
Co-funded by the Horizon 2020 Programme of the European Union
under grant agreement No 877056.

D5.5 Specification of AI methods for FRACTAL system control

This project has received funding from the ECSEL
Joint Undertaking (JU) under grant agreement No
877056

Abstract:

This deliverable is a part of FRACTAL WP5 Task 5.4, and details the results of the research
done on AI methods for FRACTAL System Control. It dives into the concept of MLOps, a set
of methodologies to optimize AI processes, Orchestration strategies at its various levels of
application, and MLBuffet, an ML model server for model, training and deployment
developed in T5.4

Deliverable Id: D5.5
Deliverable Name: Specification of AI methods for FRACTAL

system control
Status: V0.3

Dissemination Level: Public
Due date of deliverable: M26 October 2022
Actual submission date: 10/30/2022

Work Package: WP5 “AI and Safe Autonomous Decisions”
Organization name of lead

contractor for this deliverable:
Zylk.net

Author(s): Alfonso González, ZYLK
Andrea López, ZYLK
Sergio Martín, ZYLK
Andoni Angulo, ZYLK
Vahid Mohsseni, UOULU
Huong Nguyen, UOULU
Abhishek Kumar, UOULU
Lauri Loven, UOULU
Alexander Flick, PLC2
Ignacio Garrido, IFT

Partner(s) contributing: ZYLK
UOULU
PLC2
PROINTEC

Copyright © FRACTAL Project Consortium 2 of 29

Project FRACTAL

Title Specification of AI methods for FRACTAL system control

Del. Code D5.5

Contents

1 History..3
2 Summary..4
3 Introduction..5

3.1 Objectives and Approaches..5
4 MLOps...6

4.1 From DevOps to MLOps..6
4.2 Machine Learning Life-Cycle...6
4.3 Tools...7
4.4 MLOps Pipeline...11

5 Applied Orchestration...13
5.1 Orchestration in FRACTAL nodes..13
5.2 Top-down orchestration..13
5.3 Bottom-up orchestration...14
5.4 Container orchestration..15

5.4.1 Docker Swarm..17
5.4.2 Kubernetes...19

5.5 Self-orchestrating systems...20
6 MLBuffet v2...21

6.1 Introduction..21
6.2 Implementation..21
6.3 How does it work..23
6.4 Installation..24
6.5 Other implementations...25

6.5.1 ARM architecture (VERSAL node)...25
7 Conclusions...26
8 List of figures..27
9 List of tables...28
10 List of Abbreviations...29

Copyright © FRACTAL Project Consortium 3 of 29

Project FRACTAL

Title Specification of AI methods for FRACTAL system control

Del. Code D5.5

1 History

Version Date Modification reason Modified by
V0.1 06/08/2022 Initial document and content proposal Alfonso González, ZYLK
V0.2 08/09/2022 First content update Alfonso González, ZYLK
V0.3 30/09/2022 Final content update and polishing Alfonso González, ZYLK
V1.0 26/10/22 Final version after internal reviews Alfonso González, ZYLK

Copyright © FRACTAL Project Consortium 4 of 29

Project FRACTAL

Title Specification of AI methods for FRACTAL system control

Del. Code D5.5

2 Summary

This deliverable covers the main research outcomes from T5.4, introducing the
concepts of Machine Learning Operations (MLOps), a subset of Development
Operations (DevOps) methodologies, Orchestration, providing alternative strategies
to orchestrate and manage system and service automation (top-down, bottom-up
and self-orchestrating approaches), and describing the implementation result of the
research and developments on these topics, the MLBuffet tool to orchestrate the
Fractal control system based on Artificial Intelligence (AI) approaches.

There are three main sections (4, 5 and 6) in D5.5:

Section 4 explains what the MLOps methodologies are, thoroughly explaining the
necessity to apply DevOps methodologies to Machine Learning (ML) projects, and
giving all the insights and information for the Use Cases (UCs) to implement the set
of tools and frameworks available to perform MLOps strategies into their working
pipelines, providing practical implementations and example pipelines to cover all
the steps in a typical ML process.

Section 5 gathers all the required information about Orchestration in ML systems,
explaining the different orchestration strategies from a theoretical perspective
(focusing on top-down and bottom-up orchestration), and how these can be applied
into physical systems to conform a Fractal node architecture. This section is of
special importance because it allows WP6 with a practical implementation
orchestration framework, and is the converging spot for the ML Orchestration (WP5)
and Systems and Service Orchestration (main focus of WP6) developments. The
theoretical aspects of orchestration as studied in T5.1 are particularized here for
Fractal systems and an overview of the applicability of these strategies to Edge
nodes is provided, introducing containerization and container orchestrators.

Finally, Section 6 details the main outcome of the developments done throughout
the task, the MLBuffet tool. This open-source implementation of an Edge ML server
for inference, training, and storage of models has been fully developed in the
Fractal project framework, specifically in T5.4. The main feature of this tool is that it
enables the orchestration mechanisms for ML models in the Edge, so that
orchestration can be performed over the ML artifacts in terms of storage, training
and inference. This is done in a virtualized environment that ensures universality
and automation of the deployments.

Copyright © FRACTAL Project Consortium 5 of 29

Project FRACTAL

Title Specification of AI methods for FRACTAL system control

Del. Code D5.5

3 Introduction

The objective of this deliverable is to show the results of the research that has been
performed during T5.4 in WP5, which was focused on building an AI-based FRACTAL
system control. The starting point of this task was the theoretical research being
performed in parallel to T5.1, where the theoretical framework for a Fractal platform
and Fractal AI was being done. From there, an analysis of the existing AI and
orchestration tools was done, and the existing methodologies for continuous
integration and continuous development (CI/CD) for Machine Learning (ML)
processes were researched. This leads to the concepts of MLOps and Orchestration,
which later enabled the possibility of building a new open-source tool that can give
answer to the Fractal Edge system orchestration necessities.

