11

4.1 High-end node (ARM64)..11
4.1.1 One-node Edge controller..11
4.1.2 Multi-node Edge controllers..14
4.1.3 Custom Orchestrator...15
4.1.4 Ingestion & Storage capabilities...16

4.2 Mid-range node (RISC-V64)...19
4.2.1 One-node Edge controller..19
4.2.2 Multi-node Edge controller...20
4.2.3 Custom Orchestrator..20
4.2.4 Ingestion & Storage capabilities...21

5 Edge controller implementation..22
5.1 High-end node (ARM64)..22

5.1.1 One-node Edge controller..22
5.1.2 Multi-node Edge controller...25
5.1.3 Custom Orchestrator...26
5.1.4 Ingestion & Storage capabilities...28

5.2 Mid-range node (RISC-V64)...36
5.2.1 One-node Edge controller..36
5.2.2 Multi-node Edge controller...37
5.2.3 Custom Orchestrator..38
5.2.4 Ingestion & Storage capabilities...38

5.3 Low-End node (PULP RISC-V32)..41
5.3.1 Cloud communications...41
5.3.2 Task scheduling...44
5.3.3 Ingestion & Storage capabilities...45

6 Hardware-level Edge Controller..46

Copyright © FRACTAL Project Consortium 3 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

6.1 Overview of NoC based Multicore Architecture...46
6.1.1 Network Hardware Gateway Architecture..47
6.1.2 Processing of Different Traffic Types...51
6.1.3 Scheduling Problem in HW Network Gateway..56

7 Run-time manager: Edge Controller communications...63
7.1 Description...63
7.2 Design and Implementation of component...63

7.2.1 Design..63
7.2.2 Implementation..65

8 Conclusions...68
9 Bibliography..70
10 List of figures..71
11 List of tables...72
12 List of Abbreviations...73

Copyright © FRACTAL Project Consortium 4 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

1 History

Version Date Modification reason Modified by
V0.1 06/08/2022 First version and content proposal Alfonso González

(ZYLK)
V0.2 12/13/2022 Content update Alfonso González

(ZYLK)
Final 01/09/2023 Reviewed document and innovation

section included
Alfonso González
(ZYLK)

Copyright © FRACTAL Project Consortium 5 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

2 Summary

This deliverable covers the main research outcomes from T6.2, which focus on the
development of an open-source software component to provide the Edge platform
with self orchestration and independence mechanisms at various levels, from the
physical hardware (HW-Level Edge Controller), the node (Edge Controller & Custom
Orchestrator) and the runtime operations (Runtime Manager). All these mechanisms
are built to provide an open-source implementation of the edge controller
infrastructure.

There are four main sections (4, 5, 6 and 7) in D6.2:

Sections 4 and 5 are dedicated to describing the Edge Controller and Custom
Orchestrator components’ design and implementation, respectively. In Section 4 all
the design aspects are detailed, with explanations about the design choices made
to fulfill with the Fractal characteristics of the platform. Section 5 describes the
implementation steps, installation methods, and technical descriptions and aspects
of the components. These two sections are divided into three parts, one for each
reference platform architecture (High-End node, Mid-Range node and Low-End
node).

Section 6 is dedicated to the Hardware-level Edge Controller, which controls the
underlying hardware where the software stack is running, This work comes from
previous developments in D4.4, and in D6.2 the communications and computations
aspects of the HW gateway for multiple-node architectures are included.

Finally, Section 7 covers the Runtime Manager design and implementation, a
component fully developed within the Fractal project which is in charge of
coordinating and scheduling the operations between multiple running modules.

2.1 Achievements
Throughout this deliverable, the Design and Implementation details of every Fractal
component developed during the course of T6.2 are presented.

These components have been developed with the Fractal objectives in mind
(Section 3), in order to perform significant research activities and achieve a
satisfactory degree of novelty. The resulting Fractal components have a
technological relevance for the project and can be used as a primary tech stack by
the Use Cases to build the solutions for each problematic.

Highlights

 After the development of the T6.2 components, all of the Fractal reference
platforms (High-End, Mid-Range and Low-End nodes) have a custom
orchestrator available for each of their tasks.

Copyright © FRACTAL Project Consortium 6 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

 The orchestration capabilities have been implemented at all levels: (1)
Physical hardware (HW-Level Edge Controller) (2) Application level Edge
Controller (Custom Orchestrator and Edge Controllers) and (3) Runtime and
communication level (Runtime Manager).

 A complete set of instructions and software tools has been provided to
orchestrate the platforms, and no additional tools to support missing
functionalities are needed.

 Data ingestion tools are proposed for each of the three reference nodes. For
each of the tools proposed, installation and usage steps are provided
together with documentation, so that the Use Cases have a wide range of
transformation and ingestion tools to extract and load data from and into
different data sources.

 Storage tools (databases) are proposed for each of the three reference
nodes. Several databases have been selected, installed, and tested into each
of the platforms, providing a complete set of options for each of the data
sources available. There are relational, non-relational, IoT oriented and time-
series oriented data bases as options, so the Use Cases can choose which
options suits their solution and data formats.

Lowlights

 The resulting software components may lack of testing and may present
bugs or inconsistencies, specially if they are new developments and new
code which has not been implemented into productive environments. These
inconsistencies will be addressed during T6.3 which is dedicated to testing
and validation of the results from T6.1 and T6.2, and will later be
implemented into the Use Cases.

 The technological challenge of this task was higher than expected at the
beginning of the task. This challenge made it necessary to extend the task
such that the resulting components had the necessary quality in terms of
code and functionalities, extending the development phases and providing
also extra time to generate the adequate documentation in the form of
training material, demos, and usage videos.

Results

WP6T62-01 - Data Ingestion

https://github.com/project-fractal/WP6T62-01-data-ingestion

WP6T62-02 - Federated Data Collection

https://github.com/project-fractal/WP6T62-02-Federated_Data_Collection

WP6T62-03 - Run time Manager

Copyright © FRACTAL Project Consortium 7 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

https://github.com/project-fractal/WP6T62-03-Runtime-Manager

WP6T62-04 - Hardware Edge Controller

https://github.com/project-fractal/WP6T62-HW-Edge-Controller

WP6T62-06 – Orchestration (Edge controller)

https://github.com/project-fractal/WP6T62-06-edge-controller-orchestrator

WP6T62-06 - Orchestration (Mid-range node orchestrator)

https://github.com/project-fractal/WP6T62-06-mid-range-orchestration

WP6T62-06 – Orchestration (Low-end node orchestrator)

https://github.com/project-fractal/WP6T62-06-low-end-node-orchestrator

Copyright © FRACTAL Project Consortium 8 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

3 Introduction

Following the working structure of D6.1, this deliverable has been divided into three
main sections, the Edge Controller design, the Edge Controller implementation, and
the Hardware level edge controller. each one referring to one of the main
processing architectures of the proposed FRACTAL platforms. The Edge Controller is
a FRACTAL component both at the software and hardware levels that provides the
edge nodes of orchestration mechanisms to be able to schedule workloads
dynamically, considering the workload parameters to optimize the available
resources.

At the software level (Sections 4 and 5), the Edge Controller was designed and
implemented for the three main reference platforms described below:

The first platform is the High-End node, which relies on an ARM64 architecture, and
is the most powerful of the platforms in terms of processing capabilities and
computation (for example, the Xilinx VERSAL board).

Secondly, the Mid-Range node is an intermediate platform based on RISCV-64
architectures, typically running on less powerful platforms and MPSoCs, but still
being able to perform most AI inference operations, low-weight training, and with a
low power consumption.

Lastly, the Low-End node is based on RISCV-32 architectures, running on resource
restrained platforms (usually PULP platforms) which can perform AI operations with
a very low power consumption.

A hardware-level edge controller is a H/W Edge orchestration used in the Gateway
of the Network-on-Chip (Interface that connects the on-chip with the off-chip) to
schedule the injection time of messages from Network-on-Chip (NoC) to the off-Chip
and vice versa. The Hardware-level Edge Controller aims to reduce the message
collision in Hierarchical Systems with multiple nodes by using a precomputed
schedule. It also ensures the synchronization of Multiple nodes.

Objectives and Approaches

The design of the different Edge controller was done considering the overall
objectives of the FRACTAL Project:

Copyright © FRACTAL Project Consortium 9 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

Objective 1 Design and Implement an Open-Safe-Reliable Platform to
Build Cognitive Nodes of Variable Complexity

Objective 2 Guarantee FRACTAL nodes and systems extra-functional
properties (dependability, security, timeliness and
energy-efficiency)

Objective 3 Evaluate and validate the analytics approach by means
of AI to help the identification of the largest set of
working conditions still preserving safety and security
operational behaviors.

Objective 4 To integrate fractal communication properties (scale free
networks) to FRACTAL nodes.

Table 1: FRACTAL Project Objectives

Given that T6.2 belongs to WP6, which is focused on building a communication
framework for the FRACTAL Platform, the Edge Controller focused on complying O4,
while also approaching O2, searching that the systems composing the FRACTAL
nodes are self and context aware, and can adapt to changes in their own resource
capabilities and the external nodes’ status.

The SW-level Edge Controller was designed following a two-fold approach, the multi-
node communications and the One-node communications.

Multi-node communications refer to different nodes in the same network
communicating between each other. In a typical IoT architecture, nodes
communicate between them (bottom-up) or directly with a centralized node (top-
down) which is in charge of the load and task balancing between the nodes. The
Edge Controller design was done such that the components developed in T6.2 can
serve both purposes, allowing for bottom-up and top-down orchestrations, with a
single implementation.

The main goal of Multi-node communications is to provide the nodes with context
awareness, in such a way that the nodes know what the system resources of all of
the other collaborating nodes are, being able to fractally adapt to overloads and re-
allocate the tasks over free nodes.

One-node communications are all communications happening inside one node
between its different components. This means managing the information inside the
node itself, without any of this information being exposed to other nodes, and the
node itself is taking the appropriate decisions based on this data.

This concept of a node taking decisions on its own status without considering
external inputs is called self-orchestration, and is a key capability in intelligent
systems, because nodes must be able to operate by themselves even if the
communications to all other nodes are lost. The most paradigmatic examples are

Copyright © FRACTAL Project Consortium 10 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

self-driving and autonomous cars, which must be able to keep on driving
autonomously even if they are going through a tunnel, where there is no signal
reception.

The objective of the Edge Controller components is to provide the FRACTAL platform
of orchestration capabilities, without the need of a heavy resource-consuming
external orchestrator like Kubernetes, and being able to monitor the node resources
and take decisions based on the targeted parameters. Secondary objectives are
described in Table 2:

Orchestration
capabilities

Provide the FRACTAL platform of orchestration capabilities

System resources
monitoring

The FRACTAL platform must be able to know the system
resources of individual nodes, and also the surrounding nodes
(self-awareness and context-awareness capabilities).

Simple extensibility The design must be done such that the orchestration and
resource monitoring capabilities are easily extendable and
non-rigid, so they can be broadened in the future with new
implementations by the open-source community.

Platform independent The implementation must be done taking into account that the
platforms have architectural and resource differences, but the
code must be as inter-operable between platforms as possible
to avoid divergency between the developments.

Containerized solution Container virtualization is the preferred deployment method
for the Edge Controller. Other installation and deployment
methods on bare-metal and VMs will be studied.

