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2 Summary

This  deliverable  covers  the  main  research  outcomes  from T5.4,  introducing  the
concepts  of  Machine  Learning  Operations  (MLOps),  a  subset  of  Development
Operations (DevOps) methodologies, Orchestration, providing alternative strategies
to orchestrate and manage system and service automation (top-down, bottom-up
and self-orchestrating approaches), and describing the implementation result of the
research and developments on these topics, the MLBuffet tool to orchestrate the
Fractal control system based on Artificial Intelligence (AI) approaches. 

There are three main sections (4, 5 and 6) in D5.5: 

Section 4 explains what the MLOps methodologies are, thoroughly explaining the
necessity to apply DevOps methodologies to Machine Learning (ML) projects, and
giving all the insights and information for the Use Cases (UCs) to implement the set
of tools and frameworks available to perform MLOps strategies into their working
pipelines, providing practical implementations and example pipelines to cover all
the steps in a typical ML process.

Section 5 gathers all the required information about Orchestration in ML systems,
explaining  the  different  orchestration  strategies  from  a  theoretical  perspective
(focusing on top-down and bottom-up orchestration), and how these can be applied
into  physical  systems to  conform a Fractal  node architecture.  This  section is  of
special  importance  because  it  allows  WP6  with  a  practical  implementation
orchestration framework, and is the converging spot for the ML Orchestration (WP5)
and Systems and Service Orchestration (main focus of  WP6) developments.  The
theoretical aspects of orchestration as studied in T5.1 are particularized here for
Fractal  systems and an overview of the applicability of these strategies to Edge
nodes is provided, introducing containerization and container orchestrators.

Finally, Section 6 details the main outcome of the developments done throughout
the task, the MLBuffet tool. This open-source implementation of an Edge ML server
for  inference,  training,  and  storage  of  models  has  been  fully  developed  in  the
Fractal project framework, specifically in T5.4. The main feature of this tool is that it
enables  the  orchestration  mechanisms  for  ML  models  in  the  Edge,  so  that
orchestration can be performed over the ML artifacts in terms of storage, training
and inference. This is done in a virtualized environment that ensures universality
and automation of the deployments.
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3 Introduction 

The objective of this deliverable is to show the results of the research that has been
performed during T5.4 in WP5, which was focused on building an AI-based FRACTAL
system control. The starting point of this task was the theoretical research being
performed in parallel to T5.1, where the theoretical framework for a Fractal platform
and  Fractal  AI  was  being  done.  From there,  an  analysis  of  the  existing  AI  and
orchestration  tools  was  done,  and  the  existing  methodologies  for  continuous
integration  and  continuous  development  (CI/CD)  for  Machine  Learning  (ML)
processes were researched. This leads to the concepts of MLOps and Orchestration,
which later enabled the possibility of building a new open-source tool that can give
answer to the Fractal Edge system orchestration necessities. 

3.1 Objectives and Approaches
The research of this task was done following the overall objectives of the FRACTAL
project, gathered in the Table below:

Objective 1 Design and Implement an Open-Safe-Reliable Platform to
Build Cognitive Nodes of Variable Complexity

Objective 2 Guarantee FRACTAL nodes and systems extra-functional
properties  (dependability,  security,  timeliness  and
energy-efficiency)

Objective 3 Evaluate and validate the analytics approach by means
of  AI  to  help  the  identification  of  the  largest  set  of
working  conditions  still  preserving  safety  and  security
operational behaviors.

Objective 4 To integrate fractal communication properties (scale free
networks) to FRACTAL nodes.

Table 1 – FRACTAL Project objectives

Specific objectives of this task are based on WP5 objectives: 

 Study  and enhancement  of  AI  methods  on the  FRACTAL edge computing
architecture. 

 This WP will concentrate on particular set of AI methods to study further and
implement on the platform, based on the theoretical results and architecture
of T5.1 as well as the platform of T5.2.

 Enhance  the  internal  operation  of  the  FRACTAL  system and  enable  new
functionalities for prediction, system orchestration, and autonomous control
of the system nodes 
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4 MLOps

4.1 From DevOps to MLOps
The  MLOps  concept  cannot  be  understood  without  the  DevOps  approach.  The
DevOps  term comes from ‘Development  and  Operations’,  two  of  the  traditional
groups of workers from the IT companies.

In order to speed up and facilitate the development process and the submission of
new software and its updates, teams that usually do not work together, such as the
development and maintenance groups, join forces and contribute to the software
development process. The goal of that collaboration is to optimize the developers'
workload while ensuring the functionality  of  the generated applications  with the
monitoring that the operations team can provide.

As IT companies started to integrate teams specialized in Machine Learning into
their staff, new requirements that were not in the scope of DevOps practices and
tools  arose.  To  satisfy  them,  MLOps  concept  was  developed,  which  combines
DevOps with Machine Learning management tools and practices. As in DevOps, the
term MLOps comes from the union of Machine Learning and Operations.

The application of MLOps practices accelerates the processes of experimentation
and model development, making the deployment and maintenance of the models in
production more efficient, ensuring the quality of the results. This new approach
joins  the DevOps teams,  machine learning  research teams,  engineers,  and data
analysts  who are  in  charge  of  the  design  and  maintenance  of  models  and  the
preparation of data for continuously training and fine-tuning the models.