3.1 Objectives and Approaches
The research of this task was done following the overall objectives of the FRACTAL
project, gathered in the Table below:

Objective 1 Design and Implement an Open-Safe-Reliable Platform to
Build Cognitive Nodes of Variable Complexity

Objective 2 Guarantee FRACTAL nodes and systems extra-functional
properties (dependability, security, timeliness and
energy-efficiency)

Objective 3 Evaluate and validate the analytics approach by means
of AI to help the identification of the largest set of
working conditions still preserving safety and security
operational behaviors.

Objective 4 To integrate fractal communication properties (scale free
networks) to FRACTAL nodes.

Table 1 – FRACTAL Project objectives

Specific objectives of this task are based on WP5 objectives:

 Study and enhancement of AI methods on the FRACTAL edge computing
architecture.

 This WP will concentrate on particular set of AI methods to study further and
implement on the platform, based on the theoretical results and architecture
of T5.1 as well as the platform of T5.2.

 Enhance the internal operation of the FRACTAL system and enable new
functionalities for prediction, system orchestration, and autonomous control
of the system nodes

Copyright © FRACTAL Project Consortium 6 of 29

Project FRACTAL

Title Specification of AI methods for FRACTAL system control

Del. Code D5.5

4 MLOps

4.1 From DevOps to MLOps
The MLOps concept cannot be understood without the DevOps approach. The
DevOps term comes from ‘Development and Operations’, two of the traditional
groups of workers from the IT companies.

In order to speed up and facilitate the development process and the submission of
new software and its updates, teams that usually do not work together, such as the
development and maintenance groups, join forces and contribute to the software
development process. The goal of that collaboration is to optimize the developers'
workload while ensuring the functionality of the generated applications with the
monitoring that the operations team can provide.

As IT companies started to integrate teams specialized in Machine Learning into
their staff, new requirements that were not in the scope of DevOps practices and
tools arose. To satisfy them, MLOps concept was developed, which combines
DevOps with Machine Learning management tools and practices. As in DevOps, the
term MLOps comes from the union of Machine Learning and Operations.

The application of MLOps practices accelerates the processes of experimentation
and model development, making the deployment and maintenance of the models in
production more efficient, ensuring the quality of the results. This new approach
joins the DevOps teams, machine learning research teams, engineers, and data
analysts who are in charge of the design and maintenance of models and the
preparation of data for continuously training and fine-tuning the models.

4.2 Machine Learning Life-Cycle
Similar to DevOps practices and software development stages, MLOps cover each
step involved in Machine Learning model development. Those steps can be divided
into three main phases: experimentation, production, and monitoring.
The goal of the first phase is to design and develop the machine learning model.
First, problem identification and data collection, analysis, and labeling are a must to
design a model that can comply with the requirements established by the client.
Along with that, a model selection process is conducted by studying different types
of models to find the one that best fits the requirements of the Use Case. Lastly, the
first experiments are carried out to obtain a preliminary model that will be later
fine-tuned.

When a machine learning model that works as desired has been developed, the
next step is to put that model into production and test its capabilities with real-
world data; that is, data associated with the problem that had to be solved in the
first place. During this phase, different experiments and training stages will be
performed to fine-tune the hyperparameters of the model, and each version of the

Copyright © FRACTAL Project Consortium 7 of 29

Project FRACTAL

Title Specification of AI methods for FRACTAL system control

Del. Code D5.5

model is saved and stored following data version control rules so that every
experiment is backed up correctly.

Finally, once the model has been served and put into production, a set of processes
will be carried out to ensure that the deployed machine learning application’s
performance is always optimal. This requires, for example, monitorization of metrics
such as the accuracy and precision of the model when encountering and processing
new data, in order to detect any signs of model decayment or data drift as soon as
possible, and fix those issues by retraining and tuning the model when necessary.

4.3 Tools
Different tools and software have emerged recently with the purpose of covering
each of the steps mentioned in the previous section. While some of the software is
more specialized in one specific task such as data management or version control,
other tools have been designed with the aim of performing tasks related to more
than one stage of the MLOps life cycle.

Starting with the software packages that cover more than one stage of the lifecycle,
MLflow is one worth mentioning. It is an open-source platform designed to manage
the entire MLOps lifecycle, performing functions related to experimentation,
reproducibility, and deployment, including a central model registry. Also, one
noticeable feature of this tool is that it is compatible with any machine-learning
library and programming language.

In order to organize and manage the machine learning models, MLflow is comprised
of four main components:

(i) a tracking system, that has the purpose of tracking and recording different
experiments, allowing the data scientist to compare the different results; (ii) the
models component, managing and deploying the models from different machine
learning libraries, allowing to serve them in different inference platforms; (iii) the
projects, that package the code developed for the machine learning model in a
reusable and reproducible way; and finally (iv) the model registry, that manages
each step of the model lifecycle in a centralized fashion.

Along with those features, MLflow also offers the possibility of hosting the MLflow
models as REST endpoints.

Kubeflow is another tool capable of handling multiple steps of the MLOps lifecycle.
This software is an open-source machine learning toolkit that works on top of
Kubernetes, taking advantage of the functionalities that this platform provides
intending to make the deployment, experimentation, and model serving phases
simpler. Kubeflow enables different users to build their ML experiments
independently within the current cloud scope. It is a beneficiary approach since it
utilizes cloud computing resources, resulting in total cost reduction. Kubeflow
includes services to create and manage interactive notebooks such as Jupyter,
allowing the scientist to experiment with local workflows before deploying them to
the cloud. With that, Kubeflow works with pipelines that help manage and deploy

Copyright © FRACTAL Project Consortium 8 of 29

Project FRACTAL

Title Specification of AI methods for FRACTAL system control

Del. Code D5.5

the ML workflows from end-to-end, making it possible to schedule different runs of
an experiment and compare the results which can be used in parameter tuning.
Kubeflow also includes support for different training setups, supporting GPU-driven
training when available, and allows to export and serve the trained Tensorflow
models using a Tensorflow Serving container.

Focusing on more specific tools, Apache Airflow is an open-source platform that
has the aim of monitoring, scheduling, and managing workflows. Even though it is
not designed specifically for machine learning models and MLOps lifecycle, this tool
can be useful for planning small tasks related to the whole lifecycle. Allows the user
to plan different workflows by using cron expressions and directed acyclic graphs
that can be programmed using Python language, where the dependencies among
the tasks can be specified, and provides a web graphical user interface to check the
status of the scheduled pipelines and the tasks that comprise them.

