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This deliverable is a part of FRACTAL WP5 Task 5.2 developing a runtime 

platform to deploy, test and run the AI algorithms developed in the project. 

The deliverable provides technical details about the implementation aspects 

of the different modules (installation, configuration, etc.) as well as 

instructions for their use and customization by the future users of the cloud 

platform, complementing the deliverable D5.2 named “Intermediate platform 

for Federated AI”, in which cloud platform logical and functional descriptions 

were given. 
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2. Summary 

This document presents the specification of the cloud platform for FRACTAL AI, 

toolkits, and custom and pre-trained models for AI-based Algorithms developed in 

other tasks. It complements to the deliverable D5.2 named “Intermediate platform 

for Federated AI”, in which cloud platform logical and functional descriptions were 

given, providing technical details about the cloud platform modules, or building 

blocks. In this deliverable the cloud platform modules are presented from two points 

of view. On the one hand, it covers the implementation aspects of the different 

modules (installation, configuration, etc.), while on the other hand it includes 

instructions for the use, customization, etc., of the modules by the future users of 

the cloud platform. 
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3. Introduction 

As mentioned in deliverable D5.1 “Specification of AI methods for use case 

applications”, three machine learning approaches will be considered in FRACTAL 

Project to meet the requirements of a variety of machine learning models for the 

different use cases: centralised, distributed and federated learning.  

In the centralized learning approach, data is centralized into a common dataset, on 

the top of which different machine learning models are built and trained, actions that 

usually are performed in a cloud platform.  

In the distributed learning approach, there are several nodes, and each node builds 

its own machine learning model which is trained with the data captured by the nodes 

(locally). In this approach, a pre-built model can be trained in the cloud platform with 

a common dataset, after which this model can be deployed to the different edge 

nodes where this model can be retrained with local data.  

Finally, in the federated learning approach, the nodes learn collaboratively from a 

shared model while keeping their own training data locally. The shared model is first 

trained in a centralized way using a large-scale centralized dataset and then, the 

distributed nodes download the model and improve it by using their own local data. 

Eventually, nodes send models related data (such as performance indicators, 

weights, parameters, etc.) to the centralized node where are combined with the 

shared model, to improve the overall performance of the models. Then, this shared 

model is sent back to the distributed nodes where it could be fine-tuned again with 

local data. This way, federated learning ensures to keep the generalization 

capabilities of models built over a large-scale dataset, while keeping the privacy of 

sensitive (and critical) data and a low latency for real-time predictions or stream data 

processing. 

In Figure 1, these three approaches are shown.  
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Figure 1. Learning Approaches in FRACTAL: (left) Centralized Learning; (centre) Decentralized Learning; 
(right) Federated Learning 

The FRACTAL System, which provides the necessary infrastructure needed for this 

three machine learning approaches, is an Edge-oriented platform which eventually 

would require Cloud support for heavy resource-demanding tasks like video-

processing, heavy ML model training or large data storage (historical data, for 

example). 

This deliverable reports on the technical definition of the FRACTAL Cloud Platform 

and its modules or building blocks, developed in task T5.2 “FRACTAL AI Platform”, 

while in the deliverable D6.1 “FRACTAL processing node design and implementation”, 

the architecture of the Fractal Edge Node and its building blocks are described. 

This deliverable complements the deliverable D5.2 named “Intermediate platform for 

Federated AI”, which focuses on the logical and functional descriptions of FRACTAL 

Cloud Platform modules, providing a detailed technical description of the 

implementation of these modules or building blocks, and giving guidelines for their 

use for providing support to the FRACTAL Edge Nodes. 

This document is organized as follows. In Section 4, an overview of the FRACTAL AI 

cloud platform, its modules, and its relationship with other elements of the FRACTAL 

System, such as the FRACTAL Edge Nodes, is provided. Also, a summary of the 

platform modules and their functionality is presented (for more detailed information, 

see deliverable D5.2 “Intermediate platform for Federated AI”). 

From this point on, in Section 5, a detailed technical description of the platform 

modules or building blocks is provided, with emphasis on their implementation.  
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Section 6 presents instructions and guidelines for the use of the modules 

implemented in the cloud platform, in order to configure, customize and prepare 

them to give the required support to FRACTAL nodes.  

Finally, some conclusions close the deliverable, summing up the main achievements. 
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4. Cloud platform overview 

In FRACTAL System, the edge nodes will be in charge of performing the critical 

computations in a timely and power-efficient manner, while the cloud infrastructure 

will be available to support the edge in any operation for which the edge is limited or 

not performant enough. Thus, the main identified tasks for the cloud will be the most 

demanding workloads like data storage, big data processing and model training. 