4.2 Machine Learning Life-Cycle
Similar to DevOps practices and software development stages, MLOps cover each
step involved in Machine Learning model development. Those steps can be divided
into three main phases: experimentation, production, and monitoring.
The goal of the first phase is to design and develop the machine learning model.
First, problem identification and data collection, analysis, and labeling are a must to
design a model that can comply with the requirements established by the client.
Along with that, a model selection process is conducted by studying different types
of models to find the one that best fits the requirements of the Use Case. Lastly, the
first experiments are carried out to obtain a preliminary model that will be later
fine-tuned.

When a machine learning model that works as desired has been developed, the
next step is to put that model  into production and test its capabilities with real-
world data; that is, data associated with the problem that had to be solved in the
first  place.  During  this  phase,  different  experiments  and  training  stages  will  be
performed to fine-tune the hyperparameters of the model, and each version of the
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model  is  saved  and  stored  following  data  version  control  rules  so  that  every
experiment is backed up correctly.

Finally, once the model has been served and put into production, a set of processes
will  be  carried  out  to  ensure  that  the  deployed  machine  learning  application’s
performance is always optimal. This requires, for example, monitorization of metrics
such as the accuracy and precision of the model when encountering and processing
new data, in order to detect any signs of model decayment or data drift as soon as
possible, and fix those issues by retraining and tuning the model when necessary.

4.3 Tools
Different tools and software have emerged recently with the purpose of covering
each of the steps mentioned in the previous section. While some of the software is
more specialized in one specific task such as data management or version control,
other tools have been designed with the aim of performing tasks related to more
than one stage of the MLOps life cycle.

Starting with the software packages that cover more than one stage of the lifecycle,
MLflow is one worth mentioning. It is an open-source platform designed to manage
the  entire  MLOps  lifecycle,  performing  functions  related  to  experimentation,
reproducibility,  and  deployment,  including  a  central  model  registry.  Also,  one
noticeable feature of this tool  is that it is compatible with any machine-learning
library and programming language. 

In order to organize and manage the machine learning models, MLflow is comprised
of four main components: 

(i)   a tracking system, that  has  the purpose of  tracking  and recording different
experiments,  allowing the data scientist to compare the different results;  (ii) the
models component,  managing and deploying the models from different machine
learning libraries, allowing to serve them in different inference platforms; (iii) the
projects,  that package the code developed for  the machine learning model  in a
reusable and reproducible way; and finally (iv) the model registry, that manages
each step of the model lifecycle in a centralized fashion.

Along with those features, MLflow also offers the possibility of hosting the MLflow
models as REST endpoints.

Kubeflow is another tool capable of handling multiple steps of the MLOps lifecycle.
This  software  is  an  open-source  machine  learning  toolkit  that  works  on  top  of
Kubernetes,  taking  advantage  of  the  functionalities  that  this  platform  provides
intending to  make the  deployment,  experimentation,  and model  serving  phases
simpler.  Kubeflow  enables  different  users  to  build  their  ML  experiments
independently within the current cloud scope. It is a beneficiary approach since it
utilizes  cloud  computing  resources,  resulting  in  total  cost  reduction.  Kubeflow
includes  services  to  create  and  manage  interactive  notebooks  such  as  Jupyter,
allowing the scientist to experiment with local workflows before deploying them to
the cloud. With that, Kubeflow works with pipelines that help manage and deploy
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the ML workflows from end-to-end, making it possible to schedule different runs of
an experiment and compare the results which can be used in parameter tuning.
Kubeflow also includes support for different training setups, supporting GPU-driven
training  when available,  and  allows  to  export  and  serve  the  trained  Tensorflow
models using a Tensorflow Serving container.

Focusing on more specific tools,  Apache Airflow is an open-source platform that
has the aim of monitoring, scheduling, and managing workflows. Even though it is
not designed specifically for machine learning models and MLOps lifecycle, this tool
can be useful for planning small tasks related to the whole lifecycle. Allows the user
to plan different workflows by using cron expressions and directed acyclic graphs
that can be programmed using Python language, where the dependencies among
the tasks can be specified, and provides a web graphical user interface to check the
status of the scheduled pipelines and the tasks that comprise them.

Following with data versioning and version control,  DVC is by far one of the most
popular tools. This is an open-source version control  system designed for coping
with versioning and organization of data inside the machine learning environment.
It  is  storage  agnostic,  and  the  data  management  system that  DVC implements
keeps track of the evolution of every machine learning model under development.
In  addition  to  these  features,  DVC  stores  the  code  and  data  needed  in  each
experiment in a consistent way, making every experiment reproducible.

Finally,  data  metrics  and visualization  tools  worth  mentioning  are  Grafana  and
Prometheus.  These two tools are open-source software packages with different
purposes: on the one hand, Prometheus is a software designed to collect metrics by
scraping different endpoints and storing them as time series, allowing the user to
monitor systems by defining different alert rules for the stored metrics. On the other
hand, Grafana is a tool designed to create interactive and highly customizable data
visualization dashboards of real-time data, that can be collected from various data
sources  specified  by  the  user.  Combining  both  tools,  it  is  possible  to  create  a
monitoring system that displays the state of a Machine Learning model in real-time,
allowing  the  user  to  schedule  different  retraining  sessions  when  needed,  or
notifying  when  the  performance  of  the  model  starts  decaying  by  setting  the
corresponding alert rules.