Following with data versioning and version control, DVC is by far one of the most
popular tools. This is an open-source version control system designed for coping
with versioning and organization of data inside the machine learning environment.
It is storage agnostic, and the data management system that DVC implements
keeps track of the evolution of every machine learning model under development.
In addition to these features, DVC stores the code and data needed in each
experiment in a consistent way, making every experiment reproducible.

Finally, data metrics and visualization tools worth mentioning are Grafana and
Prometheus. These two tools are open-source software packages with different
purposes: on the one hand, Prometheus is a software designed to collect metrics by
scraping different endpoints and storing them as time series, allowing the user to
monitor systems by defining different alert rules for the stored metrics. On the other
hand, Grafana is a tool designed to create interactive and highly customizable data
visualization dashboards of real-time data, that can be collected from various data
sources specified by the user. Combining both tools, it is possible to create a
monitoring system that displays the state of a Machine Learning model in real-time,
allowing the user to schedule different retraining sessions when needed, or
notifying when the performance of the model starts decaying by setting the
corresponding alert rules.

Labeling tools in supervised learning

One of the first steps in any project that includes a supervised artificial intelligence
component, is to obtain a good dataset with which the model is trained. Although
there is an enormous variety of datasets available on the Internet, in many cases it
is necessary to manually label the dataset. This can be either because there is no
data for the faced problem, or to better adapt the models to the specific problem by
adding a fine-tuning phase. Moreover, the success of any of these projects is closely
related to the quality of the dataset used.

Copyright © FRACTAL Project Consortium 9 of 29

Project FRACTAL

Title Specification of AI methods for FRACTAL system control

Del. Code D5.5

Name Language Data Type Source Code

CVAT Typescript, React, CSS,
Python Image

https://github.com/opencv/cvat

awesome-data-labeling Python Image, audio, text,
time series

https://github.com/heartexlabs/awesome-
data-labeling

bbox-visualizer Python, makefile Image
https://github.com/shoumikchow/bbox-

visualizer

dataqa Python Text
https://github.com/dataqa/dataqa-python

doccano Python Text, sequence
https://github.com/doccano/doccano

hover Python Image
https://github.com/phurwicz/hover

Label-studio Python Image, audio, text,
time series

https://github.com/heartexlabs/label-studio

Labelme Javascript Image
https://github.com/wkentaro/labelme

VoTT Typescript Image
https://github.com/microsoft/VoTT

Yolo-mark - Image
https://github.com/AlexeyAB/Yolo_mark

Table 2 – List of available data labeling tools

Having a dataset with good labels is as important as the model itself. For this
reason, the labeling stage is a fundamental part of any artificial intelligence project
and must be carefully planned.

There are multitude of open-source annotation tools available. Some of the most
widely used are LabelMe, LabelStudio and CVAT. Labelme provides an online tool
to do image labeling. LabelStudio can be installed locally and it allows to configure
the annotation interface with a configuration JSON. Furthermore, LabelStudio
specializes in both image labeling and natural language processing (NLP). Finally,
CVAT can be either installed locally or accessed online, and it is particularly suitable
for video labeling.

For example, for crack labeling, after selecting the appropriate images from all
those obtained, the "Labelme" program is used to generate the masks.

Copyright © FRACTAL Project Consortium 10 of 29

Project FRACTAL

Title Specification of AI methods for FRACTAL system control

Del. Code D5.5

Manual labeling work consists of drawing a polygon that runs along the contour of
the detected pathology.

Figure 2: Example of labeling different types of defects

Figure 1: Valid photo examples

Copyright © FRACTAL Project Consortium 11 of 29

Project FRACTAL

Title Specification of AI methods for FRACTAL system control

Del. Code D5.5

As seen in the image above, labeling can be done not only with fissures or cracks
but also with other surface defects or irregularities. In this way the model can learn
to differentiate some defects from others (paint defects, gravel nests due to lack of
vibration during execution, concrete joints, etc...).

Another way of labeling that has been used is to mark only the cracks or fissures so
that the model learns to distinguish them from everything that is not (see Figure 3).

4.4 MLOps Pipeline
The main purpose of the MLOps practices is the management of the life-cycle of the
models, from code and data versioning to the deployment, and covering
intermediate steps such as model building and versioning.
An example of this is depicted in Figure 4

Figure 3: Example of labeling considering only cracks and fissures

Copyright © FRACTAL Project Consortium 12 of 29

Project FRACTAL

Title Specification of AI methods for FRACTAL system control

Del. Code D5.5

 The code containing the definition of the model is versioned into a
repository, following the GitOps strategy. These tools ensure that the code is
maintained and updated.

 The data versioning is essential to train the model with the most up to date
dataset. The dataset can be grown up with new data, and the new versions
of the model should be trained with that dataset. One of the most used tools
for that feature is DVC, which is transparent with the different types of train
dataset, such as images, CSV, texts, etc.

 The pipeline/task management is a feature of the MLOps approach where the
model’s code is managed. The use of a tool governing the pipeline is
essential to ensure the correct behavior of each step of the model training.
Metaflow is shown in this example, which has the role of dividing the model
building into steps, ensuring the correct path of the training and, in addition,
with the capability to parallelize some steps if necessary.

 When the model is built, every new version developed should be saved and
distinguished from the other versions, allowing access to all of them. DVC
complies with this feature acting like it does with the data versioning.

 The deployment of the model is the final target of the lifecycle of the model.
An effective deployment is essential to ensure a correct inference with it. For
that reason, under the Fractal project MLBuffet has been developed to
deploy models via HTTP requests on Kubernetes.