In this manner, depending on the use case, the cloud components that will be used 

will vary according to the workload demanded by the use case or the edge 

capabilities. 

Figure 2 shows the FRACTAL Edge Node architecture and its relationship with the 

Cloud Platform.  
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Figure 2: Relationship between the cloud platform and the edge nodes. 

In the lower part of the edge node, the hardware architecture is shown, as well as 

the basic software elements (operating system, drivers, etc.). This architecture is a 

generic architecture that will have different implementations, depending on the 

hardware platform used in the node. Above the hardware and basic software layer 

(operating system, drivers, etc.), the FRACTAL Edge software layer is shown, which 
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will offer the different services necessary to perform the tasks to be carried out in it 

(data ingestion, data processing, inference, training/re-training of these models, 

etc.). The services offered by the edge node will depend on the hardware platform, 

so that certain services will not be available when using low-resource hardware 

platforms. 

In cases where the node does not have enough resources to be able to perform the 

necessary tasks, the cloud platform described in this deliverable, which is represented 

in the upper part of Figure 2, could be used as a support. This cloud platform will 

communicate with the edge node using different protocols for the exchange of 

captured data, processed datasets and machine learning models. 

4.1 Cloud platform modules  

The FRACTAL Cloud Platform is composed of different services that are deployed over 

the infrastructure of a public cloud services provider. These services offer different 

functionalities related to the management of the data and machine learning 

workflows in the FRACTAL Project. In the following subsections, the main modules of 

the FRACTAL Cloud Platform, shown also in Figure 3, are overviewed. 

  
 

Figure 3: FRACTAL Cloud Platform modules. 
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4.1.1 Data ingestion 

This component provides the required functionality to ingest the data from sensors 

and data capture systems as soon as they are captured (i.e., in real time). This is 

one of the two approaches in which the cloud platform ingests data, streaming data 

ingestion. The other approach, bulk data ingestion, may involve the use of the Raw 

Data Storage module or the Processed Dataset Repository depending on whether the 

data uploaded are raw data or processed datasets. 

4.1.2 Raw data storage 

This component allows to store the raw data received in the FRACTAL Cloud Platform, 

through the services related to the data ingestion component, in the streaming data 

ingestion approach, or directly uploaded to the platform, in the batch data ingestion 

approach.  

4.1.3 Data transformation 

The data stored in the Raw Data Storage module, are retrieved by this module, which 

applies different data pre-processing techniques in order to transform them into 

datasets that are cleaned, prepared and optimized to be exploited, by using advanced 

data analytics techniques, such as machine learning algorithms. New transformations 

can also be performed on previously processed data. 

4.1.4 Repositories 

Different kinds of repositories are included into this component in order to allow the 

storage of some of the assets that will be used in the FRACTAL Cloud Platform. 

4.1.4.1 Datasets repository 

This module allows to store and manage the processed data sets that will be used to 

train different machine learning models. These data can be, either the result of a 

data transformation, or processed data uploaded directly to the cloud platform (batch 

processed data ingestion). The repository also provides enhanced functionalities 

related to datasets version control. 

4.1.4.2 Models repository 

This repository allows to store and manage the different ML models used in the 

project. The repository allows the storage not only of the code which allows to build 

up and deploy the models, but also of the parametrizations and configurations of 

models that have already been trained (freezed and pre-trained models). The 

repository also provides capabilities to be integrated with the different components 

in charge of machine learning workflow management. 
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4.1.4.3 Container registry 

This repository allows to store and deploy different services provided as containerized 

images. The images to be stored in this repository can serve for a variety of purposes 

such as containerized services involved in different components that compose the 

FRACTAL Cloud Platform, images with built-in machine learning models that are ready 

to be deployed on the edge, or containerized processes to process and manage data. 

4.1.5 Machine learning workflows orchestration 

This component is in charge of the management and orchestration of the workflows 

related to the machine learning models in the FRACTAL Project. Among the different 

tasks to be orchestrated by this component, some of the most relevant ones are the 

following: 

1. The models training processes. 

2. The evaluation and optimization (parameters fine tuning) of the trained 

models. 

3. Serving the models in the cloud. 

4. The integration of the different services of the platform with the model’s 

storage systems. 