Labeling tools in supervised learning 

One of the first steps in any project that includes a supervised artificial intelligence
component, is to obtain a good dataset with which the model is trained. Although
there is an enormous variety of datasets available on the Internet, in many cases it
is necessary to manually label the dataset. This can be either because there is no
data for the faced problem, or to better adapt the models to the specific problem by
adding a fine-tuning phase. Moreover, the success of any of these projects is closely
related to the quality of the dataset used. 
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Name Language Data Type Source Code

CVAT Typescript, React, CSS,
Python Image

https://github.com/opencv/cvat

awesome-data-labeling Python Image, audio, text,
time series

https://github.com/heartexlabs/awesome-
data-labeling

bbox-visualizer Python, makefile Image
https://github.com/shoumikchow/bbox-

visualizer

dataqa Python Text
https://github.com/dataqa/dataqa-python

doccano Python Text, sequence
https://github.com/doccano/doccano

hover Python Image
https://github.com/phurwicz/hover

Label-studio Python Image, audio, text,
time series

https://github.com/heartexlabs/label-studio

Labelme Javascript Image
https://github.com/wkentaro/labelme

VoTT Typescript Image
https://github.com/microsoft/VoTT

Yolo-mark - Image
https://github.com/AlexeyAB/Yolo_mark

Table 2 – List of available data labeling tools

Having a dataset  with  good labels  is  as  important  as  the  model  itself.  For  this
reason, the labeling stage is a fundamental part of any artificial intelligence project
and must be carefully planned. 

There are multitude of open-source annotation tools available. Some of the most
widely used are LabelMe, LabelStudio and CVAT. Labelme provides an online tool
to do image labeling. LabelStudio can be installed locally and it allows to configure
the  annotation  interface  with  a  configuration  JSON.  Furthermore,  LabelStudio
specializes in both image labeling and natural language processing (NLP). Finally,
CVAT can be either installed locally or accessed online, and it is particularly suitable
for video labeling.

For  example,  for  crack labeling,  after  selecting  the  appropriate  images from all
those obtained, the "Labelme" program is used to generate the masks.
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Manual labeling work consists of drawing a polygon that runs along the contour of
the detected pathology.

Figure 2: Example of labeling different types of defects

Figure 1: Valid photo examples
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As seen in the image above, labeling can be done not only with fissures or cracks
but also with other surface defects or irregularities. In this way the model can learn
to differentiate some defects from others (paint defects, gravel nests due to lack of
vibration during execution, concrete joints, etc...).

Another way of labeling that has been used is to mark only the cracks or fissures so
that the model learns to distinguish them from everything that is not (see Figure 3).

4.4 MLOps Pipeline
The main purpose of the MLOps practices is the management of the life-cycle of the
models,  from  code  and  data  versioning  to  the  deployment,  and  covering
intermediate steps such as model building and versioning.
An example of this is depicted in Figure 4 

Figure 3: Example of labeling considering only cracks and fissures
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 The  code  containing  the  definition  of  the  model  is  versioned  into  a
repository, following the GitOps strategy. These tools ensure that the code is
maintained and updated.

 The data versioning is essential to train the model with the most up to date
dataset. The dataset can be grown up with new data, and the new versions
of the model should be trained with that dataset. One of the most used tools
for that feature is DVC, which is transparent with the different types of train
dataset, such as images, CSV, texts, etc.

 The pipeline/task management is a feature of the MLOps approach where the
model’s  code  is  managed.  The  use  of  a  tool  governing  the  pipeline  is
essential to ensure the correct behavior of each step of the model training.
Metaflow is shown in this example, which has the role of dividing the model
building into steps, ensuring the correct path of the training and, in addition,
with the capability to parallelize some steps if necessary.

 When the model is built, every new version developed should be saved and
distinguished from the other versions, allowing access to all of them. DVC
complies with this feature acting like it does with the data versioning.

 The deployment of the model is the final target of the lifecycle of the model.
An effective deployment is essential to ensure a correct inference with it. For
that  reason,  under  the  Fractal  project  MLBuffet  has  been  developed  to
deploy models via HTTP requests on Kubernetes.

Figure 4: Example of a MLOps pipeline
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5 Applied Orchestration

5.1 Orchestration in FRACTAL nodes
The focus of a FRACTAL system to support a high number of heterogeneous edge
nodes brings forward the need for efficient management, allocation and distribution
of  resources  as  promoted  in  D5.2.  The  orchestration  concepts  introduced  there
describe the  device-edge-cloud computing  continuum to summarize  all  potential
resources. The specific elements within the continuum range from energy, direct
access  hardware  elements,  virtualized  resources,  workflow  pipelines  and
applications, where each node may be providing any subset thereof. 

To properly allow for seamless computation spanning the full set of physical and
virtual  nodes  determines  the  orchestration  strategy  and  complexity  required  to
achieve best possible  efficiency. As various distinct  orchestration targets can be
identified,  like  topology,  network  or  services,  each brings  a  potentially  different
strategy. To enable this for larger or complex systems the orchestration can resort
to utilize edge AI deriving the cooperation steps with local intelligence based on
monitoring. Such approaches are derived in WP4 of the FRACTAL project and are
enabled by the growing computation power of edge node platforms as chosen for
this project.

In the sections to follow the mission mode or task orchestration will be considered
first place to explain the principles of centralized orchestration strategies in contrast
to decentralized approaches. Such choice for a particular task-level orchestration
would  be  supported  differently  based  on  the  node  scaling  in  the  system  and
therefore  is  taken  differently  in  particular  use  cases.  In  further  sections  the
orchestration on application level,  or  service level  respectively,  through the life-
cycle control of containerized services Kubernetes is derived.