Figure 4: Example of a MLOps pipeline

Copyright © FRACTAL Project Consortium 13 of 29

Project FRACTAL

Title Specification of AI methods for FRACTAL system control

Del. Code D5.5

5 Applied Orchestration

5.1 Orchestration in FRACTAL nodes
The focus of a FRACTAL system to support a high number of heterogeneous edge
nodes brings forward the need for efficient management, allocation and distribution
of resources as promoted in D5.2. The orchestration concepts introduced there
describe the device-edge-cloud computing continuum to summarize all potential
resources. The specific elements within the continuum range from energy, direct
access hardware elements, virtualized resources, workflow pipelines and
applications, where each node may be providing any subset thereof.

To properly allow for seamless computation spanning the full set of physical and
virtual nodes determines the orchestration strategy and complexity required to
achieve best possible efficiency. As various distinct orchestration targets can be
identified, like topology, network or services, each brings a potentially different
strategy. To enable this for larger or complex systems the orchestration can resort
to utilize edge AI deriving the cooperation steps with local intelligence based on
monitoring. Such approaches are derived in WP4 of the FRACTAL project and are
enabled by the growing computation power of edge node platforms as chosen for
this project.

In the sections to follow the mission mode or task orchestration will be considered
first place to explain the principles of centralized orchestration strategies in contrast
to decentralized approaches. Such choice for a particular task-level orchestration
would be supported differently based on the node scaling in the system and
therefore is taken differently in particular use cases. In further sections the
orchestration on application level, or service level respectively, through the life-
cycle control of containerized services Kubernetes is derived.

5.2 Top-down orchestration
Top-down orchestration requires a centralized control system to manage the
resources and distribute the tasks. One resembling model of the top-down approach
is the process scheduler in operating systems. There should be a stateful
mechanism to keep track of every resource status in the design and then can
dispatch the tasks through the nodes to run. This approach has some challenges,
including but not limited to:

 Statefulness. The control unit should be aware of any condition and status
of the resources in the system for the correct resource allocation.

 Efficient algorithm. Selecting the algorithm for the scheduler is an
essential part of the orchestration in cases such as minimizing the queue
time, full utilization of the resources, etc.

 Fault tolerance. The failure of the centralized dispatcher means the failure
of the system without the recovery plans.

Copyright © FRACTAL Project Consortium 14 of 29

Project FRACTAL

Title Specification of AI methods for FRACTAL system control

Del. Code D5.5

Although the challenges mentioned earlier exist in the top-down approach, it has a
generalized method to be beneficiary in situations where the computing continuum
is desired. This is due to the nature of this approach, which is having a global view
over the resources at the cost of autonomy of slave nodes. Here, the computing
continuum may refer to combining the cloud, edge, fog, and even low-end devices
with the ability to communicate data in between. The meta-information, such as the
geolocation of the nodes, the computing capacity, and the availability of the power
about the nodes, gives the control plane the insight for better task distribution.

5.3 Bottom-up orchestration
The bottom-up is another strategy to dispatch the workload to different edge
devices to achieve load balancing. It comes when considering some of the
limitations of top-down approaches with more flexibility and democracy. As its
name, everything starts from the bottom, the local nodes in this context. The
flexibility and democracy here are expressed via the willingness of taking the task
of each node, therefore, nodes can freely choose the task they want to process
based on their current resource status. This also means that there is no central
control unit and no forcing from it to make you take the task in any way as it would
be in the top-down approach.

With this strategy, the local nodes will make communications with each other to
make an agreement about the task they want to pass or exchange. Basically, the
receiving node will self-evaluate if it can handle the task or not (based on its current
resource) and reply: yes or no for the asking. No one will know and care about the
others' resource information, they just need the acceptance from the receiving node
and make an agreement via communication here.

Assuming that we have 3 local nodes (A, B, C) in the system, then an example of
the bottom-up approach in task orchestration could be:

- One task was initially assigned to A (At this time, A is overloaded and wants
to pass the task, so A needs to ask around)

- A started a conversation with B and asked for help. However, at this time, B
was also overloaded and B said NO

- A cannot force B to do once B says NO, then it needs to keep asking around
for help, so A asks C

- C was free at that time and C said YES

- A transferred the task to C

As a notable point, the proper way to evaluate on the node itself to see if it has
sufficient power to process the task is still an open question without the best
answer. Workload and computing power assessment methods of one device are
many and varied. The possible solutions can be addressed as follows:

Copyright © FRACTAL Project Consortium 15 of 29

Project FRACTAL

Title Specification of AI methods for FRACTAL system control

Del. Code D5.5

- based on the average number of tasks completed per unit of time

- simply the amount of free resources at the evaluation time

- or a combination of both.

Even though this democratic approach makes harmony and happiness among
nodes when exchanging the task, it also contains more risks when it cannot
minimize the delay time. Related to this, the main reason is that it does not
consider the estimated time processing at the receiving node and the two-way
communication latency. Therefore, if a task comes in a long queue of one node that
has a current heavier workload than others, it still can be solved even faster
(sequentially) than when it is transmitted to another far free node, waiting for the
processing and transmitted back for the result. From that, we can see the biggest
cons of this approach is just considering different factors (e.g. resources,
communication, energy, etc.,) in isolation while there are implicit interactions
between them. Particularly, computational time and the energy consumption to
make communications among devices are one of the most common combinations
that we need to concern about when negotiating to reach a consensus on an
optimal task allocation.

Beyond the foregoing, this approach can also be interpreted in the way that the
lower-layer devices (e.g. sensors or data collectors) try to process things first (on-
board processing) before it gets overloaded and needed to send the workload to the
higher-layer devices such as fog, edge devices or even cloud server, where has
more computing power to continue the processing progress. This way releases the
congested work that needs to be processed on the server and the near-data
processing would also minimize a lot of latency.

5.4 Container orchestration
Not only nodes and physical systems are entities subjected to be orchestrated.
Virtual nodes, virtual machines, and containers (which are a way of virtualization)
can also be orchestrated with the various strategies described above.

Containers are a particular entity when referring to virtualized environments,
because they are packages of software and processes that run isolated from the
rest of its host, but utilize the same hardware and kernel resources as the host OS.
This means that processes are fully isolated from the host’s processes, and still they
behave as virtual machines without the virtualization overhead in processing and
computing capabilities. In addition, containers are usually light-weight processes
and can be easily deployed, which makes them a flexible and easy to manage tool
to be orchestrated.