Table 2: Edge Controller objectives

Copyright © FRACTAL Project Consortium 11 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

4 Edge Controller design

This section refers to the Software Edge Controller design. The Hardware Edge
Controller design and implementation are described in Section 6.

The Software Edge Controller (simply referred to as the Edge Controller during
Sections 4 and 5) is a software stack that can be deployed on an arbitrarily large
number of nodes (from 1 to potentially any number of nodes) to monitor the status
of each of the nodes separately. The information gathered from each of the nodes is
then collected and analyzed, giving the system the capability of knowing the overall
state of the system, and each node will know the status of each of its neighboring
nodes, providing context-awareness and self-awareness capabilities to the Fractal
Edge Platform.

During this Section, the design of the Edge Controller is described and its
components and main functionalities are explained for each of the reference
platforms (High-End node, Mid-Range node and Low-End node).

4.1 High-end node (ARM64)
The Edge Controller design was done following a modular design, in a way that all
the components of the Edge Controller can work independently (similarly to a
microservice approach) on different nodes. For the High-end and Mid-range nodes,
the components were designed and developed trying to keep the compatibility as
high as possible, so the developments done for the High-End node will also run
properly on the Mid-range nodes. The main differences in design will be at the
Ingestion & Storage capabilities, given that the processor architecture is different,
some databases and storage tools may not be available for the RISC-V architecture,
so alternatives will be studied to cover all the Fractal technological stack.

The High-End node refers to the reference platform for the Xilinx VERSAL board,
which has an ARM64-bit architecture.

4.1.1 One-node Edge controller
The One-node Edge controller’s goal is to monitor the system resources and
translate all the data about the system processor and HW usage into readable data.
It was designed based on the Resource Manager microservice, as it can be seen in
the following Figure:

Copyright © FRACTAL Project Consortium 12 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

The Resource Manager is in charge of getting all the information about the
Hardware system, CPU usage, memory available, storage, and any relevant
information that could be used to monitor the overall system load. To build this
microservice, the glances Python package has been targeted, as it is a lightweight
tool that can be run on most Linux OSs and is able to provide diverse information
like the processor sensor’s operating temperatures.

In addition to glances, a second process collects the information about the node and
transforms it into a readable format, providing this information to the Custom
Orchestrator, which will later make decisions based on the collected information to
optimize the system performance by applying restrictions or rescheduling
workloads inside the node.

The two main components of the Resource Manager are:

1. Glances https://pypi.org/project/Glances/
2. Edge-monitoring (developed during Fractal T6.2)

Glances is a Python package focused on system monitoring which scrapes and
presents a large amount of information through a terminal or web interface. It can
be easily installed on most Linux distributions. It is easy to use, utilizes low
resources, and can be used in a containerized application.

A container has been created packaging the glances Python package to monitor and
expose this information via a node port, where an API is exposed to be requested
the information about the system. More details on the implementation can be found
on Section 5.1.

Figure 1: One-node Edge controller architectural design

Copyright © FRACTAL Project Consortium 13 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

The Edge-monitoring tool is a Python program packaged inside another container,
which performs periodic requests on the already exposed glances API, and is
responsible of gathering all the system information and translating it into a readable
format for the custom orchestrator, based on a set of metrics.

Some important aspects about the Edge-monitoring tool:

1. It can be chosen what parameters to monitor, CPU, memory, processor load,
or alerts.

2. It must be specified what container orchestrator the node is using, whether it
is Kubernetes or Docker (orchestrator-less).

3. Hostname, port, IP, set of resources to monitor and orchestrator can be
provided via a YAML file.

This architectural design is completely scalable, as it will be shown in the design of
the Multi-node Edge controller, which uses this modular microservices to build a
system that monitors the resources of potentially any number of nodes.

More details about the implementation can be found on Section 5.1.

There is another microservice that works together with the Resource Manager to
complete the Fractal Orchestration capabilities, the Custom Orchestrator.

The Custom Orchestrator is a (containerized) system to monitor the containers,
tasks, and processes being run on your system processor. It can dynamically
schedule, start, stop, and up or down scale your processes. for the high-end and
mid-range nodes. It has been designed in a modular way, this means that it can be
operated from both architectures following the same design, and orchestrate
containers from a docker host or K8S control plane, having very similar capabilities
independently of the processor architecture and the reference platform being used,
and being able to use both docker and K8S as container orchestrators,
implementing orchestration capabilities for docker hosts and improving the already
existing K8S orchestrating operations by adding custom orchestration capabilities
and a full awareness of the status of each of the nodes in the cluster (from 1, to N
number of nodes).

For deployments consisting of a single node cluster (One-node Edge controller
deployments), the custom orchestrator is deployed together with the resource
manager and the node exporter (glances container) in the same node. This is done
by building and deploying three container images which work together as a typical
microservices architecture. The metrics exporter container is in charge of gathering
all the information about the CPU and hardware available resources, then, these
resources are used by the resource manager container and an updated tainted
nodes list is sent to the custom orchestrator container, who ultimately is in charge
of applying the appropriate restrictions depending on the container orchestrator
that is specified in the node's configuration file.

Copyright © FRACTAL Project Consortium 14 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

4.1.2 Multi-node Edge controllers
To keep the architecture as modular and re-usable as possible, the Multi-node Edge
controller was built as an extended capability of the already designed One-node
Edge controller, where the Resource Monitoring tool is deployed to all the nodes of
the Fractal environment to be monitored. Then, these nodes are monitored by a
dedicated Master node which will gather the information of every node.

The Multi-node Edge controller architecture is described in the Figure below:

As it can be seen in the design architecture, there is an arbitrarily big number of
nodes, and each node is running a Resource Manager instance. The Resource
Manager consists of the previously described glances container, which gathers and
exposes the HW system information via a dedicated web server with a REST API.
The Master Node will then be running the Node-monitoring Resource Manager
container, with a provided YAML configuration file, where all the nodes on the
Fractal environment are specified, and the Master Node will gather the resource
information for each node, even if these nodes are disconnected temporarily from
the network or new nodes are added. Note that, as the Resource Manager is able to
run both the glances container and the node-monitoring tool, every single node on
the cluster can still monitor itself, or other nodes, which means that each node is
fully aware of the status of:

1.- Itself

2.- Surrounding nodes

Figure 2: Multi-node Edge controller architectural design

Copyright © FRACTAL Project Consortium 15 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

3.- Overall resource status of the whole cluster

Thus, providing the self-awareness and context-awareness capabilities of the Fractal
platform.

Finally, the Custom Orchestrator being run on the Master node is in charge of
managing the K8S API so that enhanced orchestration methods can be applied into
the cluster. This is achieved by deploying a pod or container which is in charge of
getting an updated list of tainted notes from the resource manager, and applying
certain actions on all the K8S resources which it is given permissions to modify. The
usual set-up would be a custom orchestrator pod which is in charge of applying the
restrictions to the control plane and master node, so when the tainted node list gets
updated in the custom orchestrator container, these taints can directly be applied.
The most usual taint is “No-Schedule”, which avoids new pods to be created into
the restricted node.

4.1.3 Custom Orchestrator
The custom orchestrator is designed in a way that keeps the compatibility between
the different architectures, i.e., ARM, RISC-V, and X86-64, as much as possible. To
achieve this matter, the communication protocol is implemented from scratch by
defining the message schema handled by sockets directly. This new implementation
requires no external libraries and dependencies for the systems. The design also
follows the principle of microservice programming and makes the scalability of the
systems easy. There are three primary services. As illustrated in Figure 3, the first
part is the API server, the second component is the service manager, and the last is
the executor daemon. The main functionality of each service is explained as follows.

 API server: As the name of this component hints, it is developed to make
user interaction with the system more accessible. It sends the requests
directly to the manager service and does not communicate directly with the
nodes on which the daemon service is running. In this way of the

Figure 3: The general architectural view of the Orchestrator

Copyright © FRACTAL Project Consortium 16 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

communication model, the service provides separate storage or a repository
for future tasks.

 Service Manager: The Service Manager is the core component of the system
here. From the architectural point of view, it has four essential functions. The
connection factory is responsible for handling connections from the executor
nodes. It accepts new connections and passes its instance to the node
handler. The node handler maintains the connection, tries to keep it up, and
makes the executor node ready for other procedural activity by submitting
that information to the task scheduler. The task scheduler is closely related
to the node handler and always waits for new tasks incoming from the API
server, which is handled by the request handler. The request handler bridges
the API server and the service manager. Any requests made by the user will
be delivered and governed by this function in the service manager.

 Executor: This piece of software is the part of the node/container/machine on
which you want that task to be run. It constantly communicates with the
Service Manager, sends its status, and waits for a task to be assigned by
keeping the socket connection open to the server. By decoupling this
component from the Service Manager, it is easier to scale out or in the
runners according to the requirements of the load in the system. The time to
wait for a runner to be up and running is eliminated by provisioning them
before scheduling any tasks. Practically, it is possible to add up as many
runners as we need, and a single instance of the Service Manager will handle
the load.

4.1.4 Ingestion & Storage capabilities
Ingestion & Storage capabilities refer to the set of tools that are available for the
Fractal platform and that will be used to collect data from different data sources and
store these data in the most optimal database for each use case.

Here is provided a set of tools for ingestion & storage together with a description of
each tool and their main features. Instructions on how to implement and install
these tools can be found in Section 5 (implementation).

Ingestion

Data ingestion becomes a crucial task in IoT and Edge computing scenarios where
the data sources are very diverse, and relying on powerful and flexible ETL (Extract,
Transform, Load) tools is a must in the Fractal Platform. Multiple choices are
provided for data ingestion tools, so the vast majority of scenarios can be
approached.

For the High-End Node, it must be noted that ARM64 is the most popular processor
architecture for IoT devices and Edge computing frameworks. This is why it has the
most complete set of tools to be installed. For this component, two open source ETL
tools are proposed, one for Java and one for Python programming languages:

Copyright © FRACTAL Project Consortium 17 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

Java based tool:

Apache NiFi

Although Java is not the preferred programming language in Edge computing
architectures, an exception is to be made with Apache NiFi as the overall best
performing open-source ETL tool available. It is widely used for data stream
processing and counts with a wide and active community. If an ETL and stream
processing tool is required, Apache NiFi is highly recommended and reliable.

Python based tools:

In case that Python is preferred over Java for your specific application, or Apache
NiFi lacks any specific functionality required for your use case, two other open
source and Python-based alternatives are given:

Apache Spark (PySpark)

Apache Spark is a multi-language engine for executing data engineering, data
science, and machine learning on single-node machines or clusters.

Faust

Faust is a stream processing library that processes from Apache Kafka streams,
built in Python. It supports the following extensions:

Name Version Bundle

Rocksdb 5.0 pip install faust[roscksdb]

redis aredis 1.1 pip install faust[redis]

datadog 0.20.0 pip install faust[datadog]

statsd 3.2.1 pip install faust[statsd]

uvloops 0.8.1 pip install faust[uvloop]

eventlet 1.16.0 pip install faust[eventlet]

yaml 5.1.0 pip install faust[yaml]

Table 3: Available Faust extensions

The main advantage of Faust is that it is a Python library and fully based on Python,
so you can integrate it with any other Python library or system as long as you have
a Kafka stream to process. Faust can publish and consume from Kafka streams and
perform stream processing operations in a distributed manner.