4.1.6 Workflow management 

This component is in charge of the management and orchestration of the different 

data workflows through the FRACTAL Cloud Platform. Among the different tasks to 

be orchestrated by this component, some of the most relevant ones are the following: 

1. The storage of the ingested data into the platform. 

2. The transformation of raw data into pre-processed datasets and their storage. 

3. The integration of the different services of the platform with the data storage 

systems. 

4. The scheduling of data-related workflows. 

 

Additionally, this component will also be in charge of the orchestration of the different 

tasks that allow to prepare the models for being deployed on the edge.  

4.1.7 Models preparation for FRACTAL Edge 

In this module the preparation required to map ML models to the node computation 

resources is performed. Given the different capabilities of nodes, this preparation 

may involve only parameter encoding for model update after the re-training of an 

already mapped model. Still, it may also need to provide for the (re-)generation of 

the actual model executable for a given target. 
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4.2 Platform infrastructure 

The FRACTAL Cloud Platform is deployed over the infrastructure of a public cloud 

services provider, which offers different services that usually can be grouped in three 

categories: Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and 

Software as a Service (SaaS). In the following subsections, details about this cloud 

services provider and the offered services on the top of which the FRACTAL Cloud 

Platform will be deployed, will be provided. 

4.2.1 Public cloud services provider 

There exist different providers offering cloud computing services that can be publicly 

consumed in an on-demand fashion. Among these providers, some of the most 

popular ones, that share the highest market quotas1 are Amazon Web Services2, 

Microsoft Azure3 and Google Cloud Platform4. However, there exist also other 

providers such as Alibaba Cloud5, IBM Cloud6 or OVH7.  

In FRACTAL Project, OVH has been selected as cloud services provider, for developing 

the FRACTAL Cloud Platform. This selection has been motivated by two main reasons: 

on the one hand, considering the research and innovation nature of this project that 

has been funded by the European Commission, it seems reasonable to select an 

European cloud services provider. On the other hand, OVH is built upon OpenStack8, 

an open-source cloud computing platform, which favors the possibilities of migrating 

the platform and getting rid of vendor-locking.  

4.2.1.1 OVH Public Cloud 

With 30 datacenters distributed around the world and more than 1.6 million clients 

since 1999, OVH is the one of the largest cloud services providers in the world and 

largest one in Europe. As part of its public cloud solution, OVH offers its customers 

different resources available through the Internet. These resources are consumed in 

an on-demand fashion (resources are allocated and released as required) and in a 

’pay as you go’ business model, on which customers only pay for the resources they 

use. The services are offered with a high abstraction level from the subjacent 

infrastructure (i.e., when customers run a service, they are not aware of the 

infrastructure resources on which it runs). In the following subsection, the different 

services offered by OVH from each category will be reviewed. 

 
1 https://www.statista.com/chart/18819/worldwide-market-share-of-leading-cloud-infrastructure-
service-providers/  
2 https://aws.amazon.com/  
3 https://azure.microsoft.com/  
4 https://cloud.google.com/     
5 https://eu.alibabacloud.com/  
6 https://www.ibm.com/  
7 https://www.ovhcloud.com/  
8 https://www.ovhcloud.com/es-es/public-cloud/why-ovh-public-cloud/ and https://www.openstack.org/  

https://www.statista.com/chart/18819/worldwide-market-share-of-leading-cloud-infrastructure-service-providers/
https://www.statista.com/chart/18819/worldwide-market-share-of-leading-cloud-infrastructure-service-providers/
https://aws.amazon.com/
https://azure.microsoft.com/
https://cloud.google.com/
https://eu.alibabacloud.com/
https://www.ibm.com/
https://www.ovhcloud.com/
https://www.ovhcloud.com/es-es/public-cloud/why-ovh-public-cloud/
https://www.openstack.org/
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4.2.2 Public cloud services 

The services offered by OVH can be grouped in three main categories: Infrastructure 

as a Service (IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS). 

The FRACTAL Cloud Platform will be leveraged by different services from these 

categories. In the following sections, the most relevant services and resources from 

each category will be presented. However, it is worth mentioning that these are not 

the unique resources involved in this platform. There are other services and resources 

(e.g., firewalls, public IPs, DNSs, private networks, etc.) that, although they will also 

be used, will not be presented since they are more related to the subjacent 

infrastructure resources, rather than to the FRACTAL platform.  

4.2.2.1 Infrastructure Services (IaaS) 

IaaS refers to on-demand provisioning of infrastructural resources, such as storage 

space, computing power, networks, and other fundamental computing resources. 