Container orchestration is the process of automating the deployment, management,
and provisioning of containers, from simple single-process containers to fully
containerized distributed applications. This provides total control of containers
during their life-cycle. When it comes to the Edge containerized architectures, they

Copyright © FRACTAL Project Consortium 16 of 29

Project FRACTAL

Title Specification of AI methods for FRACTAL system control

Del. Code D5.5

are usually running very specialized applications with Machine Learning models,
performing inference on the Edge and streaming data and predictions to larger
systems. This makes orchestration a key process on Edge architectures, given the
importance of having scalable and fault-tolerant systems which are not to be
monitored by humans and expected to work as autonomously as possible.

Most container orchestrators are operated by defining all the configuration aspects
of an application using YAML or JSON files. These configuration files define the
desired state of the cluster, and the orchestrator will provide the resources
specified in the config file to match the desired state with the actual state of the
cluster. Then, containers are deployed and connected together through IPs or DNS
services, and the applications are kept running by re-deploying failed containers, re-
scheduling containers running on failed nodes, and scaling the application if the
workload increases.

Many container orchestrating tools are already available, some being more widely
adopted than others and differing in functionalities, but broadly speaking a
container orchestration a 4-step process:

→ Upload container images with the specifications of the applications and code to
be run on the containers to an accessible image registry.

→ Provisioning of containers with the storage, computational resources,
infrastructure and files.

→ Providing containers with a secure network to access other containers or external
requests.

→ Monitoring and management of the overall application. This step involves all of
the scheduling, scaling, networking for service exposure, updates, and failure
recovery.

During the FRACTAL project, and specifically during the course of T5.4, several
container orchestrators have been studied, looking for an orchestrator which meets
specific properties required in the Fractal platform:

1. Lightweight: Containers are usually running very lightweight applications in
the form of microservices which can then be scaled to meet increasing
resource requirements. Having a heavy orchestrator would introduce
overhead in processing and networking which is not feasible to have on the
Edge resource-constrained nodes.

2. Deployable on the Edge: IoT systems, and in particular the MPSoCs and
FPGA boards being used in the Fractal platforms, usually have restrictions
and differences with respect to other systems like Cloud computers and
processors. These usually are linked to the processor architecture, being
ARM64 the most typical architecture in the IoT domain, but also RISC-V being
required to be supported.

3. Automated and scalable: Edge deployments are preferred to be as
automated as possible to avoid human interaction with the deployed
systems, reducing maintenance costs and increasing the functioning time of

Copyright © FRACTAL Project Consortium 17 of 29

Project FRACTAL

Title Specification of AI methods for FRACTAL system control

Del. Code D5.5

the platforms. This is the reason why the orchestrator must be robust
enough to self-heal in case a node goes down, provide high-availability, scale
workloads when these increase in computational cost, and dynamically
reschedule workloads from nodes that go down into available nodes.

4. Easy to deploy, but providing complex configurations: The ease of
deployment is an important feature for an orchestrator, especially when
dealing with Edge deployments where deployment on emerging or new
nodes must be automated. Orchestrators with complex deployments (such
as bare-metal Kubernetes) are avoided, going for simpler distributions
specifically designed for Edge devices, like MicroK8S or K3s, while providing
the same main functionalities.

5. Open-source and with an active community

Considering these requirements, three container orchestrators were implemented
and tested, increasing in their complexity and available functionalities. First, Docker
Swarm was implemented, providing a simple orchestrator with some core
functionalities already supported by Docker Engine, the most widely used
application for running containers in IT at the moment. Then, Kubernetes emerged
while looking for a more complex and complete solution which covers all of the
previously described requirements, but was found to have a complex deployment
and big resource overhead for Edge deployments. Finally, more light-weight
distributions of Kubernetes, K3S and MicroK8S, were found to be the appropriate
tools for Edge containerized deployments, providing easy installation steps and the
main functionalities of full Kubernetes deployments.

An overview of both orchestrators is provided below, highlighting the main features
and differences between them.

5.4.1 Docker Swarm
Docker Swarm is an open-source container orchestrator which is natively supported
by Docker, to orchestrate clusters of hosts running Docker Engine, a very popular
container creation and management tool. It presents a series of advantages with
respect to other orchestrators, mainly its ease of use and simplicity of deployment.

A Docker Swarm cluster is made up of manager nodes running Docker Engine, and
worker nodes which are scheduled containers and workloads by the masters. To
start using Docker Swarm mode from a node with an already installed Docker
Engine, just run docker swarm init and the Docker Engine will create a Swarm
node and provide a token and endpoint for the rest of the nodes to securely join the
cluster.

The main features that make Docker Swarm a good orchestrator choice for Fractal
deployments are:

 Decentralized design: Support multi-node swarms with master-worker
architectures for decentralized applications.

Copyright © FRACTAL Project Consortium 18 of 29

Project FRACTAL

Title Specification of AI methods for FRACTAL system control

Del. Code D5.5

 Service abstraction: A set of identical containers are abstracted into a
Service, which is in charge of load balancing the charge between all the
containers behind, ensuring the availability of the deployed applications.

 Scaling: The number of containers (or tasks) behind a given Service can be
scaled up and down to match the system and application requirements.
However, the up-scaling and down-scaling of Services is not automated and
must be done manually.

 Overlay networking: A virtual overlay network is created between the
Swarm hosts so that containers deployed in different nodes can
communicate with this overlay network instead of being forced to
communicate via public or external networks, reducing latency and
increasing availability.

The downside of Docker Swarm is that these services must be stateless, this means
that all the containers behind a service must be equal, and the Service will not
provide capabilities for stateful containers, meaning that if the containers behind a
Service diverge in functionality after their deployment, the Service will no longer
behave as expected when different containers are called.