Copyright © FRACTAL Project Consortium 18 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

Others:

A third alternative is given as a flow-based programming tool, Node-RED, written in
JavaScript and commonly used as an IoT data flow tool because of the big number
of plugins available from the community.

Node-RED consists of a Node.js based runtime that you point a web browser at to
access the flow editor. Within the browser you create your application by dragging
nodes from your palette into a workspace and start to wire them together. Then.
with a single click the application is deployed back to the runtime where it is kept
running.

Storage

Data storage refers to open-source databases available to install to the ARM64
processor architecture, providing a complete set of options to cover a wide range of
applications into IoT and Edge deployments.

For ARM64 Linux-based devices, two open source data collections tools are
proposed, one being relational and the other being a non-relational database.

Relational Database: CrateDB

A relational database, stores information in tables. Often, these tables have shared
information between them, causing a relationship to form between tables. This is
where a relational database gets its name from.

CrateDB is a distributed SQL database management system. It is designed for high
scalability since it is open source and written in Java, and it includes components
from Facebook Presto, Apache Lucene, Elasticsearch, and Netty. CrateDB was
developed with the intention of putting IoT data to use and supports IoT data
analytics: Time series, AI, geospatial, text search, joins, aggregations, etc.

Non-Relational Database: MongoDB

A non-relational database, sometimes called NoSQL (Not Only SQL), is any kind of
database that doesn’t use the tables, fields, and columns structured data concept
from relational databases. There are various types of NoSQL databases.

MongoDB is a document-oriented database software. It is classified as a NoSQL
database application. It makes use of JSON-style documents with schemas.

Other alternatives

The two databases described above are the recommended databases for storing
data in the Fractal High-End node, and the ones for which an installation guide is

Copyright © FRACTAL Project Consortium 19 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

provided. However, the list of available databases is very extensive and a list of
good alternatives is provided:

InfluxDB: NoSQL database for Time-Series data.

Apache Cassandra: High-performance NoSQL database.

Apache IoTDB: High-performance database for Time-Series data.

SQLite: Highly-portable embedded relational database.

4.2 Mid-range node (RISC-V64)
The Mid-Range node refers to FPGA boards and MPSoCs with a RISC-V64-bit
architecture. The Edge Controller has been designed to be compatible with both the
High-End and Mid-Range nodes. This means that the previously described design is
also applicable to Fractal nodes with a RISC-V64 architecture processor.

For validation purposes, the Python glances module was installed in a RISCV node
with a Linux OS, obtaining similar results to the ones in the ARM64 devices, and
containers running in the RISC-V machines showing similar performances.

The rest of the components are Python scripts and programs which will be able to
be executed in any node with Python installed, no matter what the processor
architecture is.

4.2.1 One-node Edge controller
Figure 1 shows the One-node Edge controller architecture design for the High-End
node. This architecture is still valid for Mid-Range nodes, based on a Resource
Manager that collects and processes the information about the processor’s status,
and a Custom Orchestrator which takes actions based on this information.

The main difference between the One-node and Multi-node edge controllers for both
reference platforms the high-end node and the mid-range node is the container
orchestrator to be used by the system. Although there are some lightweight K8S
distributions for RISCV64 architectures available, they are not still mature enough to
be used for production solutions. For this reason, Docker has been chosen to be the
container manager platform. Based on some rules determined by the host’s
resources, containers can be dynamically scheduled on docker hosts which have
their daemons exposed. These rules are based on CPU and memory limits which can
be set for restrictions to be applied.

For each loop in the execution of the tainted nodes list update, the customer
orchestrator takes into account if the nodes were previously tainted in the past or
they have been recently tainted. For each of these two cases, different actions are
taken, in an increasing degree of restriction. For newly tainted nodes, the already
running containers and tasks in the host have their resources limited by applying
restrictions in the number of CPUs that they can use and also by restricting the

Copyright © FRACTAL Project Consortium 20 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

available memory for them. In the next iteration, it will be checked whether the
node was already tainted in the past or not, and in that case, containers will be
periodically stopped and rescheduled into the other available nodes if any, until the
orchestrated node is free in resources again. When the nodes are finally untainted,
restrictions on them are lifted, but the overall edge controller orchestrator is still
monitoring their resources in case any further orchestration is needed.

4.2.2 Multi-node Edge controller
For edge controller deployments in multiple nodes architectures, where each of
them is running a Docker instance which is in charge of managing their containers
that are being run, the Custom Orchestrator is able to apply a set of restrictions on
the nodes separately, rescheduling containers from exhausted nodes into nodes
with a lower process pressure.

Containers can be dynamically stopped and started between the different nodes,
maintaining the overall pressure of the cluster low enough for all the processes to
be executed properly. Before containers are stopped on an exhausted node, some
preventive measures are taken, for instance, when a single node appears to be
exhausted on resources, all the containers running on that host see their available
resources limited in terms of CPU and memory. If these measures are not enough
and the host is still exhausted by the execution of the container processes, these
containers are reallocated into the rest of the nodes.

4.2.3 Custom Orchestrator
As mentioned in section 4.1.3, the current design and implementation of the custom
orchestrator let the component run smoothly on different architectures, including
the RISC-V. The acquired libraries in this component are the generally available
python libraries that come with its installation. Moreover, the system calls featured
in this component are chosen to be as general as possible to maintain compatibility
between the OS distributions.

In some cases, the mid-range nodes are located behind a NAT network. In this case,
the means of direct control of the nodes are limited. Without a pingable IP address
of the node, it is impossible to send commands or updates to the nodes. To address
this issue, the connection is always established by the executor node. It should be
mentioned that the Service Manager must have an IP address that can be
recognizable by those nodes. When the connection is established from the side of
the executor, the Service Manager will maintain the connection by sending and
receiving primary status data; for example, it can be the information about the
memory and CPU (that can be informative for the decision of the scheduler).

Copyright © FRACTAL Project Consortium 21 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

4.2.4 Ingestion & Storage capabilities
For the mid-range node, it must be taken into account that some of the packages
required to install the different ETL and database tools and databases may not be
available for the RISCV64 processor architecture.

Implementation and installation steps are provided for the available tools in Section
5, together with references to the official documentation which provides building
steps in case the source code ought to be built from source.

For ETL tools, the same tools are proposed for both the High-end and Mid-range
nodes, so the installation may result more complex in RISCV systems because of the
non-availability of pre-built packages. In the case of database and storage tools,
options which have available packages for the RISCV64 architecture are provided
which simplify the installation.

Once installed, the usage and functionalities of the recommended tools should be
the same in both the Mid-Range and the High-End node, only differing in the
computing capabilities and limitations of one platform over the other.

Copyright © FRACTAL Project Consortium 22 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

5 Edge controller implementation

This section is devoted to the implementation of the Edge Controller components.
The implementation will include both the code design details, giving thorough
information about how the different components are built and work from the inside,
how they connect and work together and how the interaction between the different
components brings context-awareness and self-awareness capabilities to the Fractal
platform where they are deployed.

Finally, it will include the installation steps and how-to-use starting guides, for the
users of the Fractal platforms to have a reference document to visit when
implementing the Edge Controller into their technological stacks.

5.1 High-end node (ARM64)
5.1.1 One-node Edge controller
As described in Section 4.1.1, the Edge controller is composed of two main services,
the Resource Manager and the Custom Orchestrator.

The Resource Manager is the component in charge of collecting and processing
all the information about the system status. This is done through the glances Python
package, which is executed in the web server mode by the glances –w command.

This command exposes a REST API in port 61208 (which has been chosen as
default) with all the collected information. This API is documented at
https://github.com/nicolargo/glances/blob/fieldsdescription/docs/api.rst , where all
the information about what do the monitored resources mean can be found.

This REST API has been containerized with the following Dockerfile:

FROM ubuntu:21.10

RUN apt-get update && DEBIAN_FRONTEND="noninteractive"
TZ="America/New_York" apt-get install -y tzdata

RUN apt-get install glances -y

RUN useradd -ms /bin/bash metricsexporter

USER metricsexporter

WORKDIR /home/metricsexporter

EXPOSE 61208

https://github.com/nicolargo/glances/blob/fieldsdescription/docs/api.rst

Copyright © FRACTAL Project Consortium 23 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

COPY glances.conf /etc/glances/glances.conf

ENTRYPOINT glances -w

Notice that the base image is ubuntu:21.10, but any other Linux distro will be fine if
there is a preference. During the image build, a user metrics exporter is created to
avoid the container to be running with the root user, glances is installed and then
executed as a web server.

To deploy this container into a Docker host, run the following command:

docker run -d --network=host --pid=host --hostname
metricsexporter <image_name>

Where <image_name> is the name of the Docker image you built before (by
default it will be metrics-exporter), and the rest of the flags mean:

-d : Run this container in detached mode, so it will not use the current terminal
session.

--network=host : Use the container host’s networking interface to expose the
API. This parameter is required to be able to access the API from outside the
container (especially in the Multi-node Edge Controller)

--pid=host : This allows the container to access the host’s processes. This way
the rest of the host’s processes and containers can be monitored, otherwise
only the glances container process will be shown which is of no interest for
monitoring purposes.

--hostname metricsexporter : Set the container’s hostname.

Once the glances container is deployed on the node to be monitored, another
container has to be deployed, with all the software and scripts to make use of
the information exported by the glances container.

This is done through the following Dockerfile:

ARG PYTHON_VERSION=3.9.13

FROM python:${PYTHON_VERSION}

RUN useradd -ms /bin/bash resource_manage

Copyright © FRACTAL Project Consortium 24 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

USER resource_manager

WORKDIR /home/resource_manager

COPY --chown=resource_manager:resource_manager utils
/home/resource_manager/utils

COPY --chown=resource_manager:resource_manager
requirements.txt /home/resource_manager/requirements.txt

COPY --chown=resource_manager:resource_manager nodes.yaml
/home/resource_manager/resource_manager/nodes.yaml

COPY --chown=resource_manager:resource_manager
resource_manager.py /home/resource_manager/resource_manager.py

RUN python3 -m pip install --upgrade pip

RUN pip install -r requirements.txt

ENTRYPOINT python3 resource_manager.py

As in the glances container, a dedicated user is created in the image build to avoid
using the root user. Then, all the necessary files for the Resource Manager to
monitor the exposed information by the metrics-exporter container are copied into
the container, and finally the resource_manager.py script is executed.

The resource_manager.py script is where the main loop of the component is
executed. First, the nodes.yaml file is read with all the information about the nodes
to be monitored. The syntax and usage of this file will be detailed in the Multi-node
Edge controller section. Then, the nodes availability is checked, and for the nodes
not available, a list of down-nodes is created.

For the alive nodes, the information is requested to their respective glances REST
APIs, and this information is parsed into manageable formats, and then processed
by importing the infotreatment.py.

Once the information has been parsed into Python objects, it is sent to the
actions.py script, which takes decisions based on pre-defined rules.

For example, if CPU and memory are being monitored, alerts will be sent by the
program if any of these parameters go over 80%. These percentages and alerts are
customizable and can be adjusted fit the user needs.

Finally, if any of the nodes is noted to have an active alert, it is listed into the
Tainted nodes list, which will be handled by the Custom Orchestrator.