5.2 Top-down orchestration
Top-down  orchestration  requires  a  centralized  control  system  to  manage  the
resources and distribute the tasks. One resembling model of the top-down approach
is  the  process  scheduler  in  operating  systems.  There  should  be  a  stateful
mechanism to  keep track  of  every resource  status  in  the  design  and then can
dispatch the tasks through the nodes to run. This approach has some challenges,
including but not limited to: 

 Statefulness. The control unit should be aware of any condition and status
of the resources in the system for the correct resource allocation.

 Efficient  algorithm.  Selecting  the  algorithm  for  the  scheduler  is  an
essential part of the orchestration in cases such as minimizing the queue
time, full utilization of the resources, etc.

 Fault tolerance. The failure of the centralized dispatcher means the failure
of the system without the recovery plans. 
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Although the challenges mentioned earlier exist in the top-down approach, it has a
generalized method to be beneficiary in situations where the computing continuum
is desired. This is due to the nature of this approach, which is having a global view
over the resources at the cost of autonomy of slave nodes. Here, the computing
continuum may refer to combining the cloud, edge, fog, and even low-end devices
with the ability to communicate data in between. The meta-information, such as the
geolocation of the nodes, the computing capacity, and the availability of the power
about the nodes, gives the control plane the insight for better task distribution.

5.3 Bottom-up orchestration
The  bottom-up  is  another  strategy  to  dispatch  the  workload  to  different  edge
devices  to  achieve  load  balancing.  It  comes  when  considering  some  of  the
limitations  of  top-down  approaches  with  more  flexibility  and  democracy.  As  its
name,  everything  starts  from the  bottom,  the  local  nodes  in  this  context.  The
flexibility and democracy here are expressed via the willingness of taking the task
of each node, therefore, nodes can freely choose the task they want to process
based on their current resource status.  This also means that there is no central
control unit and no forcing from it to make you take the task in any way as it would
be in the top-down approach.

With this strategy, the local nodes will make communications with each other to
make an agreement about the task they want to pass or exchange. Basically, the
receiving node will self-evaluate if it can handle the task or not (based on its current
resource) and reply: yes or no for the asking. No one will know and care about the
others' resource information, they just need the acceptance from the receiving node
and make an agreement via communication here. 

Assuming that we have 3 local nodes (A, B, C) in the system, then an example of
the bottom-up approach in task orchestration could be:

- One task was initially assigned to A (At this time, A is overloaded and wants
to pass the task, so A needs to ask around)

- A started a conversation with B and asked for help. However, at this time, B
was also overloaded and B said NO

- A cannot force B to do once B says NO, then it needs to keep asking around
for help, so A asks C

- C was free at that time and C said YES

- A transferred the task to C

As a notable point, the proper way to evaluate on the node itself to see if it has
sufficient  power  to  process  the  task  is  still  an  open  question  without  the  best
answer.  Workload and computing power assessment methods of  one device are
many and varied. The possible solutions can be addressed as follows:
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- based on the average number of tasks completed per unit of time

- simply the amount of free resources at the evaluation time

- or a combination of both.

Even  though  this  democratic  approach  makes  harmony  and  happiness  among
nodes  when  exchanging  the  task,  it  also  contains  more  risks  when  it  cannot
minimize  the  delay  time.  Related  to  this,  the  main  reason  is  that  it  does  not
consider  the  estimated time processing  at  the  receiving  node  and the  two-way
communication latency. Therefore, if a task comes in a long queue of one node that
has  a  current  heavier  workload  than  others,  it  still  can  be  solved  even  faster
(sequentially) than when it is transmitted to another far free node, waiting for the
processing and transmitted back for the result. From that, we can see the biggest
cons  of  this  approach  is  just  considering  different  factors  (e.g.  resources,
communication,  energy,  etc.,)  in  isolation  while  there  are  implicit  interactions
between them.  Particularly,  computational  time and the  energy  consumption  to
make communications among devices are one of the most common combinations
that  we  need  to  concern  about  when  negotiating  to  reach  a  consensus  on  an
optimal task allocation. 

Beyond the foregoing, this approach can also be interpreted in the way that the
lower-layer devices (e.g. sensors or data collectors) try to process things first (on-
board processing) before it gets overloaded and needed to send the workload to the
higher-layer devices such as fog, edge devices or even cloud server,  where has
more computing power to continue the processing progress. This way releases the
congested  work  that  needs  to  be  processed  on  the  server  and  the  near-data
processing would also minimize a lot of latency.

5.4 Container orchestration
Not only  nodes and physical  systems are  entities subjected to  be orchestrated.
Virtual nodes, virtual machines, and containers (which are a way of virtualization)
can also be orchestrated with the various strategies described above.

Containers  are  a  particular  entity  when  referring  to  virtualized  environments,
because they are packages of software and processes that run isolated from the
rest of its host, but utilize the same hardware and kernel resources as the host OS.
This means that processes are fully isolated from the host’s processes, and still they
behave as virtual machines without the virtualization overhead in processing and
computing capabilities.  In  addition,  containers are usually  light-weight  processes
and can be easily deployed, which makes them a flexible and easy to manage tool
to be orchestrated.

Container orchestration is the process of automating the deployment, management,
and  provisioning  of  containers,  from  simple  single-process  containers  to  fully
containerized  distributed  applications.  This  provides  total  control  of  containers
during their life-cycle. When it comes to the Edge containerized architectures, they
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are usually  running very specialized applications  with Machine Learning  models,
performing inference on the Edge  and streaming data  and predictions  to  larger
systems. This makes orchestration a key process on Edge architectures, given the
importance  of  having  scalable  and  fault-tolerant  systems  which  are  not  to  be
monitored by humans and expected to work as autonomously as possible.