Among the different IaaS resources offered by OVH, some of the most relevant ones 

in the FRACTAL Cloud Platform are the following: 

4.2.2.1.1 Compute Instances 

Different compute instances will be used in different pools of nodes that 

conform a cluster on which the different services and applications of the 

FRACTAL Cloud Platform will run. 

4.2.2.1.2 Block Storage 

Block Storage resources allow to create storage volumes that can be 

associated with the compute instances or specific services of the platform. 

4.2.2.1.3 Object Storage 

The OVH Object Storage service manages data as objects and allows to 

expand the storage capabilities without having to add more hardware. This 

service is API compliant9 with AWS Simple Storage Service (S3) API10 which 

is an interesting property to be integrated with other services. 

4.2.2.1.4 Load Balancer 

OVH Load Balancer11 service distributes the load between its different 

services, guaranteeing the scaling of the infrastructure in the face of increased 

traffic and ensuring fault tolerance and optimization of response times. In 

FRACTAL a Load Balancer will be used to provide public access to the different 

services running on the platform. 

 
9 https://blog.ovhcloud.com/ovhcloud-object-storage-clusters-support-s3-api/  
10 https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html  
11 https://www.ovh.es/soluciones/load-balancer/  

https://blog.ovhcloud.com/ovhcloud-object-storage-clusters-support-s3-api/
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://www.ovh.es/soluciones/load-balancer/
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4.2.2.2 Platform Services (PaaS) 

PaaS refers to providing platform layer resources, including operating system support 

and software development frameworks. In the following subsections, the most 

relevant PaaS resources offered by OVH, that will be used in the FRACTAL Cloud 

Platform, are presented. 

4.2.2.2.1 OVH Managed Kubernetes 

OVH Managed Kubernetes allows to start a Kubernetes12 cluster to orchestrate 

different containerized applications in the OVH cloud in a straightforward manner. 

Kubernetes is an open-source container-orchestration system for automating 

computer application deployment, scaling, and management. FRACTAL will use a 

Kubernetes cluster to deploy, manage and execute the different services 

developed alongside the different partners of the FRACTAL Project. 

These services will be stored in the form of containerized docker images. These 

images, along with the Helm charts specifying their deployment and configuration 

will be stored and managed by the Harbor container registry. During the 

deployment, Kubernetes will access the registry to get the docker images and 

Helm charts to configure and deploy the containerized services in different pods 

of the Kubernetes cluster (see Figure 4 and Figure 58). 

 

 
12 https://kubernetes.io/ 

https://kubernetes.io/
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Figure 4: OVH Managed Kubernetes Service. 

4.2.2.3 Software Services (SaaS) 

Software as a Service (SaaS): SaaS refers to providing on demand applications over 

the Internet. SaaS providers offer fully developed, purpose-specific solutions to end 

users. The most relevant SaaS resources offered by OVH, that will be used in the 

FRACTAL Cloud Platform, are the following: 

4.2.2.3.1 OVH Managed Container Registry 

The OVH Managed Private Registry presented in Section 5.7. 

4.2.2.3.2 Horizon Interface 

The Horizon interface is the graphical management interface offered by OVH 

to manage OpenStack's resources. In FRACTAL, this interface will be used 

since some management functionalities are only available from this interface 

and not through OVH portal. 

4.2.2.3.3 OVH API 

The OVH API is a Web service allowing OVH customers to buy, manage, 

upgrade and configure OVH products without using the graphical customer 
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interface (OVH manager). In FRACTAL, this API will be used since some 

management functionalities are only available from it and not through OVH 

portal. 
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5. Cloud platform modules implementation 

This section presents the implementation details of cloud platform modules and the 

tools deployed in each one, starting with the guidelines proposed to develop and 

deploy the cloud platform modules. 

5.1 Module development and deployment guidelines 

During the development of the cloud platform, IKERLAN manages the Kubernetes 

service deployed over OVH on which the different services that compose the FRACTAL 

Cloud Platform will be deployed, so all components developed have to be deployed 

by IKERLAN. The steps proposed to develop and deploy components for the cloud 

platform are the following: 

• The partners that develop different components should develop these 

components locally using an existing Kubernetes cluster or creating a new 

local Kubernetes cluster (using microk8s13 for example). 

• Once the component is developed, deployed and tested locally, each partner 

will have to provide the corresponding configuration files (YAML or Helm 

charts14) and any additional instructions to deploy each service to IKERLAN. 

Examples of this configuration files are included on components description.  

• IKERLAN will use those files to deploy the components on the FRACTAL Cloud 

Platform. 