Copyright © FRACTAL Project Consortium 25 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

Once the Custom Orchestrator comes into play, it first reads the Tainted nodes list,
which refers to the list of nodes that have some of their parameters too high or
exhausted on resources so they need actions to be taken on them.

5.1.2 Multi-node Edge controller
It was mentioned in the previous section that a file called nodes.yaml is copied
inside the resource manager container. This file is where all the nodes to be
monitored are included, detailing what resources must be monitored from each of
them, what orchestrator they are using and other useful information for the
resource manager script to be able to find the nodes. This is an example of a 2-node
configuration:

- node:

 hostname: "fractal-node1"

 IP: 192.168.0.83

 port: 61208

 orchestrator: "docker"

 resources: ["cpu","mem"]

- node:

 hostname: "fractal-node2"

 IP: 192.168.0.111

 port: 61208

 orchestrator: "kubernetes"

- custom-orchestrator:

 hostname: “fractal-orchestrator”

 IP: 192.168.0.23

With this configuration, both nodes will be monitored, but notice that the first node
has a dedicated array of resources to be monitored, including “cpu” and “mem”. In
this case, only these two resources will be monitored, and for the second node, all
the resources will be monitored, including cpu, mem, processing load and alerts
given by the glances service. For deployments where a custom orchestrator

Copyright © FRACTAL Project Consortium 26 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

container is running, another node must be added to the nodes.yaml configuration
file. This custom orchestrator node will give the resource manager the information
about what host is running the custom orchestrator container, so that it can send
the updated tainted notes list. For One-node deployments, the customer
orchestrator will of course be the host running all the orher services and being
orchestrated by itself

The main difference between the deployments in One-node and Multi-node
architectures is that this nodes.yaml file must be provided with a list of nodes to
monitor in the Multi-node architecture, while in the One-node, the nodes.yaml file
must only contain information about the node where the Edge Controller is being
run (hostname can even be set as localhost if running outside a container).

For Multi-node deployments, the Resource Manager will be aware of the status of all
surrounding nodes specified in the nodes.yaml file, and it will be in charge of
sending an updated list of Tainted nodes and exhausted nodes to the Custom
Orchestrator, which will then take the necessary actions.

The Edge Custom Orchestrator will receive this list of tainted nodes together with
the resource which is the cause of the alert, so the appropriate actions can be
taken.

If the node is being orchestrated by K8S, the custom orchestrator pod is able to
apply paints on the control plane and master node, so that node is no longer able to
schedule pods until the taint is lifted. For the custom orchestrator pod to be able to
apply taints to a given K8S node, it must be granted permissions by the role-based
access control policies. Other actions that this pod can take include rescheduling
pods, creating deployments, services, and virtually any other resource that should
be orchestrated externally to ensure that the system resources stay low enough for
the processes to be completed normally on each of the cluster nodes.

5.1.3 Custom Orchestrator
In the previous sections, it was mentioned that this component has three sub-
components with different functionalities and specific roles. In order to make this
component run in the cluster of nodes, first, it is important to have a view of the
nodes on which this component will run. The proposed single-node and multi-node
views are both supported by this component. However, it is required that the
master node has an IP address reachable by other nodes in the system. So, the first
component to be initialized is the Service Manager. The following instructions
provide a step-by-step guide to set it up. First, it is required to clone the repository
from the GitHub.

$ git clone https://github.com/vahidmohsseni/k8s-manager

$ cd k8s-manager/backend-service-manager

Copyright © FRACTAL Project Consortium 27 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

$ pip install –r requirements.txt

$ python service.py

The above commands will run the main service in a machine. Note that this service
will use port 5555 (to listen to the API Server) and 5556 (to listen to the Executors)
of the machine, so it is necessary to check if it is not already in use. If the port is
unavailable, it can be changed from the file `server.py`.

The next step is to make the API server run and connect to the above service. The
API server can be run on any node which can have network access to the machine
that the service manager is running on. For the following guide, it is assumed that
the code base is already cloned.

$ cd k8s-manager/api

$ pip install –r requirements

$ python app.py

The written steps will run the API server on port 5001 of the machine. Again, if
necessary, it is possible to change the port to any arbitrary number. The example
assumes that the API server and service manager are running on the same machine
with the default configuration. However, the mechanism for changing the IP address
of the destination is available in the `controller/v1.py` directory. In case there is a
change in the port of the service manager, it is a must to replace the default port in
the directory mentioned above.

The final service to be run is the executor service. The executor service should be
running on those nodes that will run the tasks and functions in the cluster of the
devices. The number of nodes can be any number starting from 1. Although this
custom orchestrator is designed to handle large-scale applications, if the number of
nodes is more than 500, the service manager's node requires at least 1 GB of
bandwidth and more than 16 processing cores.

$ cd k8s-manager/frontend-service-manager

$ pip install –r requirements.txt

$ python service.py

In case of a change port in the service manager, the default configuration of these
executors should be changed. And once more, the executor nodes must have
network access to the service manager.

Copyright © FRACTAL Project Consortium 28 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

All the functionalities provided by the service manager are accessible through the
API server. The API server has a RESTful design so that a frontend UI-based
application can be developed for it to take the ease-of-use advantage of the system.
However, the following list provides the curl-based API calls for the system to run
any tasks on the nodes. It should be mentioned that the requirements for the tasks
(to be run on those executors) must be already satisfied. In other words, the
executor nodes should be capable of running the tasks with the given commands.

Explanation URL curl parameters

Get list of tasks /api/v1/tasks/ -X GET

Create a new task /api/v1/tasks/
<task_name>

-X POST -F
"file=@<filename>"
-F "cmd=<args for
python including
file name>" -F
"rt=<return type>"

Delete a task /api/v1/tasks/
<task_name>

-X DELETE

Stop a task /api/v1/tasks/
<task_name>/stop

-X POST

Start a stopped task /api/v1/tasks/
<task_name>/start

-X POST

Check Status of a task /api/v1/tasks/
<task_name>/status

-X GET

Table 4: Custom orchestrator API reference

5.1.4 Ingestion & Storage capabilities
For the High-End node, all the chosen ETL and database tools have pre-built
packages that can be directly installed on ARM64 devices without needing to build
the code from source. Here we provide installation and usage steps for each of the
tools described in Section 4.1.3:

Ingestion

Prerequisites

Copyright © FRACTAL Project Consortium 29 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

Make sure that your system has the following available dependencies before
installing each of the ingestion tools

Apache NiFi

 Requires Java 8 or Java 11
 Supported OS:

o Linux, Unix, Windows, macOS
 Local installation:

o Download the binaries or Sources from the Official Download Page
 Docker installation:

o Download the images from the Official NiFi DockerHub

Apache Spark (PySPark)

 Python3.8 or above
 pip3
 Java 8 or later with JAVA_HOME section
 For ARM users, PyArrow is required for PySpark SQL, if PyArrow installation

fails, try installing PyArrow >= 4.0.0

Node-RED

 Local installation: A supported version of Node.js.
 Docker installation: Docker Engine
 From source:

o A supported version of Node.js
o A git client
o The grunt-cli npm module installed locally.

Faust

 Python3.6 or above
 A running Kafka broker

Installation steps

Apache NiFi

 Download

First, and assuming you are working on a Linux OS, download the tarball file from
https://nifi.apache.org/download.html . Then, decompress the file into the desired
installation directory.

 Starting Apache NiFi

Decompress and untar into desired installation directory

Copyright © FRACTAL Project Consortium 30 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

Make any desired edits in files found under /conf to match your deployment
requirements.

At a minimum, it is recommended editing the nifi.properties file and entering a
password for the nifi.sensitive.props.key (see System Properties below). This
nifi.properties file has many configuration aspects that should be reviewed before
starting the application, like ports where to expose the HTTP/HTTPs user interfaces,
user/password credentials, network interfaces to use, etc.

Once you have configured your NiFi environment, from the /bin directory, execute
the following commands by typing ./nifi.sh <command>:

 start: starts NiFi in the background
 stop: stops NiFi that is running in the background
 status: provides the current status of NiFi
 run: runs NiFi in the foreground and waits for a Ctrl-C to initiate shutdown of

NiFi
 install: installs NiFi as a service that can then be controlled via systemctl as:

o service nifi start
o service nifi stop
o service nifi status

These commands are used to control your application process, stop and restart the
service, or check the application status. Once your application is running, you can
visit the UI at (by default) https://localhost:8000.

By default, the installation script generated a random username and password that
can be edited in the nifi.properties file. If using the default configuration (which is
highly deprecated), the credentials can be found in the application logs at logs/nifi-
app.log, under the Generated Username and Generated Password lines.

To change the Username and Password you can execute the command:

$./bin/nifi.sh set-single-user-credentials <username>
<password>

And then access the dashboard where you can create your dataflows from the User
Interface at https://localhost:8443/nifi (again, it is recommended to change this
default port in the NiFi properties file).

 Docker container deployment

Once you are familiar with how NiFi works and are able to install it and deploy the
application on bare metal servers, you are ready to deploy NiFi as a Docker
container. While you can directly run a Docker container, it is highly encouraged to
install the application first to get a deeper insight on how it works and how to
configure it.

Copyright © FRACTAL Project Consortium 31 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

The Official Docker Image can be found on NiFi's Official DockerHub, where you can
also find all the required information to configure and run the container.

PySpark

Apache Spark is a multi-language engine for executing data engineering, data
science, and machine learning on single-node machines or clusters.

PySpark is available as a Python3 package, it can be installed by executing:

pip install pyspark

Take into account that Spark requires the following Python package dependencies:

NodeRed

To install NodeRed there are two possibilities:

 Installing with npm

sudo npm install -f --unsafe-perm node-red

Figure 4: Apache Pyspark dependencies

Copyright © FRACTAL Project Consortium 32 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

And confirm the installation was successful in the end of the command output:

+ node-red@1.1.0

added 332 packages from 341 contributors in 18.494s

found 0 vulnerabilities

 Installing with Docker (recommended)

docker run -it -p 1880:1880 -v node_red_data:/data --name
mynodered nodered/node-red

This command will create a Docker container and a data volume at /data for your
node-red container. Going to http://localhost:1880 will bring you to the User
Interface

Faust

To install Faust, just run:

pip install faust

This command will install Faust in your system as a Python package.

Storage

Installation

CrateDB

 Package-based method (Linux)

This method is suitable for Debian, Ubuntu, RedHat and CentOS based systems.

 Debian/Ubuntu

First of all you will need to add CrateDB package repository to your system.

Copyright © FRACTAL Project Consortium 33 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

Install prerequisites.

apt-get install sudo

sudo apt-get install curl gnupg software-properties-common
apt-transport-https apt-utils

Import the public GPG key for verifying the package
signatures.

curl -sS https://cdn.crate.io/downloads/deb/DEB-GPG-KEY-crate
| sudo apt-key add -

Register with the CrateDB package repository.