Most container orchestrators are operated by defining all the configuration aspects
of  an  application  using  YAML or  JSON files.  These configuration  files  define  the
desired  state  of  the  cluster,  and  the  orchestrator  will  provide  the  resources
specified in the config file to match the desired state with the actual state of the
cluster. Then, containers are deployed and connected together through IPs or DNS
services, and the applications are kept running by re-deploying failed containers, re-
scheduling containers running on failed nodes, and scaling the application if  the
workload increases.

Many container orchestrating tools are already available, some being more widely
adopted  than  others  and  differing  in  functionalities,  but  broadly  speaking  a
container orchestration a 4-step process:

→ Upload container images with the specifications of the applications and code to
be run on the containers to an accessible image registry.

→  Provisioning  of  containers  with  the  storage,  computational  resources,
infrastructure and files.

→ Providing containers with a secure network to access other containers or external
requests.

→ Monitoring and management of the overall application. This step involves all of
the  scheduling,  scaling,  networking  for  service  exposure,  updates,  and  failure
recovery.

During  the  FRACTAL project,  and specifically  during  the  course  of  T5.4,  several
container orchestrators have been studied, looking for an orchestrator which meets
specific properties required in the Fractal platform:

1. Lightweight: Containers are usually running very lightweight applications in
the  form  of  microservices  which  can  then  be  scaled  to  meet  increasing
resource  requirements.  Having  a  heavy  orchestrator  would  introduce
overhead in processing and networking which is not feasible to have on the
Edge resource-constrained nodes. 

2. Deployable on the Edge: IoT systems, and in particular the MPSoCs and
FPGA boards being used in the Fractal platforms, usually have restrictions
and  differences  with  respect  to  other  systems like  Cloud  computers  and
processors.  These usually  are  linked to  the  processor  architecture,  being
ARM64 the most typical architecture in the IoT domain, but also RISC-V being
required to be supported. 

3. Automated  and  scalable:  Edge  deployments  are  preferred  to  be  as
automated  as  possible  to  avoid  human  interaction  with  the  deployed
systems, reducing maintenance costs and increasing the functioning time of
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the  platforms.  This  is  the  reason  why  the  orchestrator  must  be  robust
enough to self-heal in case a node goes down, provide high-availability, scale
workloads  when  these  increase  in  computational  cost,  and  dynamically
reschedule workloads from nodes that go down into available nodes.

4. Easy  to  deploy,  but  providing  complex  configurations:  The  ease  of
deployment  is  an  important  feature  for  an  orchestrator,  especially  when
dealing  with  Edge  deployments  where  deployment  on  emerging  or  new
nodes must be automated. Orchestrators with complex deployments (such
as  bare-metal  Kubernetes)  are  avoided,  going  for  simpler  distributions
specifically designed for Edge devices, like MicroK8S or K3s, while providing
the same main functionalities.

5. Open-source and with an active community

Considering these requirements, three container orchestrators were implemented
and tested, increasing in their complexity and available functionalities. First, Docker
Swarm  was  implemented,  providing  a  simple  orchestrator  with  some  core
functionalities  already  supported  by  Docker  Engine,  the  most  widely  used
application for running containers in IT at the moment. Then, Kubernetes emerged
while looking for a more complex and complete solution which covers all  of the
previously described requirements, but was found to have a complex deployment
and  big  resource  overhead  for  Edge  deployments.  Finally,  more  light-weight
distributions of Kubernetes, K3S and MicroK8S, were found to be the appropriate
tools for Edge containerized deployments, providing easy installation steps and the
main functionalities of full Kubernetes deployments.

An overview of both orchestrators is provided below, highlighting the main features
and differences between them.

5.4.1 Docker Swarm
Docker Swarm is an open-source container orchestrator which is natively supported
by Docker, to orchestrate clusters of hosts running Docker Engine, a very popular
container creation and management tool. It presents a series of advantages with
respect to other orchestrators, mainly its ease of use and simplicity of deployment.

A Docker Swarm cluster is made up of manager nodes running Docker Engine, and
worker nodes which are scheduled containers and workloads by the  masters.  To
start  using  Docker  Swarm mode  from a  node  with  an  already  installed  Docker
Engine, just run  docker swarm init  and the Docker Engine will create a Swarm
node and provide a token and endpoint for the rest of the nodes to securely join the
cluster. 

The main features that make Docker Swarm a good orchestrator choice for Fractal
deployments are:

 Decentralized  design: Support  multi-node  swarms  with  master-worker
architectures for decentralized applications.
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 Service abstraction: A set  of  identical  containers  are abstracted into  a
Service,  which is in charge of  load balancing the charge between all  the
containers behind, ensuring the availability of the deployed applications. 

 Scaling: The number of containers (or tasks) behind a given Service can be
scaled  up  and  down to  match  the  system and  application  requirements.
However, the up-scaling and down-scaling of Services is not automated and
must be done manually.

 Overlay  networking: A  virtual  overlay  network  is  created  between  the
Swarm  hosts  so  that  containers  deployed  in  different  nodes  can
communicate  with  this  overlay  network  instead  of  being  forced  to
communicate  via  public  or  external  networks,  reducing  latency  and
increasing availability.

The downside of Docker Swarm is that these services must be stateless, this means
that all  the containers behind a service must be equal,  and the Service will  not
provide capabilities for stateful containers, meaning that if the containers behind a
Service diverge in functionality after their deployment, the Service will no longer
behave as expected when different containers are called.