Any new component that needs to be developed should follow this procedure. 

5.2 Data ingestion 

5.2.1 Kafka platform with Strimzi 

Data ingestion is the first step in any data processing. In FRACTAL Cloud Platform, 

data will typically be sent from IoT devices to Kafka brokers on the cloud. IoT devices 

will communicate with Kafka15 using MQTT16 (an open source publish/subscribe 

messaging protocol) and Kafka Connect (a connector which can establish connection 

between MQTT broker and Kafka). This requires an additional MQTT broker to be set 

up in Kubernetes (see Figure 5). 

 
13 https://microk8s.io/  
14 https://helm.sh/  
15 https://kafka.apache.org/  
16 https://mqtt.org/  

https://microk8s.io/
https://helm.sh/
https://kafka.apache.org/
https://mqtt.org/
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Figure 5: Data flow using MQTT broker with Connect 

Another possible way to communicate from IoT devices is using MQTT broker which 

can stream data via Kafka Connect to the Kafka broker. MQTT broker is a go-to way 

for connecting devices across unreliable high latency and low network bandwidth 

environments in a stable way where only one way communication from IoT devices 

to Kafka is needed. This is a very common approach in the automotive industry, see 

Figure 26 with schematic of MQTT broker interfacing with Connect 

 

Figure 6: Schematic showing Kafka Connect bridging MQTT broker and Kafka broker 

The IoT devices can either communicate with Kafka using the traditional approach of 

communication with the MQTT broker on kubernetes or using the Kafka-MQTT proxy 

as shown in Figure 7 

 

Figure 7: Communication from Edge to deployed Kafka service 

Based on the above-mentioned architecture, Kafka cluster is deployed on Kubernetes 

using Strimzi operator, and Kafka Connect is added for connecting MQTT protocol 
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devices. Zookeeper17, an open-source Apache project that provides a centralized 

service for providing configuration information, naming, synchronization and group 

services over large clusters in distributed systems, is deployed to manage Kafka 

cluster.  

5.2.1.1 Strimzi Operator 

Strimzi18 provides a way to run an Apache Kafka cluster on Kubernetes in various 

deployment configurations. Then Kafka can be exposed outside Kubernetes using 

NodePort, Load balancer, Ingress and OpenShift Routes, depending on the needs, 

and these are easily secured using TLS. 

The Kube-native management of Kafka is not limited to the broker. Kafka Topics can 

be managed by users, Kafka MirrorMaker and Kafka Connect using Custom 

Resources. 

 

Figure 8: Strimzi Operator and Kafka Architecture in K8s 

The IoT devices can either communicate with Kafka using the traditional approach of 

communication with the MQTT broker on Kubernetes or using the Kafka-MQTT proxy. 

5.2.1.2 Pre-requisites Installation 

Before installing Strimzi platform on Kubernetes, there are necessary tools that must 

be installed on the user’s laptop. The following are the pre-requisites:  

1. `kubectl` can be downloaded from Kubernetes-Tools 

(https://kubernetes.io/docs/tasks/tools/)  

2. Install `helm` by using the instructions in the following link 

(https://helm.sh/docs/intro/install/) 

 
17 https://zookeeper.apache.org/  
18 https://strimzi.io/  

https://kubernetes.io/docs/tasks/tools/
https://helm.sh/docs/intro/install/
https://zookeeper.apache.org/
https://strimzi.io/
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3. Install Kafka-python library with `pip install kafka-python` for accessing 

kafka using python. 

5.2.1.3 Strimzi Operator installation 

Firstly, a namespace should be created for Kafka in Kubernetes and then Strimzi 

operator file should be installed in the same namespace: 

kubectl create namespace kafka 

The following steps are needed to install the components: 

1. Obtain the `kubeconfig` file from the FRACTAL OVH cloud’s Manage 

Kubernetes page as shown in Figure 9 

 

Figure 9: Obtaining the kubeconfig file 

2. Use `kubeconfig` to set the config for kubectl present in the 

`$HOME/.kube/config` 

3. Verify the access to Kubernetes control plane using the command `kubectl 

cluster-info` in the terminal window 

4. Then create the namespace `kafka-stimzi` to use it for deploying all the 

components and set it to default for the Kubernetes context using the 

commands 

kubectl --kubeconfig your-kubeconfig create namespace kafka-strimzi 
kubectl --kubeconfig your-kubeconfig config set-context --current --namespace 
kafka-strimzi 