[[$(lsb_release --id --short) = "Debian"]] &&
repository="apt"

[[$(lsb_release --id --short) = "Ubuntu"]] &&
repository="deb"

distribution=$(lsb_release --codename --short)

sudo add-apt-repository "deb [arch=amd64]
https://cdn.crate.io/downloads/${repository}/stable/ $
{distribution} main"

Now update the package sources:

sudo apt update

You should see a success message. This indicates that the CrateDB package is
successfuly registered. Now you can install CrateDB:

sudo apt install crate

Once installed you can control the crate service with systemctl utility program:

sudo systemctl <command> crate

Copyright © FRACTAL Project Consortium 34 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

Replace COMMAND with start, stop, restart, status and so on.

 Red Hat/CentOS

First of all, you will need to add CrateDB package repository to your system.

Install prerequisites.

yum install sudo

Import the public GPG key for verifying the package signatures.

sudo rpm --import https://cdn.crate.io/downloads/yum/RPM-GPG-
KEY-crate

Register with the CrateDB package repository.

sudo rpm -Uvh
https://cdn.crate.io/downloads/yum/7/x86_64/crate-release-7.0-
1.x86_64.rpm

With everything set up, you can install CrateDB:

sudo yum install crate

Once installed you can control the crate service with systemctl utility program:

sudo systemctl <command> crate

Replace COMMAND with start, stop, restart, status and so on.

 Docker

CrateDB and Docker are great matches thanks to CrateDB’s shared-nothing,
horizontally scalable architecture that lends itself well to containerization.

Copyright © FRACTAL Project Consortium 35 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

In order to spin up a container using the most recent stable version of the official
CrateDB Docker image, use:

docker run --publish=4200:4200 --publish=5432:5432 crate

MongoDB

 Package-based method (Linux)

Assuming you are using an Ubuntu system, import public GPG Key for MongoDB
using:

wget -qO - https://www.mongodb.org/static/pgp/server-6.0.asc |
sudo apt-key add -

The operation should respond with an OK.

Create the list file /etc/apt/sources.list.d/mongodb-org-6.0.list for your version of
Ubuntu. The following example is for Ubuntu 20.04 (Focal).

echo "deb [arch=amd64,arm64]
https://repo.mongodb.org/apt/ubuntu focal/mongodb-org/6.0
multiverse" | sudo tee /etc/apt/sources.list.d/mongodb-org-
6.0.list

Reload the local package database.

sudo apt update

Install MongoDB packages:

sudo apt-get install -y mongodb-org

Once installed you can control the MongoDB service with systemctl utility program:

sudo systemctl COMMAND mongod

Copyright © FRACTAL Project Consortium 36 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

Replace COMMAND with start, stop, restart, status and so on.

 Docker

MongoDB can run in a container. The official image available on DockerHub contains
the community edition of MongoDB and is maintained by the Docker team.

In order to spin up a container using the most recent stable version of the official
MongoDB Docker image, use:

docker run --name mongodb -d -p 27017:27017 mongo

5.2 Mid-range node (RISC-V64)
5.2.1 One-node Edge controller
For the RISCV architecture, there are steps to follow to build the edge orchestrator
are essentially the same that must be followed in the high-end node to build the
necessary containers. The resource manager and the metrics exporter should be
the same container images but built dedicatedly for different processor
architectures. However, the custom orchestrator container plays a major role in
RISCV platforms, because there is no stable K8S distribution available for these
nodes to take care of dynamic container deployment and management. Docker
Engine must be used as the container manager, and the custom orchestrator will be
the system in charge of providing Fractal orchestration capabilities to the host.

The custom orchestrator container image is built with the following Dockerfile:

ARG PYTHON_VERSION=3.9.13

FROM python:${PYTHON_VERSION}

RUN useradd -ms /bin/bash custom-orchestrator

COPY --chown=custom-orchestrator:custom-orchestrator utils /home/custom-
orchestrator/utils

COPY --chown=custom-orchestrator:custom-orchestrator requirements.txt
/home/custom-orchestrator/requirements.txt

COPY --chown=custom-orchestrator:custom-orchestrator
custom_orchestrator.py /home/custom-orchestrator/custom_orchestrator.py

RUN pip install --upgrade pip

RUN pip install --no-cache-dir -r /home/custom-orchestrator/requirements.txt

Copyright © FRACTAL Project Consortium 37 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

USER custom-orchestrator

WORKDIR /home/custom-orchestrator

ENV FLASK_APP=custom_orchestrator.py

ENTRYPOINT flask run --host=0.0.0.0 --port=9999

During the execution of the container, a Flask API is run, which contains all the
required methods for the resource manager to send the updated list of tainted
notes and the custom orchestrator to apply the adequate actions over the Docker
daemon.

When a node is included in the list to be tainted for the first time, the first action to
be taken by the orchestrator is to limit all the resources that containers being run
on the node have access to, by limiting the CPUs and free memory available for
these containers. if the node is not untainted for a given period of time, then the
orchestrator will take more severe actions, stopping the containers one by one until
the node gets out of the tainted list. Once the processor pressure gets low enough
and the node is finally untainted, that restrictions over the node are lifted, except
for their resource limiting on the containers being run, to avoid the processor from
overloading again.

5.2.2 Multi-node Edge controller
For Multi-node edge controller deployments, the nodes.yaml configuration file must
be provided to the resource manager container, the same way it is done for the
high-end node platform deployment. The resource manager will use the
configuration file to get a complete list of the nodes to be monitored and being part
of the cluster, and also to know which node will be in charge of running the custom
orchestrator container.

Once the deployment has been done, with the metrics exporter being run on each
node of the cluster, the resource manager scraping the information about the
system processor for each node, and the custom orchestrator running on the
master node of the cluster, the setup is ready to start orchestrating on Docker
Engine hosts by managing the containers being run, stopped, and started on each
of the nodes, while also limiting the resources available for exhausting containers.

The Edge Controller ultimately allows the Fractal node to have dedicated
orchestration capabilities by running a piece of software which also makes the
platform and the overall system context aware. Each of the nodes in the cluster has
access to real-time information about the state of itself and the state of all the other
nodes in the fractal environment. It also overcomes the difficulties that arise from
running containerized solutions in platforms which have no support or stable K8S
distributions.

Copyright © FRACTAL Project Consortium 38 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

5.2.3 Custom Orchestrator
In the design section, it was noted that the design of this component uses the
native and general libraries of python to maintain compatibility among different
hardware architectures. So, as a general rule, the component can run with the exact
instructions provided for the high-end nodes. However, the decoupled
implementation of this component allows for running the components on different
machines. With this feature, executing the service manager on a node with enough
resources and fault tolerance is recommended.

5.2.4 Ingestion & Storage capabilities
For the Mid-End node, all the chosen ETL and database tools the software packages
must be downloaded from the official repositories and built from source following
the instructions on the documentation.

Ingestion

Prerequisites

Make sure that your system has the following available dependencies before
installing each of the ingestion tools

Apache NiFi

 Requires Java 8 or Java 11
 Supported OS:

o Linux, Unix, Windows, macOS
 Local installation:

o Download the binaries or Sources from the Official Download Page
 Docker installation:

o Download the images from the Official NiFi DockerHub

Apache Spark (PySPark)

 Python3.8 or above
 pip3
 Java 8 or later with JAVA_HOME section
 For ARM users, PyArrow is required for PySpark SQL, if PyArrow installation

fails, try installing PyArrow >= 4.0.0

Node-RED

 Local installation: A supported version of Node.js.
 Docker installation: Docker Engine
 From source:

o A supported version of Node.js
o A git client

Copyright © FRACTAL Project Consortium 39 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

o The grunt-cli npm module installed locally.

Faust

 Python3.6 or above
 A running Kafka broker

Source code download links:

Apache NiFi:

https://www.apache.org/dyn/closer.lua?path=/nifi/1.18.0/nifi-1.18.0-source-
release.zip

Apache Spark (PySpark):

https://spark.apache.org/docs/latest/api/python/getting_started/
install.html#installing-from-source

Node-RED (build from GitHub using npm):

git clone https://github.com/node-red/node-red.git

cd node-red

npm install

npm run build

npm start

Faust:

Download the latest version from https://pypi.org/project/faust/

$ tar xvfz faust-0.0.0.tar.gz

$ cd faust-0.0.0

$ python setup.py build

python setup.py install

https://spark.apache.org/docs/latest/api/python/getting_started/install.html#installing-from-source
https://spark.apache.org/docs/latest/api/python/getting_started/install.html#installing-from-source
https://www.apache.org/dyn/closer.lua?path=/nifi/1.18.0/nifi-1.18.0-source-release.zip
https://www.apache.org/dyn/closer.lua?path=/nifi/1.18.0/nifi-1.18.0-source-release.zip

Copyright © FRACTAL Project Consortium 40 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

Storage

These instructions have been executed on a RISC-V64 virtual machine with Debian
OS running on Qemu with the following specifications:

root@debian-riscv64:~# uname -a

Linux debian-riscv64 5.16.0-5-riscv64 #1 SMP Debian 5.16.14-1 (2022-03-15)
riscv

64 GNU/Linux

root@debian-riscv64:~# lscpu

Architecture: riscv64

 Byte Order: Little Endian

CPU(s): 4

 On-line CPU(s) list: 0-3

NUMA:

 NUMA node(s): 1

 NUMA node0 CPU(s): 0-3

Given the nature of RISC-V64, there is a notable lack of package release for the
architecture. Thus, the need for compiling source-code is usually a must for
complex applications. Compiling source-code is never a trivial task and providing a
guide for it goes beyond the scope of this deliverable.

Instead, we will focus on databases that can be easily installed and should work as
an out-of-the-box solution.

MySQL

MySQL is maybe the most popular open-source database and it comes with a
release package for Debian on RISC-V architecture:

apt-get install mysql-server

Once installed you can control the server with systemctl.

Apache IoTDB

Copyright © FRACTAL Project Consortium 41 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

The IoTDB database runs on Java which does have release packages for RISC-V.
First, we need to install some preliminary packages.

apt install default-jdk curl unzip

Download and unzip the binaries:

wget https://dlcdn.apache.org/iotdb/0.13.2/apache-iotdb-0.13.2-all-bin.zip

unzip apache-iotdb-0.13.2-all-bin.zip -d

We can start the database server with:

nohup sbin/start-server.sh >/dev/null 2>&1 &

To start a client, we can then run:

Start the client

sbin/start-cli.sh -h 127.0.0.1 -p 6667 -u root -pw root

5.3 Low-End node (PULP RISC-V32)
As a result of WP3, Nuttx RTOS was ported to the PULP low-end systems to offer a
Posix completable application environment. See D3.6.

While the system is limited, it still offers a nice abstract development environment.

5.3.1 Cloud communications
As discussed on D3.6 the Nuttx based PULP (RISC-V) node is not able support high
end tools such as Python and Java. However, the system took an approach to utilize
c/c++ tools. As an example, an Azure IotHub was integrated to the Nuttx. Low-end
connectivity framework is presented on figure below.

Nodes connect to cloud, where they are orchestrated based on their identity (e.g.
keyhash). After acceptance they become visible to the application.

Copyright © FRACTAL Project Consortium 42 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

The framework Low-end nodes were verified/demonstrated, by using ESP32-C3
embedded RISC-V devkit using the build in WIFI. The connectivity was based on
Azure IotHub, however, the actual mechanism implemented is abstract. Other IoT-
implementations are possible to utilize (Google, Amazon, etc.)

The main idea is that if the connectivity implementation below changes, the Fractal
low-end Nuttx application does not need to change.