More features and information about Docker Swarm and Docker Swarm mode can
be found at https://docs.docker.com/engine/swarm/

From the Fractal platform perspective, these are the main advantages and
disadvantages that Docker Swarm provide as a container orchestrator:

Docker Swarm pros:

 Service abstraction
 Cluster mode in master-worker architecture
 Ease of use
 Already integrated in Docker Engine
 Setting up a cluster is straight-forward

Docker Swarm cons:

 The only load balancing strategy is round-robin
 Does not support stateful containers
 Has no customization options
 Auto-scaling not supported

Conclusion:

While Docker Swarm is focused on its easy-to-use and easy-to-deploy features, it
lacks some functionalities which could be required in more complex container
applications, like specific load balancing strategies and support for stateful
containers. It could be enough however for simple applications running on the Edge
which don’t require complex setups and can be easily deployed, where Docker
Swarm can be used to deploy a container network and orchestrate containers
easily.

https://docs.docker.com/engine/swarm/

Copyright © FRACTAL Project Consortium 19 of 29

Project FRACTAL

Title Specification of AI methods for FRACTAL system control

Del. Code D5.5

Docker Swarm has proven to be the entry gate to container orchestrators, being a
great tool for beginners or not very complex container applications.

5.4.2 Kubernetes
Kubernetes (K8S) is an open-source container platform originally developed by
Google and donated to Cloud Native Computing Foundation (CNCF) in 2015. It is
widely used to manage and orchestrate containers and containerized applications,
scheduling containers across a cluster, scaling and managing the cluster overall
state and health.

The main components of a K8S cluster are the cluster itself, made up by a group of
computing machines (either physical or virtual), a control plane, which is in charge
of assigning tasks and controlling the overall state of the cluster, the kubelet, a
service running on the nodes that deploys containers through the provided images,
and Pods, which are the core concept of container instances in K8S clusters. A Pod
is a group of one or more containers deployed into a node, sharing a pool of
resources provided by K8S, an IP address, hostname, DNS resources, etc.

The advantages and disadvantages K8S offered to the Fractal platform are:

Advantages:

 Offers a wide range of functionalities, Pods are abstracted into Services,
which then are exposed through Ingress and Load Balancer objects.

 Provides self-healing capabilities.
 Has lighter distributions for IoT and Edge deployments.
 It is very rich in features, plugins and allows integration with many other

open-source tools.
 Automatically scales workloads.
 It is independent from Docker Engine, what gives complete freedom to

choose a container runtime (Docker could be used, but it’s not required).

Disadvantages:

 It is hard to learn, and managing clusters requires expert knowledge.
 Security is not enforced by default and requires external configuration.
 Its bare metal deployment is too heavyweight.
 It takes time to deploy even a simple application, and it usually ends up on

heavy YAML syntax.
 Some of the plugins are required, like installing an external Pod Container

Networking Interface (CNI).

Conclusion:

Deploying K8S requires a deep understanding of the underlying concepts and K8S
objects, and their interactions with containers. Some of these concepts are
analogous to Docker Swarm’s (services, tasks), but ultimately K8S allows for a very
complete configuration in networking and scheduling, and can be used to deploy

Copyright © FRACTAL Project Consortium 20 of 29

Project FRACTAL

Title Specification of AI methods for FRACTAL system control

Del. Code D5.5

large containerized applications no matter how complex they are. Thus, application
deployments can be customized to match the user needs.

Although deploying K8S and installing it on bare metal systems requires time and is
a complex task, especially on Edge deployments, there exist light-weight solutions
which are self-contained and can be installed easily, providing most of the
functionalities of full K8S. These are MicroK8S and K3S, and both these tools have
been deeply studied and implemented in WP6 (T6.1 and T6.2), and although they
are out of the scope of this deliverable, they are worth mentioning because
installing them mitigates one of the major downsides of K8S which is the installation
process.

5.5 Self-orchestrating systems
As stated in Section 5.2 Container Orchestration, containerized applications are
abstracted into code through container images, configuration YAML or JSON files,
and then the overall application is given to the Container Orchestrator (for example,
K8S), which will deploy the application and make sure that the desired state
provided through the YAML matches the actual state of the application.

The next step in orchestration is to create systems which are able to orchestrate
themselves, without needing any external user interaction after being deployed.
These systems can be groups of containers that monitor the overall status of the
system, resources, storage and availability, and take decisions based on the
individual state of the host they are running on and the cluster status, attending to
a set of rules that define what actions must be taken for each situation, defining
alarms and controlling the cluster from the inside.

Take as an example a Pod which monitors the different nodes inside a K8S cluster.
This “Monitoring Pod” is given certain permissions and is able to gather metrics and
monitor the CPU, memory, and usage status of the whole set of nodes comprising
the K8S cluster. This Pod runs a dedicated container which analyzes all the
information gathered and makes decisions depending on the overall cluster status,
by tainting nodes (applying restrictions like avoiding Pod scheduling on tainted
nodes), rescheduling or scaling workloads, all from inside the cluster itself, with no
need of a system administrator to monitor the state of the cluster.

Monitoring tools like Prometheus can also be used to monitor the overall status of
the cluster in order to programmatically allocate resources or re-schedule workloads
into the nodes, with a dedicated container running inside the cluster.

However, this is still an open problem and these self-orchestrating systems are to
be optimized in the future. A custom orchestrator is being developed in WP6 T6.2
which will address this problem and provide a system that automates the
monitoring and orchestration of the Fractal platform.

Copyright © FRACTAL Project Consortium 21 of 29

Project FRACTAL

Title Specification of AI methods for FRACTAL system control

Del. Code D5.5

6 MLBuffet v2

6.1 Introduction
There is a wide ecosystem of ML tools available that cover all the steps in the
Machine Learning life-cycle. These ML tools usually cover these steps focusing on
high-performance, low latency or optimized processing. It is clear how these tools
are relevant in Cloud and high-resource environments, but there is still a lack of
options when it comes to Edge deployments and IoT systems.

During the Fractal project, a necessity to have a system that is able to perform
operations on ML models in Edge deployments and resource-constrained systems
was spotted, while also having a good efficiency-to-cost computational
performance.

During T5.4, a tool able to efficiently manage ML models was built under the project
of MLBuffet. Several functionalities were progressively added to MLBuffet, from
model inference on ONNX format models to model training and version control. The
chosen deployment for the software stack was in the form of inter-communicating
containerized microservices, so that new modules, potentially adding new or
updating already existing functionalities can be included into the project.