More features and information about Docker Swarm and Docker Swarm mode can
be found at https://docs.docker.com/engine/swarm/

From  the  Fractal  platform  perspective,  these  are  the  main  advantages  and
disadvantages that Docker Swarm provide as a container orchestrator:

Docker Swarm pros:

 Service abstraction
 Cluster mode in master-worker architecture
 Ease of use 
 Already integrated in Docker Engine
 Setting up a cluster is straight-forward

Docker Swarm cons: 

 The only load balancing strategy is round-robin
 Does not support stateful containers
 Has no customization options
 Auto-scaling not supported

Conclusion:

While Docker Swarm is focused on its easy-to-use and easy-to-deploy features, it
lacks  some  functionalities  which  could  be  required  in  more  complex  container
applications,  like  specific  load  balancing  strategies  and  support  for  stateful
containers. It could be enough however for simple applications running on the Edge
which  don’t  require  complex  setups  and  can be  easily  deployed,  where  Docker
Swarm can  be  used  to  deploy  a  container  network  and  orchestrate  containers
easily.

https://docs.docker.com/engine/swarm/
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Docker Swarm has proven to be the entry gate to container orchestrators, being a
great tool for beginners or not very complex container applications.

5.4.2 Kubernetes
Kubernetes  (K8S)  is  an  open-source  container  platform  originally  developed  by
Google and donated to Cloud Native Computing Foundation (CNCF) in 2015. It is
widely used to manage and orchestrate containers and containerized applications,
scheduling containers across a cluster,  scaling and managing the cluster overall
state and health.

The main components of a K8S cluster are the cluster itself, made up by a group of
computing machines (either physical or virtual), a control plane, which is in charge
of assigning tasks and controlling the overall  state of the cluster, the kubelet, a
service running on the nodes that deploys containers through the provided images,
and Pods, which are the core concept of container instances in K8S clusters. A Pod
is  a  group  of  one  or  more  containers  deployed  into  a  node,  sharing  a  pool  of
resources provided by K8S, an IP address, hostname, DNS resources, etc.

The advantages and disadvantages K8S offered to the Fractal platform are:

Advantages:

 Offers  a  wide range of  functionalities,  Pods  are  abstracted into  Services,
which then are exposed through Ingress and Load Balancer objects.

 Provides self-healing capabilities.
 Has lighter distributions for IoT and Edge deployments.
 It  is very rich in features, plugins and allows integration with many other

open-source tools.
 Automatically scales workloads.
 It  is  independent  from  Docker  Engine,  what  gives  complete  freedom  to

choose a container runtime (Docker could be used, but it’s not required).

Disadvantages:

 It is hard to learn, and managing clusters requires expert knowledge.
 Security is not enforced by default and requires external configuration.
 Its bare metal deployment is too heavyweight.
 It takes time to deploy even a simple application, and it usually ends up on

heavy YAML syntax.
 Some of the plugins are required, like installing an external Pod Container

Networking Interface (CNI).

Conclusion:

Deploying K8S requires a deep understanding of the underlying concepts and K8S
objects,  and  their  interactions  with  containers.  Some  of  these  concepts  are
analogous to Docker Swarm’s (services, tasks), but ultimately K8S allows for a very
complete configuration in networking and scheduling, and can be used to deploy
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large containerized applications no matter how complex they are. Thus, application
deployments can be customized to match the user needs.

Although deploying K8S and installing it on bare metal systems requires time and is
a complex task, especially on Edge deployments, there exist light-weight solutions
which  are  self-contained  and  can  be  installed  easily,  providing  most  of  the
functionalities of full K8S. These are MicroK8S and K3S, and both these tools have
been deeply studied and implemented in WP6 (T6.1 and T6.2), and although they
are  out  of  the  scope  of  this  deliverable,  they  are  worth  mentioning  because
installing them mitigates one of the major downsides of K8S which is the installation
process.

5.5 Self-orchestrating systems
As  stated  in  Section  5.2  Container  Orchestration,  containerized  applications  are
abstracted into code through container images, configuration YAML or JSON files,
and then the overall application is given to the Container Orchestrator (for example,
K8S),  which  will  deploy  the  application  and  make  sure  that  the  desired  state
provided through the YAML matches the actual state of the application.

The next step in orchestration is to create systems which are able to orchestrate
themselves,  without  needing any external  user interaction after being deployed.
These systems can be groups of containers that monitor the overall status of the
system,  resources,  storage  and  availability,  and  take  decisions  based  on  the
individual state of the host they are running on and the cluster status, attending to
a set of rules that define what actions must be taken for each situation, defining
alarms and controlling the cluster from the inside.

Take as an example a Pod which monitors the different nodes inside a K8S cluster.
This “Monitoring Pod” is given certain permissions and is able to gather metrics and
monitor the CPU, memory, and usage status of the whole set of nodes comprising
the  K8S  cluster.  This  Pod  runs  a  dedicated  container  which  analyzes  all  the
information gathered and makes decisions depending on the overall cluster status,
by  tainting  nodes  (applying  restrictions  like  avoiding  Pod  scheduling  on  tainted
nodes), rescheduling or scaling workloads, all from inside the cluster itself, with no
need of a system administrator to monitor the state of the cluster.

Monitoring tools like Prometheus can also be used to monitor the overall status of
the cluster in order to programmatically allocate resources or re-schedule workloads
into the nodes, with a dedicated container running inside the cluster.