The code clip below is from the existing demo application.

Keys:
Here the security is based on keys, built in binary.

I “real” system, each individual device should have individual keys flashed at the
production. Based on those individual production keys each of the units can be
individually accepted/revoked from the cloud.
https://docs.microsoft.com/en-us/azure/iot-dps/concepts-symmetric-key-attestation?
tabs=linux#group-enrollments
// This is group key for fractal-demo (normally _NOT_ included on device binary)
static const uint8_t shared_group_key[] = {
 0xc6, 0xd3, 0x82, 0x3c, 0xf2, 0x3e, 0x99, 0x33, 0xfd, 0x27, 0xa6, 0xab, 0xc7,

0x28, 0xe4, 0xd9, 0xd5, 0x2c,0xc7, 0x6c, 0xb3, 0xd2, 0xa9, 0x25, 0x81, 0xcc,
0x3a, 0x1c, 0x32, 0x34, 0x7a, 0x24, 0xd7, 0xb8, 0x7d, 0xa2, 0xe5, 0x8f,0x0f,
0xc8, 0x20, 0xb0, 0x6f, 0x6e, 0x9d, 0x9b, 0xb4, 0x96, 0x4e, 0x0c,0xec, 0xc2,
0xe9, 0x30, 0x07, 0x29, 0xb6, 0xbf, 0xa2, 0xf6, 0x2c, 0x25, 0x03, 0x97

};

Copyright © FRACTAL Project Consortium 43 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

The main application below is the task that performs the main functionality of
demo-case. Function do_provisioning() connects to cloud and if succeed the
system sends/receives data by do_send_datatest() function. Note actual
manipulation of LED and reading sensors is not presented here, but on RTOS
systems that is quite trivial.

int main(int argc, char **argv)

{

 do_exit = false;

 (void) IoTHub_Init();

 led_init();

 led_set_value(1);

 THREAD_HANDLE *handle;

 ThreadAPI_Create(&handle, run_ui, NULL);

 ui_set_registration_state("none");

 ui_set_registration_reason("");

 ui_set_connection_state("none");

 ui_set_connection_reason("");

 ui_set_temperature("??.?");

 ui_set_humidity("rh: ??.?");

 ui_set_led_state(led_get_state());

 signal(SIGINT, intHandler);

 while (do_exit == false) {

Copyright © FRACTAL Project Consortium 44 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

 do_provisioning(device_id);

 if (strlen(g_iothub_connection_string) != 0) {

 do_send_datatest(g_iothub_connection_string, device_id);

 } else {

 printf("Can't send data: no connection string available.\n");

 }

 sleep(5);

 }

 printf("Exitting...\n");

 // Free all the sdk subsystem

 IoTHub_Deinit();

 return 0;

}

Behind do_provisioning() and do_send_datatest() are the IotHub
implementations. For details see the code above.

5.3.2 Task scheduling
Nuttx is a posix compatible OS, and it supports posix tasks. Example code above is
one task. There can be multiple parallel tasks in the system and each task may
have multiple threads. Communication between tasks typically/threads happen by
sockets or by variables (protected by mutexes).

Limited memory and processing requirements must be considered when defining
the system.

Copyright © FRACTAL Project Consortium 45 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

Tasks can be started automatically I.e. by /etc/int.d/ or manually from terminal
command line.

5.3.3 Ingestion & Storage capabilities
Nuttx supports normal posix sockets, where data flow control can be handled e.g.
by signals. With adequate driver various communication mediums may be added.
Thus, the socket is a typical way connect communication interfaces. Such as:

 Ethernet
 Wifi
 1.5G to 6G
 Serial, can, RS485
 USB

Nuttx supports normal posix file system. With adequate driver various storage
mediums may be added. Such as:

 Read only file system allocated on processor Flash
 Read/write flash file system on system board
 MMC card interface with removable media
 SATA interface for hard disks
 USB
 Network storage utilizing e.g., NFS

Nuttx systems typically offer a console interface. Normally that is used for testing
and development purposes. Typically, it is via serial port and it offers (linux style)
tools to control and monitor applications and daemons on the system.

Copyright © FRACTAL Project Consortium 46 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

6 Hardware-level Edge Controller

The hardware edge controller controls the underlying hardware, such as
communications and computations. The underlying hardware is based on a
network-on-chip (NoC) multicore architecture that supports heterogeneous cores
connected via NoC. The description of the underlying NoC-based multicore
architecture is reported in contribution D4.4 (WP4). However, in this deliverable
D6.2, we report on the HW gateway architecture that controls communication
between multiple nodes. The HW gateway controller follows a pre-calculated
schedule computed during design time and configures the network HW gateway
when systems begin to manage network gateway communications, as described in
Section 6.1.1 below.

6.1 Overview of NoC based Multicore Architecture
The NoC-based multicore architecture is the hardware used for computation and
communication in the Fractal Node. As shown in Figure 5, the multicore architecture
consists of a core responsible for computations and NI for accessing the NoC. The
on-chip interconnects a network of routers that connect the different cores within
the chip. We can also see the NGW, the network gateway for accessing the off-chip
domain. The NoC-based multicore follows a time-triggered schedule to control the
communication and computation of tasks in the multiple cores within the node.
Thus, each message communicated within the cores is injected at a predefined time
to avoid message collision.

Copyright © FRACTAL Project Consortium 47 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

6.1.1 Network Hardware Gateway Architecture
On-chip/off-chip gateways establish end-to-end communication in heterogeneous
and mixed-critical networks, as shown in Figure 6. An off-chip/on-chip gatewayc
ontrols the redirection of messages between the NoC and the off-chip
communication network.

The following sections explained the different services of the gateway architecture.

Figure 5: Multiple core architecture

Copyright © FRACTAL Project Consortium 48 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

Message-Classification Service

Message classification is based on the concept of Virtual Link (VL). The concept of
VL is used to realize bandwidth partitioning, which is an end-to-end multicast
channel between a sender component and multiple receiver components. The
message classification service is responsible for classifying incoming messages
from NI to decide on the appropriate buffer (i.e., VL queues and egress queues)
based on the message type and configuration parameters. In addition, the message
classification service checks the format of the message and its control information,
such as the VL identifier (VLID). If the message has an invalid format, it is discarded.
In addition, the message classification services use the configuration parameters to
check the integrity and validity of the periodic and sporadic messages; this includes
checking the message size and whether the messages arrive with the correct VLID.
In addition, the gateway verifies that the periodic messages arrive within the
specified receive windows of the VL.

Message-Scheduling Service

This service guarantees the determinism of the redirection of periodic messages
within the on-chip/off-chip gateway. Each periodic message has predefined timing
parameters, such as a period and a phase. According to the predefined
configuration for message scheduling, this service determines the times the
periodic messages are forwarded.

Traffic-Shaping Service

Figure 6: Off-chip/On-chip Network Gateway Services

Copyright © FRACTAL Project Consortium 49 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

This service guarantees the minimum interarrival time between two consecutive
sporadic messages on the respective VL. The minimum interarrival time is part of
the configuration parameters for each VL.

Relaying of Aperiodic Message

This service is responsible for forwarding aperiodic messages between ingress and
egress queues based on their respective data directions and destination addresses.

Down Sampling

This service allows message exchange between networks with different periods or
rate constraints for sporadic messages. Down sampling is also required to
compensate for differences in bandwidths between off-chip and on-chip networks.
As a result, the gateway must redirect a subset of incoming messages to meet the
timing requirements of the destination network. In addition, the redirection needs to
be synchronized between networks to ensure consistent data is forwarded. In the
down sampling service, the gateway sends the most recent periodic message that
arrives before the next send time. The traffic shaper discards all messages that
arrive within the minimum arrival time for sporadic messages.

Protocol Conversion

The protocol conversion service encapsulates and decapsulates incoming and
outgoing messages. The gateway adapts the message format and controls
information according to the communication protocol (e.g., headers with addresses,
flow control information, CRC). In addition, gateways must determine a new address
for the destination network for each incoming message. This computation is
performed based on the address information of the incoming message and differs
depending on the traffic and network type. For periodic and sporadic traffic, the new
addressing information is either a VLID, a routing path to the final destination, or
another gateway. The routing path is required for source-based routing, which is
common in many NoCs. The VLID or routing path can be determined by looking up
the incoming address information in the gateway configuration. For aperiodic traffic,
the new addressing information is either destination addresses or a dynamically
computed routing path. The gateway can dynamically use the spanning tree
protocol to determine the destination address [2].

Egress-queuing Service

The egress queues consist of a periodic egress queue, several sporadic queues, and
an aperiodic egress queue. Each sporadic queue has its priority level. The
deterministic behavior of periodic messages is guaranteed by the message
scheduling service (see Message scheduling service in the previous subsection) in
combination with a higher priority than sporadic messages. The deterministic
behavior guarantees that no conflict occurs in the egress queue. Therefore, a queue
that must provide buffer capacity for a single periodic message of maximum size is
sufficient. To control the resolution of conflicts between sporadic messages, we
distinguish multiple queues according to their priorities. These queues are used to

Copyright © FRACTAL Project Consortium 50 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

multiplex the frame flow coming from the internal message queues. The queues
provide guaranteed buffer capacities, which can also be realized by dynamic
memory allocation. The guaranteed buffer capacities prevent the loss of messages
due to the bounded accumulation of sporadic messages, which is determined by the
rate constraints.

Ingress Queuing Service

The ingress queue consists of a FIFO queue for each network. The incoming
messages from the network are queued in the ingress queue; then, the ingress
queuing service notifies the message classification service.

Virtual-Link Queuing Service

VL queues belong to two groups : one for the periodic messages and the
other one for the sporadic messages.

 Periodic VL buffers: Each periodic VL has one periodic VL buffer,
which provides buffer space for exactly one message. In case this buffer
is full and another message arrives with the same VLID, the newer
message replaces the old one.

 Sporadic VL queues: Each sporadic VL has one queue. It is possible
to store several messages of the respective VL in this queue.

Serialization Service

The serialization service forwards the messages from the egress queues to the
network (off-chip or on-chip) according to the priority. The highest priority
is assigned to periodic messages, whereas aperiodic messages have the lowest
priority. Also, the serialization service uses either shuffling or timely blocking
to resolve contention between different traffic types. The timely block
mechanism disables the sending of other messages in the egress queues during
a guarding window prior to the transmission of a periodic message. For the
shuffling mechanism, no guarding window is needed. In the worst-case, the
gateway delays a periodic message for the duration of a sporadic or aperiodic
message of maximum size.

Configuration Parameters

The configuration parameters of the gateway are as follows:

 Guaranteed buffer capacity: Each ingress queue, egress queue and VL
queue is associated with a corresponding guaranteed minimum buffer
capacity. The buffer capacity is determined by the maximum message
size and the message timing. This buffer capacity can avoid message
omissions of sporadic and periodic messages based on rate-constraints
and message periods

Copyright © FRACTAL Project Consortium 51 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

 Address information of ports: The VL associated with a port and the
data direction (from the off-chip network or to the off-chip network)
are defined.

 Message type: The message type is defined such as periodic, sporadic
or aperiodic.

 Timing parameters: In case of periodic messages, the parameters include the
period and phase. For sporadic messages, the interarrival time, the jitter and
the priority are specified. In case of aperiodic messages, no timing parameters
are required.