6.2 Implementation
MLBuffet is an open-source, container-based Machine Learning Model Server for
model inference, training and management. It has been specifically designed for
Machine Learning projects that need to be carried out in the Edge, although it is
also deployable on Cloud deployments. In this section the implementation details
are described, showing the architecture and open-source tools used to build
MLBuffet. All the code and installation steps are available at
https://github.com/zylklab/mlbuffet.

https://github.com/zylklab/mlbuffet

Copyright © FRACTAL Project Consortium 22 of 29

Project FRACTAL

Title Specification of AI methods for FRACTAL system control

Del. Code D5.5

As mentioned previously, MLBuffet is based on containerized microservices, each
providing different functionalities and listed below:

 Inference: MLBuffet’s Inferrer microservice can perform inference on ONNX
and TensorFlow 2 developed models.

 Model management: Storage is a microservice which performs model
storage, version control, and management. When a new model is uploaded
to the server, it is stored in a dedicated container and managed. allowing
downloading, re-versioning, modifying or deleting models.

 Training: Trainer module allows the users to schedule model training on
Edge devices programmatically. This is done through a dedicated REST API
resource where the user uploads the training script, dataset and required
packages, and a new container is created performing the training operations,
for any training Python library.

Code aspects and languages:

MLBuffet is entirely written in Python 3. This means that little code is necessary to
implement fairly complex programs, compared to, for example, C++. This, together
with its modular design, results in MLBuffet’s code being lightweight (~160kB) and
easily readable and expandable.

This tool consists of 6 modules: Inferrer, Modelhost, Trainer, Storage, Cache and
Metrics. The core of each one is a Flask server, which expose several HTTP
endpoints to communicate with each other.

Figure 5: MLBuffet architectural implementation

Copyright © FRACTAL Project Consortium 23 of 29

Project FRACTAL

Title Specification of AI methods for FRACTAL system control

Del. Code D5.5

Deployment and environment:

MLBuffet was built to be entirely deployed inside a K8S cluster, as the application
has full support for K8S. However, we open the door to integration with other
orchestrators and programs, such as KubeFlow or orchestratorless Docker-Engine
deployments. Thanks to K8S, the deployment of MLBuffet is easy and straight-
forward, and it can be escalated to simpler K8S distributions specifically designed
for Edge devices, like MicroK8S or K3S.

In K8S each core module (modules which are not triggered or created by user-
specific operations) is deployed through dedicated Services, which schedules
scalable Pods with a Deployment, these are Inferrer, Metrics, Cache, and Storage.

For the side modules, Modelhost and Trainer, the Inferrer microservice is in charge
of managing the creation and deletion of dedicated Deployments and Services for
each model that is uploaded into the server. These models are individually
packaged into a Modelhost Pod which exposes REST API endpoints to perform
inference over the currently supported libraries. These makes the models totally
decoupled from each other, ensuring full availability of each model, independently
of the state of surrounding nodes or models.

The Trainer microservice is created whenever a user launches a training with its
dedicated training script and dataset. This Trainer Pod will execute the training loop
and will take care of its execution. When the model is trained, it is automatically
uploaded to the model server for deployment, if able.

It must be noticed that these K8S object management is done through dedicated
permissions granted on the Inferrer microservice, through a RoleBinding that allows
it to manage Services, Deployments and Pods on the ‘mlbuffet’ namespace,
ensuring the isolation of these permissions over external namespaces and avoiding
security breaches.

MLBuffet also provides a Helm chart for automatic deploying of MLBuffet through
this package manager for K8S. Its file structure is similar to K8S objects, with the
only difference that Helm detaches constant values among all templates and
gathers them into one file, for easy deployment configuration.

MLBuffet leverages distribution of workloads within a Kubernetes cluster to offer low
response times, reliability and scalability. Furthermore, the deployment is hardware-
agnostic, a key feature for IoT devices, which often combine different processor
architectures in the same use case.

6.3 How does it work
Once MLBuffet is deployed (assuming a K8S deployment), the REST API of the
Inferrer service is exposed. The K8S API can be queried about the Inferrer Service
endpoints with the command ‘kubectl get endpoints –n mlbuffet inferrer’. Once the
REST API is accesible to external users, it can be checked if it is available by

Copyright © FRACTAL Project Consortium 24 of 29

Project FRACTAL

Title Specification of AI methods for FRACTAL system control

Del. Code D5.5

sending a simple curl request with ‘curl –X GET
http://<INFERRER_IP>:<PORT>/help’. The help message should be displayed.

Updated information on the main functionalities of MLBuffet and how to perform
oeprations overs the server can be found at the official GitHub, but an overview is
given below:

Main features:

- Model Management:
o Upload a model
o Delete a model
o Update a model
o Get model information
o Download a model

- Model Inference:
o Get new predictions
o Cache duplicated predictions
o Perform inference asynchronously on ONNX or TF2 model

- Model Training:
o Train models on any Python ML Library
o Upload trained models
o Decoupled training from inference and storage
o Provide dataset, training scripts and required packages for training
o Train on Docker containers or K8S Pods

6.4 Installation
Installation of MLBuffet does not differ from a classical K8S application - building
container images, uploading them and finally, deploying the application into a K8S
cluster. All files and scripts for configuration and deployment of MLBuffet are
located in the “/deploy” directory in the project.

MLBuffet provides a Shell script to ease image building through Docker’s “build”
command. Alternatively, one can build images manually, but taking into account
that image names must match those in deployment “YAML” files, located inside
“autodeploy” directory. Specifically, in “kustomization.yaml”, which defines
constant values that will be used throughout the rest of deployment configuration
files, such as microservices’ image names. In case the images were uploaded to a
remote repository, these names must point to the corresponding remote server’s
resource.

Once all images have been built and (if applicable) uploaded and desired
configuration has been set, MLBuffet is deployed via “kubectl apply” command,
indicating the directory of deployment files.