However, this is still an open problem and these self-orchestrating systems are to
be optimized in the future. A custom orchestrator is being developed in WP6 T6.2
which  will  address  this  problem  and  provide  a  system  that  automates  the
monitoring and orchestration of the Fractal platform.
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6 MLBuffet v2

6.1 Introduction
There is  a wide ecosystem of ML tools  available that  cover all  the steps in the
Machine Learning life-cycle. These ML tools usually cover these steps focusing on
high-performance, low latency or optimized processing. It is clear how these tools
are relevant in Cloud and high-resource environments, but there is still  a lack of
options when it comes to Edge deployments and IoT systems.

During the Fractal  project, a necessity to have a system that is able to perform
operations on ML models in Edge deployments and resource-constrained systems
was  spotted,  while  also  having  a  good  efficiency-to-cost  computational
performance. 

During T5.4, a tool able to efficiently manage ML models was built under the project
of  MLBuffet.  Several  functionalities  were  progressively  added  to  MLBuffet,  from
model inference on ONNX format models to model training and version control. The
chosen deployment for the software stack was in the form of inter-communicating
containerized  microservices,  so  that  new  modules,  potentially  adding  new  or
updating already existing functionalities can be included into the project.

6.2 Implementation
MLBuffet  is  an open-source,  container-based Machine Learning  Model  Server for
model inference, training and management.  It  has been specifically designed for
Machine Learning projects that need to be carried out in the Edge, although it is
also deployable on Cloud deployments. In this section the implementation details
are  described,  showing  the  architecture  and  open-source  tools  used  to  build
MLBuffet.  All  the  code  and  installation  steps  are  available  at
https://github.com/zylklab/mlbuffet.

https://github.com/zylklab/mlbuffet
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As mentioned previously, MLBuffet is based on containerized microservices, each
providing different functionalities and listed below:

 Inference: MLBuffet’s Inferrer microservice can perform inference on ONNX
and TensorFlow 2 developed models.

 Model  management:  Storage  is  a  microservice  which  performs  model
storage, version control, and management. When a new model is uploaded
to the server, it is stored in a dedicated container and managed. allowing
downloading, re-versioning, modifying or deleting models.

 Training:  Trainer  module  allows  the  users  to  schedule  model  training  on
Edge devices programmatically. This is done through a dedicated REST API
resource where the user uploads the training script, dataset and required
packages, and a new container is created performing the training operations,
for any training Python library. 

Code aspects and languages:

MLBuffet is entirely written in Python 3. This means that little code is necessary to
implement fairly complex programs, compared to, for example, C++. This, together
with its modular design, results in MLBuffet’s code being lightweight (~160kB) and
easily readable and expandable.

This tool consists of 6 modules: Inferrer, Modelhost,  Trainer, Storage, Cache and
Metrics.  The  core  of  each  one  is  a  Flask server,  which  expose  several  HTTP
endpoints to communicate with each other.

Figure 5: MLBuffet architectural implementation
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Deployment and environment:

MLBuffet was built to be entirely deployed inside a K8S cluster, as the application
has  full  support  for  K8S.  However,  we  open  the  door  to  integration  with  other
orchestrators and programs, such as KubeFlow or orchestratorless Docker-Engine
deployments.  Thanks  to  K8S,  the  deployment  of  MLBuffet  is  easy  and  straight-
forward, and it can be escalated to simpler K8S distributions specifically designed
for Edge devices, like MicroK8S or K3S.

In K8S each core module  (modules  which are not triggered or created by user-
specific  operations)  is  deployed  through  dedicated  Services,  which  schedules
scalable Pods with a Deployment, these are Inferrer, Metrics, Cache, and Storage.

For the side modules, Modelhost and Trainer, the Inferrer microservice is in charge
of managing the creation and deletion of dedicated Deployments and Services for
each  model  that  is  uploaded  into  the  server.  These  models  are  individually
packaged  into  a  Modelhost  Pod  which  exposes  REST  API  endpoints  to  perform
inference over the currently supported libraries. These makes the models totally
decoupled from each other, ensuring full availability of each model, independently
of the state of surrounding nodes or models.

The Trainer microservice is created whenever a user launches a training with its
dedicated training script and dataset. This Trainer Pod will execute the training loop
and will take care of its execution. When the model is trained, it is automatically
uploaded to the model server for deployment, if able.

It must be noticed that these K8S object management is done through dedicated
permissions granted on the Inferrer microservice, through a RoleBinding that allows
it  to  manage  Services,  Deployments  and  Pods  on  the  ‘mlbuffet’  namespace,
ensuring the isolation of these permissions over external namespaces and avoiding
security breaches.

MLBuffet also provides a  Helm chart for automatic deploying of MLBuffet through
this package manager for K8S. Its file structure is similar to K8S objects, with the
only  difference  that  Helm  detaches  constant  values  among  all  templates  and
gathers them into one file, for easy deployment configuration.

MLBuffet leverages distribution of workloads within a Kubernetes cluster to offer low
response times, reliability and scalability. Furthermore, the deployment is hardware-
agnostic,  a key feature for IoT devices,  which often combine different processor
architectures in the same use case.

6.3 How does it work
Once  MLBuffet  is  deployed (assuming  a  K8S deployment),  the  REST  API  of  the
Inferrer service is exposed. The K8S API can be queried about the Inferrer Service
endpoints with the command ‘kubectl get endpoints –n mlbuffet inferrer’. Once the
REST  API  is  accesible  to  external  users,  it  can  be  checked  if  it  is  available  by
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sending  a  simple  curl  request  with  ‘curl  –X  GET
http://<INFERRER_IP>:<PORT>/help’. The help message should be displayed.