5. Add Strimzi for Kubernetes operator 
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kubectl create -f https://strimzi.io/install/latest?namespace=kafka -n kafka 

6. Install Strimzi Kafka Platform on the Kubernetes cloud using the YAML file 

from the repo https://github.com/harisyammnv/kafka-stream-ovh-fractal 

kubectl apply -f kafka.yaml -n kafka 

With the completion of the above steps the confluent platform with all the 

components needed will be deployed. The status of the components can be checked 

using the following command 

kubectl get pods -n <namespace> 

 

Figure 10: Pods in the K8s cluster 

Once the external load balancers are created, the DNS entries for Kafka brokers and 

the Kafka bootstrap service will be added to the DNS table which will expose all the 

deployed services to the external partners.  

Name of the Service Description URL 

Kafka Bootstrap Server For communicating with Kafka 

brokers 

http://kafka-bs.fractal-kafka.ovh/ 

Schema Registry For sending validation 

schemas 

http://schemaregistry.fractal-

kafka.ovh/ 

KSQL DB For SQL Like abstraction on 

streaming data 

http://ksqldb.fractal-kafka.ovh/ 

Kafka Connect For enabling connection from 

data sinks and sources to 

Kafka 

http://connect.fractal-kafka.ovh/ 

Kafka REST Proxy To access Kafka using REST 

methods 

http://restproxy.fractal-

kafka.ovh/ 

Table 1: Kafka platform access URLs 

 

https://github.com/harisyammnv/kafka-stream-ovh-fractal
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5.3 Raw data storage 

OVH Cloud Object Storage (OVH S3) service is the first persistent place where raw 

data will be stored in the FRACTAL Cloud Platform. In object storage, data is stored 

as standalone devices called “objects”. Each of these objects consists of the data, a 

unique identifier and the associated metadata. A typical use case for object storage 

is for catalogues of documents handled by applications, which provide static content 

including images, text files, tables, audio or video. OVH Object storage allows 

massive parallel read and write throughput of unstructured data objects.  OVH offers 

RESTful S3 API to interact with its Object Storage, where the S3 API allows for 

accessing the objects programmatically and makes it easy to automate persistence 

or deletion of data objects from various applications. The OVH Object Storage service 

API is compliant with Amazon Web Services (AWS) Simple storage S3 API which 

enables the developers to use the CLI tools from Amazon namely ̀ awscli` and using 

python libraries like `boto3` in data processing scripts. 

For accessing OVH Object storage a user account has to be setup with appropriate 

permissions. This can be done using the OVH Cloud’s Public Cloud panel, add user 

and assign ‘ObjectStore operator’ role. 
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Figure 11: User Access and Roles Dashboard 

Download the Openstack RC file which is needed to setup the credentials for the 

user in the device from where the data is to be transferred 

 

Figure 12: OpenStack RC file for accessing Horizon 
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5.3.1.1 Setting Openstack client 

To access Object storage in FRACTAL cloud using python, the openstack client’s 

python library must be installed. Install Openstack client using 

pip install python-openstackclient 

The following setup the OpenStack environment variables using the file downloaded 

openrc file from the above step 

 

Figure 13: Installing python openstack client and setup 

Then, setup a password of the user’s choice to setup the environment variables. To 

access OVH S3 an access key and a secret key are required which can be created 

using the openstack API with the following command 

openstack ec2 credentials create 

After these steps, an output console shows the following credentials: 

 

Figure 14: Creating local credentials for object storage access 

Use the credentials shown in the console in AWS config file. First the AWS cli and cli-

plugin endpoint have to be installed using 

pip install awscli awscli-plugin-endpoint 

Then, setup the AWS credentials using the following and copy the access and secret 

key from above 
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Figure 15: Editing credentials in awscli credentials file 

After this, setup the AWS config using the following: 

 

Figure 16: Editing AWS config file to access OVH object storage 

These steps will setup the access to OVH Object storage from a client. The access to 

OVH S3 can be verified using the following command 

aws --profile default s3 ls 

 

Figure 17: listing object storage containers in OVH cloud 

5.3.1.2 Creating buckets on OVH Object Storage 

To create a bucket in OVH Object Storage, Access the OVH cloud console and go to 

the Public Cloud page, to use the “Create Object Storage Container” as shown in 

Figure 18 
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Figure 18: Object storage container dashboard in OVH cloud 

Then access the Object Storage from the left pane to create an object container 

 

Figure 19: Creating Object container in the cloud 

An object container is created by following the steps shown in Figure 20 
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Figure 20: Steps to create an object container 

This creates the object container as shown in Figure 21: 
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Figure 21: Final status after object container creation 

5.4 Data preprocessing and feature extraction 

Data preprocessing is one component of data preparation, where raw data is 

processed by correcting, manipulating, dropping or re-arranging the data before it is 

being used in the data mining process. This step is preformed to ensure and enhance 

performance of various machine learning algorithms which consume this data for 

training. 