6.1.2 Processing of Different Traffic Types
This section describes the processing of messages in the off-chip/on-chip gateway.
As depicted in Figure 7, the network Gateway architecture consists of different
components such as bridge, serialization, ingress, egress, and VL queue layers.

The message bridge handles incoming messages through timely redirection,
protocol conversion, monitoring, and configuration services. The network interface
provides the interface between the network and message bridging. It also performs
message classification and serialization. Each network interface connects the
gateway either to an off-chip network (TSN) or an on-chip network (ATTNoC).

The ingress layer is invoked by an incoming message from the on-chip or off-chip
network. The incoming messages are relayed to the bridge layer in the ingress
layer. The bridge layer classifies the incoming messages based on the type (i.e.,
periodic, sporadic, and aperiodic). Below we explain the processing for each
message type.

Processing of Periodic Messages

Figure 7: Off-chip/On-chip Network Gateway Architecture [1]

Copyright © FRACTAL Project Consortium 52 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

Figure 8 depicts the flowchart for periodic message transmissions. In the
classification state, a message analysis function extracts from the periodic message
of the VLID. In case the incoming message does not have a defined VLID in the
configuration parameters, the message is considered invalid. Invalid messages are
dropped in the classification state, while valid messages result in a transition to the
VL buffer state. Based on VLID, the check VL buffer status function retrieves the
buffer identifier from the configuration parameters. Then, it puts the message into
the VL buffer, which provides buffer space for exactly one message. In case this
buffer is full, and another message arrives with the same VLID, the newer message
replaces the old one. The “VL buffer status” for the corresponding VLID is updated
when the message is buffered. Suppose the “VL buffer status” denotes that the
buffer is not empty. In that case, the next transmission time function in the time
triggered scheduling state determines the point when the periodic message is
relayed according to the communication schedule, thereby ensuring deterministic
communication behavior. At the next transmission time, the pass information to the
redirection function sends the information (i.e., VLID, buffer identifier, and direction)
to the redirection state. In the redirection state, the check VL buffer status function
checks whether the corresponding VL buffer contains a message. This message is
then sent to one of the egress objects according to the direction parameter, where
the message is enqueued in a periodic egress queue. When the message is
removed, the “VL buffer status” for the corresponding VLID is updated. These
procedures are performed according to the communication schedule until the “VL
buffer status” indicates that the buffer is empty. The serialization is responsible for
forwarding the message from the egress queues to the on-chip or off-chip network
interface according to the priority. The highest priority is periodic messages,
whereas aperiodic messages have the lowest priority. Using these priorities, the
serialization supports two mechanisms to resolve collisions between the different
types of messages:

Copyright © FRACTAL Project Consortium 53 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

 Timely block: According to the time-triggered schedule, the serialization
knows in advance the transmission times of the periodic messages. Timely
block means that the gateway reserves so-called guarding windows before
every transmission time of a periodic message. The behavior of the timely
block mechanism is illustrated in Figure 8. The egress queues have four
egress queues with decreasing priorities: one queue for periodic messages,
two queues for sporadic messages (each one for a different priority class)
and one queue for aperiodic messages. The egress-queue status is updated
when a message is enqueued in one of the egress queues. In case the
status of the egress queue is “not empty”, the timely block checker
function in the timely block state verifies that no guarding window is active.
In case of guarding windows, the wait function imposes a delay until the
next trans- mission time of the periodic message. If there is any periodic
message, this message is sent. Otherwise, the process of the flowchart
returns to the egress queue state. In case there are no guarding windows,
the select message function in the send state selects one message out of
the sporadic and aperiodic queues based on the priority and this message
is sent. If the status of the egress queues is still “not empty”, the procedure
is
repeated until the egress queues are empty.

Figure 8: Flowchart for Periodic Messages.

Copyright © FRACTAL Project Consortium 54 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

 Shuffling: If a low priority message is being transmitted while a high priority
message arrives, the high priority message will wait until the low priority
message is finished. Figure 10 shows the flowchart for the shuffling
mechanism within the serialization object. The egress queues status is
updated when a message is enqueued in one of the egress queues. In case
the status of the egress queue is “not empty”, the select message function
removes one message from the egress queues based on the priority. The
send function forwards the message to the network interface of the on-chip
or off-chip network interface. If the status of the egress queue is still “not
empty”, the procedure is repeated until the egress queues are empty.

Processing of Sporadic Messages

Figure 11 depicts the flowchart for sporadic message transmissions. The message
analysis function in the classification state checks incoming messages.
The size of the message must be below the maximum message size according

Figure 9: Flowchart for Timely Block Mechanism

Figure 10: Flowchart for Shuffling Mechanism.

Copyright © FRACTAL Project Consortium 55 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

to the configuration parameters of the VL. A valid message is enqueued in the
corresponding VL queue. When the message is enqueued, the “VL queue status” for
the corresponding VLID is updated. In case the VL queue was empty, the update
time function updates the reception time of the last incoming VL message. This
timestamp is essential for traffic shaping and temporal partitioning. In the sporadic
shaper, the sporadic traffic regulator and controller function guarantees the
minimum interarrival time between two consecutive instances of a sporadic
message on the respective VL. The sporadic traffic regulator and controller function
compute the necessary waiting time for each message based on the time of the
latest incoming VL message. When the waiting time has expired, the redirection
function passes the information (i.e., VLID, buffer identifier and direction) to the
redirection state. In the redirection state, the remove message from VL queue
function forwards the message from the VL queue to one of the sporadic egress
queues according to the direction and priority parameters. In case the VL queue has
another message, the time of the last incoming VL message is updated. This step
allows the sporadic traffic regulator and controller function to send the next
message after the minimum interarrival time. This procedure is repeated until the
“VL queue status” is “empty”. Thereafter, the serialization is responsible for
forwarding the message to the network interface of the off-chip or on-chip network
as explained in the previous subsection.

Processing of Aperiodic Messages

Figure 11: Flowchart for Sporadic Message.

Copyright © FRACTAL Project Consortium 56 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

Aperiodic messages have no timing constraints on successive message instances
and no real-time guarantees. Therefore, the incoming messages are inserted into
the corresponding aperiodic egress queue. The “egress queue status” is updated
when the message is enqueued. After that, the serialization is responsible for
forwarding the message to the network interface of the off-chip or on-chip network.

6.1.3 Scheduling Problem in HW Network Gateway
An Optimised Reliable Task and Message Scheduling algorithm (OR-TMS) uses DPSO
to find scheduling solutions given real-time objectives such as minimal makespan,
total energy consumption, and failure rates of scheduling all tasks [3]. A task
scheduling instance refers to mapping tasks to potential hosts, creating a
distribution of tasks for each instance. The energy consumption of routing a
message from source to destination is the sum of energy dissipated by routers in
the message route while routing the message. On the other hand, message arrival
time denotes the instant when all dependent messages arrive at a child task from a
parent task; This also defines a precedence constraint between dependent tasks.
For each task scheduling instance, the cost of executing all tasks is directly
proportional to the schedule makespan, consumed energy, and failure rate.
Therefore, a lower scheduling cost indicates better schedule instances. The
objective of OR-TMS is to minimize the schedule execution cost, which depends on
the DPSO mapping.

DPSO Task and Message Scheduling

DPSO initially establishes a population of TMS instances where each instance is
evaluated through its cost value. This results in a multi-objective optimization
problem employing a weighted sum of the system’s completion time (schedule
makespan), total energy consumption, and failure rates. Next, DPSO minimizes the
cost value of TMS instances, achieving optimization through updating the position of

Figure 12: Flowchart for Aperiodic Message.

Copyright © FRACTAL Project Consortium 57 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

particles while avoiding local convergence. Finally, OR-TMS integrates a Time Slot
Message Scheduler (TSMS) into DPSO. TSMS is used to schedule the message traffic
using conflict-free time slots to avoid signal interference. The pseudo-code for the
DPSO-based task and message scheduling algorithm is shown in Algorithm 1. The
particle’s position Xi represents a solution for scheduling tasks to random hosts. A
better particle position results in a lower cost value. Algorithm 1 is terminated when
changes in particles’ positions do not further result in better cost values.

OR-TMS initially computes each unscheduled task t its top-level cost tlt. Then, all
unscheduled tasks are sorted by the weight of their tlt. Algorithm 2 applies
Algorithm 3 to all sorted tasks until scheduling all tasks of a particle’s position.
Algorithm 4 calculates routes and schedules messages on conflict-free time slots.
Finally, algorithm 5 inherits the physical interference model of the system to find
feasible time slots used to transmit every message.

Figure 13: DPSO-based Task and Message Scheduling Procedure

Copyright © FRACTAL Project Consortium 58 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

Figure 14: OR-TMS(T)

Figure 15: Task Scheduling

Copyright © FRACTAL Project Consortium 59 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

Simulation and Evaluation of OR-TMS

Various system application models are generated as random forest fire-directed
graphs. The dependency and constraints between tasks in the application models
vary across the models. Figures 17 and 18 illustrate the platform topologies for
which OR-TMS generates time-triggered schedules for exchanging messages within
the system. Every access point creates a local network with four static wireless TSN-
enabled hosts with a 50 Mbps data rate. Any node out of energy is assumed a failed
node where time and energy are measured in milliseconds and joules, respectively.

Figure 16: Message Interference Analysis

Copyright © FRACTAL Project Consortium 60 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

Figure 17: System Model (Mesh Topology)

Copyright © FRACTAL Project Consortium 61 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

The convergence rate of OR-TMS refers to the number of iterations for which OR-
TMS converges, and an optimized scheduling solution is found. In evaluating the
OR-TMS convergence rate, application models of 30, 40, and 50 tasks and
messages with task deadlines of 2000 mS are used where the experimental step
size is set to 5. Figure 19 shows a population of 10 particles converges after 15
iterations for an application model of 30 tasks and messages. For the application
models of 40 and 50 tasks and messages, OR-TMS converges after 20 and 35
iterations, respectively. This represents a direct proportionality between the
application's number of tasks and messages and the convergence rate.

Figure 18: System Model (Ring Topology)

Copyright © FRACTAL Project Consortium 62 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

Figure 19: OR-TMS Convergence Rate

Copyright © FRACTAL Project Consortium 63 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

7 Run-time manager: Edge Controller
communications

7.1 Description
The Runtime Manager is a component developed to coordinate and manage task
scheduling and load balancing operations between modules in one or more fractal
nodes at runtime. RM performs the scheduling of various operations and it is
possible to configure every aspect of the tasks that need to be performed, for
example what data needs to be exchanged and when, how and to which module it
has to be sent. In addition, it provides load balancing capabilities using the interface
with the Load Balancer component, sending the task execution to a different node.

RM was initially needed in VAL-UC6 to manage task scheduling and interaction
between the several application modules of the intelligent totem nodes of the use
case. Further details about the implementation in the UC context are reported in
D8.1 - Specification of Industrial validation Use Cases and D8.2 - System
Requirements.

Considering the aforementioned RM features, we decided to develop the component
to be as much general purpose as possible in order to be used in broader contexts,
so the outcome of the job carried out is the development of a component capable of
being deployed/used in different scenarios.