Updated information on the main functionalities of MLBuffet and how to perform
oeprations overs the server can be found at the official GitHub, but an overview is
given below:

Main features:

- Model Management:
o Upload a model
o Delete a model
o Update a model
o Get model information
o Download a model

- Model Inference:
o Get new predictions
o Cache duplicated predictions
o Perform inference asynchronously on ONNX or TF2 model

- Model Training:
o Train models on any Python ML Library
o Upload trained models
o Decoupled training from inference and storage
o Provide dataset, training scripts and required packages for training
o Train on Docker containers or K8S Pods

6.4 Installation
Installation of MLBuffet does not differ from a classical K8S application - building
container images, uploading them and finally, deploying the application into a K8S
cluster.  All  files  and  scripts  for  configuration  and  deployment  of  MLBuffet  are
located in the “/deploy” directory in the project.

MLBuffet provides a Shell  script to ease image building through Docker’s “build”
command. Alternatively, one can build images manually, but taking into account
that image names must match those in deployment “YAML” files, located inside
“autodeploy”  directory.  Specifically,  in  “kustomization.yaml”,  which  defines
constant values that will be used throughout the rest of deployment configuration
files, such as microservices’ image names. In case the images were uploaded to a
remote repository, these names must point to the corresponding remote server’s
resource.

Once  all  images  have  been  built  and  (if  applicable)  uploaded  and  desired
configuration has been set,  MLBuffet is  deployed via “kubectl  apply” command,
indicating the directory of deployment files.

To  test  if  MLBuffet  is  working  correctly,  there  is  a  test  endpoint  available  for
microservices  “Inferrer”,  “Modelhost”  and  “Storage”,  through  a  GET  request  to
/api/test:8000.

https://github.com/zylklab/mlbuffet
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6.5 Other implementations
6.5.1 ARM architecture (VERSAL node)
At the time of submitting this Deliverable, MLBuffet latest version is MLBuffet v2.0,
which standardizes the software packages and base images being used to build the
container images for ARM and x86 architectures. ARM is a very popular architecture
for IoT and Edge devices, and it is crucial for MLBuffet to be able to be built in ARM
systems, especially if it is targeted to be supporting the High-End node reference
Fractal platform (VERSAL board).

MLBuffet v2 can be either built for x86 and ARM architectures using the Docker
Engine image build functionality, and images can be deployed on both processing
architectures without issues.

For RISCV architectures, every software package being used, from ML libraries to
APIs and databases should be built from source for RISCV architectures, and most
the open-source tools used by the microservices are not yet available for RISCV.

For this reason, MLBuffet is not yet supported for RISCV architectures, but as the
RISCV architecture  becomes more popular  as  a  standard  open-source processor
architecture and more open-source tools are available and built for these systems,
it will be possible and is expected to build MLBuffet also for RISCV machines.
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7 Conclusions

In this document, the main developments, tools and technologies that have been
utilized for  the development of  the Fractal  System Controller are presented and
described. This document is a descriptive collection of methods to be followed and
tools to deploy in order to operate ML pipelines and workflows on Edge devices.

Firstly,  an  overview  of  the  MLOps  methodologies  is  done,  explaining  how  to
effectively implement  MLOps practices for a more agile development in ML tool
chains.  These  methodologies  allow  the  Use  Cases  to  continuously  deploy  and
integrate their developments into the Fractal Edge node, thus minimizing the down
times and performing system and software updates in a more agile and resilient
way.

Then, the orchestration concept is introduced and explained from the theoretical
perspective, giving the insights on how orchestration is required for the automation
and autonomy of the Fractal Edge Node. Orchestration strategies described are the
bottom-up and top-down alternatives,  which address  both the decentralized and
centralized  computing  paradigms  respectively.  Once  the  insights  of  theoretical
orchestration  are  given,  container  virtualization  is  introduced  as  a  reliable
technology to package and deploy software in artifacts which can be effectively
orchestrated by  Container  Orchestrators.  A  comparison  and analysis  of  the  two
main container orchestrators that have been researched during the task is given:
Docker Swarm and Kubernetes are two options to be used by the Use Cases which
choose to manage their deployments in a containerized way, and the pros and cons
of each one are analyzed to help the users decide between one or the other.

Finally, MLBuffet is presented and described as a containerized tool which can be
deployed on one or more Fractal Edge nodes to cover all the main steps addressed
on the Edge in the ML models life-cycle, from model storage and version control,
Edge  training  and  Edge  deployment.  Its  containerized  and  microservice-based
architecture makes it an intrinsically orchestrable tool, and it can be utilized as the
core service in the Fractal system control to manage all the ML processes to be
performed  on  the  Edge.  An  overview  of  its  functionalities,  architecture,  and
installation steps are provided, although more details and the latest versions can be
found on the provided public GitHub repository. 

During T5.4, the efforts were focused on translating the research done during T5.1
into practical  implementations,  specifically on the concepts of Orchestration and
Adaptability.  As  a  result,  the  MLOps  methodologies  detailed  in  this  deliverable
together with the release of MLBuffet allow the Fractal Edge Nodes to have a set of
tools  that  dynamically  perform  all  the  steps  in  the  ML  workflow.  Application
containerization and the usage of Container Orchestrators (K8S or Docker Swarm)
also were introduced into the project’s available technologies, providing a proactive
adaptation environment for the tasks to be done in WP6 and providing the UCs with
a complete set of technologies.
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