Feature extraction is the process of transforming pre-processed data into numerical 

features that can be processed while preserving the information in the original raw 

data. Feature extraction can be performed either by manual definitions or through 

algorithms which can do automatic feature extractions. 

In OVH cloud the data pre-processing and feature extraction can be done by using 

the “Data Processing” service. This service uses Apache Spark19, processing engine 

to process large amounts of data parallelly. To use Apache Spark, there is an 

opensource library in python called PySpark20 which offers interface to interact with 

Spark 

5.4.1.1 Managed data processing - Spark Service 

To perform data pre-processing a python spark job has to be programmed and 

uploaded to OVH cloud Object Storage. To setup the job in the Data processing 

Manager, certain requirements have to be met. 

 
19 https://spark.apache.org/  
20 https://spark.apache.org/docs/latest/api/python/  

https://spark.apache.org/
https://spark.apache.org/docs/latest/api/python/
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Requirements: 

• Access to OVH cloud account with a project 

• An Openstack user in the cloud project and access to Openstack Horizon 

Dashboard (can be created as shown here) 

• Application code as python files 

• An environment.yml in Conda standard 

To create a simple spark job a starter script has been prepared which can be accessed 

in this link https://github.com/harisyammnv/data-transformation-spark-sample. The 

script has to be uploaded in an object storage as shown in Figure 22:  

 

Figure 22: Object Container creation 

First create a container as shown above in the figure. Once the container is created 

upload the python scripts and the environment YAML file to the container as shown 

in Figure 23: 

https://docs.ovh.com/au/en/public-cloud/creation-and-deletion-of-openstack-user/
https://github.com/harisyammnv/data-transformation-spark-sample
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Figure 23: Uploading objects to the container 

To create the spark job, proceed to the Data processing tab in the OVH cloud Manager 

and then create the job with Spark version and region selected to the same one 

where the object container resides. These steps can be seen in Figure 24: 
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Figure 24: Setting up a Data processing job 

For configuring the job, the environment.yml file has to be present which can be 

created as shown at this link https://docs.conda.io/projects/conda/en/latest/user-

guide/tasks/manage-environments.html#sharing-an-environment  

https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#sharing-an-environment
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#sharing-an-environment
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Figure 25: Selecting the container and python script in the data processing job 

Then submit the job; the job logs and monitoring can be accessed from the job 

submission page. A Grafana dashboard can be used to monitor the progress of the 

job when it is running. The logs from the spark runtime are available in the logs tab 

 

Figure 26: Job processing dashboard with logs and monitoring 
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5.5 Dataset repository and feature store 

5.5.1 lakeFS 

In the FRACTAL Cloud Platform multiple datasets of a variety of use cases will be 

stored. To provide this feature to the FRACTAL Cloud Platform, lakeFS will be 

deployed over the OVH Managed Kubernetes Service following the official 

documentation21 (using the official Helm chart22 stored on the Harbor Helm Charts 

Museum).  

lakeFS23 is an open-source platform that delivers resilience and manageability to 

existing object-based storage data lake. It enables building repeatable, atomic and 

versioned data lake operations from complex ETL jobs to data science and analytics. 

The main advantage of lakeFS is that it provides a Git-like branching and committing 

model that scales to exabytes of data. This branching model makes data lakes ACID 

compliant by allowing changes to happen in isolated branches that can be created, 

merged, and rolled back atomically and instantly. Since lakeFS is compatible with the 

S3 API, all popular applications will work without modification. 

As mentioned before, lakeFS is designed to be built on top of a conventional object 

storage service. As OVH offers an object storage service, it would be reasonable to 

use this service to build lakeFS on top of it. As lakeFS affirms that is compatible with 

any S3 compliant object storage service, an initial setup using the OVH object storage 

service was built. However, an error has been encountered during the installation of 

the lakeFS service when trying to build it on top of the OVH object storage service. 

After analyzing the error, an incompatibility has been found on the OVH object 

storage side, thus, an issue has been opened on GitHub 

(https://github.com/treeverse/lakeFS/issues/2471) 

The issue has been fixed few days before writing this deliverable so although the 

error is currently fixed, the OVH object storage service was discarded because the 

issue was not fixed when the FRACTAL Cloud Platform was under development. 