7.2 Design and Implementation of component
7.2.1 Design
The purpose of the Runtime Manager is to enable communication and data dispatch
among the various components installed on the node, and to manage the load
balancing operations, when needed, by assigning the execution of the activities to a
different instance of the Runtime Manager module installed on another node.
The module is completely configurable – in terms of data flow to manage and in
terms of components to communicate with – by means of a set of configuration files
which will be detailed in section 7.2.2.

Copyright © FRACTAL Project Consortium 64 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

This process is represented in the following flow-chart diagram:

Figure 20: Runtime Manager Flow Chart Diagram

Copyright © FRACTAL Project Consortium 65 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

During the design phase, we also analyzed a typical interaction between the
Runtime Manger and several applications as an example flow from the dedicated
configuration file. The following sequence diagram depicts a general data flow the
Runtime Manager might have to handle:

The diagram shows a component triggering the Runtime Manager by publishing a
message on the configured MQTT topic. The trigger message contains information
about the flow that needs to be executed and the payload to be exchanged.

In the particular case depicted in Figure 21, RM sends the payload to Application 1,
whose result is subsequently sent to Application 2. This, in turn, will return a result
which, together with that from Application 1, will form the payload for Application 3,
the last part of the data flow, which acknowledges the end of its computations.

7.2.2 Implementation
The Runtime Manager software module has been implemented in Python following
the OOP paradigm. It is a configurable module based on four configuration files
“load_balancer”, “nodes”, “components'' and “flows”; each of them serves a
specific purpose, as suggested by the names: “load_balancer” collects the values of
protocol, ip, port and endpoint needed to contact the Load Balancer; “nodes” and

Figure 21: Runtime Manager Sequence Diagram

Copyright © FRACTAL Project Consortium 66 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

“components”, respectively, contain the information regarding the nodes and the
components in the system which the RM may need to contact; finally, “flows” is the
configuration file containing the instructions for the RM to execute the multiple
processes scheduled by the system. Each configuration file is in JSON format,
except for “flows.conf” which follows the rules explained inside the README in the
project repository, in order to unambiguously define the data flows.

There are two ways to trigger the functionalities of the Runtime Manager: an MQTT
interface and a REST interface.

The messages received either via MQTT or REST will be forwarded to the Action
Dispatcher module, which instantiates the appropriate object according to whether
the action is to be performed on the current Runtime Manager (Home Execution), or
sent to a Runtime Manager on a different node (LB Execution).

MQTT subscriber service

On launching the MQTT interface script, the RM subscribes to the topic configured
and will be ready to receive any message published on it.

A JSON string published on the configured topic is the standard entry point to the
Runtime Manager, and the method to be used in order to trigger the RM. The JSON
string format is as follows:

{

"id_flow": "1",

"payload": "0x03abcdefghil"

}

where id_flow is the ID of the flow to be read in the configuration file and executed,
and payload is the data which might be required to be passed to some of the
components involved in the execution.

When triggered via MQTT, the Runtime Manager will always call the Load Balancer
service to know whether it must hand over the execution to a different node (in
which case the Load Balancer will return the ID of the node to contact) or whether it
can perform a “home execution” (in which case the Load Balancer will return null).
In the former case, the file “nodes.config” will provide all the necessary information
regarding the node to call via REST request.

REST API service

On launching the REST interface script, the RM exposes a POST API identified by the
configured endpoint.

Copyright © FRACTAL Project Consortium 67 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

The most straightforward process flow happens when the RM is triggered by a POST
request to the REST service exposed, which is dedicated to load-balancing
functionalities. The JSON object in the body of the POST request will have the
following format:

{

 "id_flow": "1",

 "is_load_balancing": true,

 "payload": "0x03abcdefghil"

}

where id_flow and payload are as in the previous paragraph, and is_load_balancing
indicates whether we are in load balancing.

In this case, the RM shall avoid the call to the Load Balancer service, and directly
instantiate the Home_Executioner which will read the requested flow on the
“flows.config” file and then execute it.

Copyright © FRACTAL Project Consortium 68 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

8 Conclusions

In this deliverable we gather all the information about the work that has been done
during the course of T6.2, dedicated to Edge Orchestration and its components.

This deliverable provides details about all the Fractal components developed related
to Edge Orchestration services.

Sections 4 and 5 are dedicated to Edge Orchestration services at the application
level, and are dedicated to the design of these components, being Section 4
focused on the design of their architecture and Section 5 on their implementation.

Section 6 is focused on Edge Orchestration services at the Hardware level, and
Section 7 is based on the Network Orchestration Fractal component (the Run-time
manager).

With the addition of these components into the Fractal ecosystem, the Fractal Edge
platform is provided with ingestion and storage capabilities for all the Fractal Edge
platforms (ARM64, RISCV64 and RISCV32 architectures). This means that any Use
Case being developed with the Fractal components will have at its disposal a wide
collection of tools and strategies that allows them to process data streams with
potentially any data format or source.

These ingestion tools have been chosen considering the most popular languages
(Java-based, Python-based and JavaScript-based), so that the platform
administrators will be able to choose based on their preferences.

With respect to the Data storage capabilities, both relational and non-relational
databases have been included for the High-End and Mid-End nodes, providing in
each case different alternatives to install and manage the data sinks, from Docker
containers (when available), package manager installation steps, and build-from-
source installations.

The Container Orchestrator (K8S, Docker Swarm...) has been a hot topic of research
during the course of the project (WP5 T5.1 and T5.4, and WP6 T6.1). In this
deliverable the design and implementation of independent orchestration
components are detailed, providing novel orchestration strategies that support the
already existing Container Orchestrators, and giving the platform the possibility to
implement orchestration strategies even in orchestrator-less deployments. These
components have been designed on a micro-services and containerized approach,
which ensure high-availability and resilience of the deployments.

This deliverable also show the results of T6.2, providing Edge Orchestration
capabilities to all the three reference platforms (ARM64, RISCV64 and RISCV32), at
all layers from the node layer (HW-Level Edge Controller), the application layer

Copyright © FRACTAL Project Consortium 69 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

(Edge Orchestrator and Custom Orchestrator) and process and runtime operations
(Runtime Manager).

Copyright © FRACTAL Project Consortium 70 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

9 Bibliography

Fractal Project related work

D4.4 FRACTAL SAFETY SERVICES

D5.5 Specification of AI methods for FRACTAL system control

D6.1 FRACTAL processing node design and implementation

Related FRACTAL Components

WP6T62-01 - Data Ingestion

WP6T62-02 - Federated Data Collection

WP6T62-03 - Run time Manager

WP6T62-04 - Hardware Edge Controller

WP6T62-06 – Orchestration (Edge controller)

WP6T62-06 - Orchestration (Mid-range node orchestrator)

WP6T62-06 – Orchestration (Low-end node orchestrator)

References

[1] 2015 IEEE 18th International Conference on Computational Science and
Engineering. Mohammed Abuteir, Roman Obermaisser.

[2] IEEE standard for local and metropolitan area networks: Media Access Control
(MAC) bridges. IEEE Std 802.1D-2004 (Revision of IEEE Std 802.1D-1998), pages 1 –
277, 9 2004.

[3] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of
ICNN’95-International Conference on Neural Networks, IEEE, vol. 4, 1995, pp. 1942–
1948.

Copyright © FRACTAL Project Consortium 71 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

10 List of figures

Figure 1: One-node Edge controller architectural design...12

Figure 2: Multi-node Edge controller architectural design..14

Figure 3: The general architectural view of the Orchestrator...................................15

Figure 4: Apache Pyspark dependencies..31

Figure 5: Multiple core architecture...47

Figure 6: Off-chip/On-chip Network Gateway Services...48

Figure 7: Off-chip/On-chip Network Gateway Architecture [1]..................................51

Figure 8: Flowchart for Periodic Messages...53

Figure 9: Flowchart for Timely Block Mechanism...54

Figure 10: Flowchart for Shuffling Mechanism...54

Figure 11: Flowchart for Sporadic Message..55

Figure 12: Flowchart for Aperiodic Message...56

Figure 13: DPSO-based Task and Message Scheduling Procedure...........................57

Figure 14: OR-TMS(T)...58

Figure 15: Task Scheduling..58

Figure 16: Message Interference Analysis..59

Figure 17: System Model (Mesh Topology)...60

Figure 18: System Model (Ring Topology)..61

Figure 19: OR-TMS Convergence Rate...62

Figure 20: Runtime Manager Flow Chart Diagram..64

Figure 21: Runtime Manager Sequence Diagram...65

Copyright © FRACTAL Project Consortium 72 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

11 List of tables

Table 1: FRACTAL Project Objectives...9

Table 2: Edge Controller objectives..10

Table 3: Available Faust extensions...17

Table 4: Custom orchestrator API reference...28

Copyright © FRACTAL Project Consortium 73 of 73

Project FRACTAL

Title
FRACTAL Edge controller design and implementation

Del. Code D6.2

12 List of Abbreviations

MPSoC – Multi-Processor System on Chip
AI – Artificial Intelligence
NoC – Network-on-Chip
SW – Software
IoT – Internet of Things
VM – Virtual Machine
API - Application Programmable Interface
YAML – YAML Ain’t Markup Language
HW – Hardware
K8S – Kubernetes
ETL – Extract, Transform, Load
SQL – Structured Query Language
JSON – javaScript Object Notation
NoSQL – Not Only SQL
FPGA – Field Programmable Gate Array
REST – Representational State Transfer
VL – Virtual Link
VLID – Virtual Link Identifier
FIFO – First in First out
OR-TMS - Optimised Reliable Task and Message Scheduling algorithm
TSMS - Time Slot Message Scheduler
OOP – Object Oriented Programming

	1 History
	2 Summary
	2.1 Achievements

	3 Introduction
	4 Edge Controller design
	4.1 High-end node (ARM64)
	4.1.1 One-node Edge controller
	4.1.2 Multi-node Edge controllers
	4.1.3 Custom Orchestrator
	4.1.4 Ingestion & Storage capabilities

	4.2 Mid-range node (RISC-V64)
	4.2.1 One-node Edge controller
	4.2.2 Multi-node Edge controller
	4.2.3 Custom Orchestrator
	4.2.4 Ingestion & Storage capabilities

	5 Edge controller implementation
	5.1 High-end node (ARM64)
	5.1.1 One-node Edge controller
	5.1.2 Multi-node Edge controller
	5.1.3 Custom Orchestrator
	5.1.4 Ingestion & Storage capabilities

	5.2 Mid-range node (RISC-V64)
	5.2.1 One-node Edge controller
	5.2.2 Multi-node Edge controller
	5.2.3 Custom Orchestrator
	5.2.4 Ingestion & Storage capabilities

	5.3 Low-End node (PULP RISC-V32)
	5.3.1 Cloud communications
	5.3.2 Task scheduling
	5.3.3 Ingestion & Storage capabilities

	6 Hardware-level Edge Controller
	6.1 Overview of NoC based Multicore Architecture
	6.1.1 Network Hardware Gateway Architecture
	6.1.2 Processing of Different Traffic Types
	6.1.3 Scheduling Problem in HW Network Gateway

	7 Run-time manager: Edge Controller communications
	7.1 Description
	7.2 Design and Implementation of component
	7.2.1 Design
	7.2.2 Implementation

	8 Conclusions
	9 Bibliography
	10 List of figures
	11 List of tables
	12 List of Abbreviations