To test if MLBuffet is working correctly, there is a test endpoint available for
microservices “Inferrer”, “Modelhost” and “Storage”, through a GET request to
/api/test:8000.

https://github.com/zylklab/mlbuffet

Copyright © FRACTAL Project Consortium 25 of 29

Project FRACTAL

Title Specification of AI methods for FRACTAL system control

Del. Code D5.5

6.5 Other implementations
6.5.1 ARM architecture (VERSAL node)
At the time of submitting this Deliverable, MLBuffet latest version is MLBuffet v2.0,
which standardizes the software packages and base images being used to build the
container images for ARM and x86 architectures. ARM is a very popular architecture
for IoT and Edge devices, and it is crucial for MLBuffet to be able to be built in ARM
systems, especially if it is targeted to be supporting the High-End node reference
Fractal platform (VERSAL board).

MLBuffet v2 can be either built for x86 and ARM architectures using the Docker
Engine image build functionality, and images can be deployed on both processing
architectures without issues.

For RISCV architectures, every software package being used, from ML libraries to
APIs and databases should be built from source for RISCV architectures, and most
the open-source tools used by the microservices are not yet available for RISCV.

For this reason, MLBuffet is not yet supported for RISCV architectures, but as the
RISCV architecture becomes more popular as a standard open-source processor
architecture and more open-source tools are available and built for these systems,
it will be possible and is expected to build MLBuffet also for RISCV machines.

Copyright © FRACTAL Project Consortium 26 of 29

Project FRACTAL

Title Specification of AI methods for FRACTAL system control

Del. Code D5.5

7 Conclusions

In this document, the main developments, tools and technologies that have been
utilized for the development of the Fractal System Controller are presented and
described. This document is a descriptive collection of methods to be followed and
tools to deploy in order to operate ML pipelines and workflows on Edge devices.

Firstly, an overview of the MLOps methodologies is done, explaining how to
effectively implement MLOps practices for a more agile development in ML tool
chains. These methodologies allow the Use Cases to continuously deploy and
integrate their developments into the Fractal Edge node, thus minimizing the down
times and performing system and software updates in a more agile and resilient
way.

Then, the orchestration concept is introduced and explained from the theoretical
perspective, giving the insights on how orchestration is required for the automation
and autonomy of the Fractal Edge Node. Orchestration strategies described are the
bottom-up and top-down alternatives, which address both the decentralized and
centralized computing paradigms respectively. Once the insights of theoretical
orchestration are given, container virtualization is introduced as a reliable
technology to package and deploy software in artifacts which can be effectively
orchestrated by Container Orchestrators. A comparison and analysis of the two
main container orchestrators that have been researched during the task is given:
Docker Swarm and Kubernetes are two options to be used by the Use Cases which
choose to manage their deployments in a containerized way, and the pros and cons
of each one are analyzed to help the users decide between one or the other.

Finally, MLBuffet is presented and described as a containerized tool which can be
deployed on one or more Fractal Edge nodes to cover all the main steps addressed
on the Edge in the ML models life-cycle, from model storage and version control,
Edge training and Edge deployment. Its containerized and microservice-based
architecture makes it an intrinsically orchestrable tool, and it can be utilized as the
core service in the Fractal system control to manage all the ML processes to be
performed on the Edge. An overview of its functionalities, architecture, and
installation steps are provided, although more details and the latest versions can be
found on the provided public GitHub repository.

During T5.4, the efforts were focused on translating the research done during T5.1
into practical implementations, specifically on the concepts of Orchestration and
Adaptability. As a result, the MLOps methodologies detailed in this deliverable
together with the release of MLBuffet allow the Fractal Edge Nodes to have a set of
tools that dynamically perform all the steps in the ML workflow. Application
containerization and the usage of Container Orchestrators (K8S or Docker Swarm)
also were introduced into the project’s available technologies, providing a proactive
adaptation environment for the tasks to be done in WP6 and providing the UCs with
a complete set of technologies.

Copyright © FRACTAL Project Consortium 27 of 29

Project FRACTAL

Title Specification of AI methods for FRACTAL system control

Del. Code D5.5

8 List of figures

Figure 1: Valid photo examples..10

Figure 2: Example of labeling different types of defects..10

Figure 3: Example of labeling considering only cracks and fissures.........................11

Figure 4: Example of a MLOps pipeline..12

Figure 5: MLBuffet architectural implementation...22

Copyright © FRACTAL Project Consortium 28 of 29

Project FRACTAL

Title Specification of AI methods for FRACTAL system control

Del. Code D5.5

9 List of tables

Table 1 – FRACTAL Project objectives...5

Table 2 – List of available data labeling tools...9

Copyright © FRACTAL Project Consortium 29 of 29

Project FRACTAL

Title Specification of AI methods for FRACTAL system control

Del. Code D5.5

10 List of Abbreviations

AI - Artificial Intelligence
API - Application Programmable Interface
CI/CD - Continuous Integration & Development
CNCF - Cloud Native Computing Foundation
CNI - Container Networking Interface
CSV - Comma separated values
DevOps - Development Operations
FPGA - Field Programmable Gate Array
IT - Information Technologies
JSON - JavaScript Object Notation
K8S - Kubernetes
ML - Machine Learning
MLOps - Machine Learning Operations
MPSoC - Multi-Processor System on Chip
NLP - Natural Language Processing
REST - Representational State Transfer
UC - Use Case
WP - Work Package

	1 History
	2 Summary
	3 Introduction
	3.1 Objectives and Approaches

	4 MLOps
	4.1 From DevOps to MLOps
	4.2 Machine Learning Life-Cycle
	4.3 Tools
	4.4 MLOps Pipeline

	5 Applied Orchestration
	5.1 Orchestration in FRACTAL nodes
	5.2 Top-down orchestration
	5.3 Bottom-up orchestration
	5.4 Container orchestration
	5.4.1 Docker Swarm
	5.4.2 Kubernetes

	5.5 Self-orchestrating systems

	6 MLBuffet v2
	6.1 Introduction
	6.2 Implementation
	6.3 How does it work
	6.4 Installation
	6.5 Other implementations
	6.5.1 ARM architecture (VERSAL node)

	7 Conclusions
	8 List of figures
	9 List of tables
	10 List of Abbreviations