Due to this issue with OVH object storage, an alternative object storage solution was 

used. For further details on the selected object storage service, see Section 5.5.2. 

5.5.1.1 Installation & Configuration 

lakeFS can be installed on Kubernetes by using the official lakeFS Helm Chart. Some 

parameters will be customized by applying the lakefs.yml file when installing lakeFS 

using the chart. 

 
21 https://docs.lakefs.io/quickstart/more_quickstart_options.html#on-kubernetes-with-helm 
22 https://artifacthub.io/packages/helm/lakefs/lakefs 
23 https://lakefs.io/  

https://github.com/treeverse/lakeFS/issues/2471
https://docs.lakefs.io/quickstart/more_quickstart_options.html#on-kubernetes-with-helm
https://artifacthub.io/packages/helm/lakefs/lakefs
https://lakefs.io/
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helm repo add lakefs https://charts.lakefs.io 

helm install -f lakefs.yml lakefs lakefs/lakefs --namespace fractal 

Once lakeFS has been deployed it can be checked by using the following command: 

kubectl get all -n fractal 

 

Figure 27. lakeFS Service and Deployment 

5.5.1.2 Accessing lakeFS 

lakeFS can be exposed by using Ingress (or a Load Balancer) by applying the ingress-

lakefs.yml YAML file: 

apiVersion: networking.k8s.io/v1 

kind: Ingress 

metadata: 

  name: lakefs-endpoints 

https://charts.lakefs.io/


 

Project FRACTAL 

Title Platform and building blocks for Federated AI   

Del. Code D5.4   

 

 

  

  

 Copyright © FRACTAL Project Consortium 39 of 110 

 

  namespace: fractal 

  annotations: 

    kubernetes.io/ingress.class: "nginx" 

    nginx.ingress.kubernetes.io/proxy-body-size: "0" 

    nginx.ingress.kubernetes.io/rewrite-target: /$1 

spec: 

  ingressClassName: nginx 

  rules: 

  - host: fractal.ik-europe.eu 

    http: 

      paths: 

      - path: /?(.*) 

        pathType: Prefix 

        backend: 

          service: 

            name: lakefs 

            port: 

              number: 5434 

 

kubectl apply -f ./LakeFs/ingress-lakefs.yml 

This will expose the dashboard at http://fractal.ik-europe.eu/. 

When accessing lakeFS for the first time, an admin user must be configured. After 

creating the admin user, the created credentials must be downloaded to access the 

lakeFS Portal.  

5.5.2 MinIO 

MinIO24 offers high-performance, S3 compatible object storage. Native to 

Kubernetes, MinIO is available on every public cloud, every Kubernetes distribution, 

the private cloud and the edge. MinIO is software-defined and is 100% open source 

under GNU AGPL v3. 

MinIO has been chosen as the object storage provider because it suits all the 

requirements and does not have any incompatibility issue with lakeFS. To provide a 

lakeFS compatible object storage to the FRACTAL Cloud Platform, MinIO will be 

 
24 https://min.io/  

http://fractal.ik-europe.eu/
https://min.io/
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deployed over the OVH Managed Kubernetes Service following the official 

documentation (using the official Helm chart25 stored on the Harbor Helm Charts 

Museum). 

5.5.2.1  Installation & Configuration 

MinIO can be installed on Kubernetes by using the Bitnami Object Storage Helm Chart 

based on MinIO. Some parameters will be customized by applying the minio.yml file 

when installing MinIO using the chart. 

helm repo add bitnami https://charts.bitnami.com/bitnamihelm install -f 
./Minio/minio.yml minio bitnami/minio --namespace fractal  

Once MinIO has been deployed, the status can be checked by using the following 

command:  

kubectl get all -n fractal  

 
25 https://artifacthub.io/packages/helm/bitnami/minio 

https://charts.bitnami.com/bitnamihelm
https://artifacthub.io/packages/helm/bitnami/minio
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Figure 28: MinIO Service and Deployment 

5.5.2.2 Accessing MinIO 

The Helm chart used to deploy MinIO allows to configure it to be exposed with an 

Ingress service. For that, in the MinIO configuration files used for the deployment 

(minio.yml) the hostname on which MinIO will be exposed must be set.  

When accessing MinIO portal, it will ask for credentials. Access credentials can be 

obtained from the deployment of MinIO by using the following commands: 

export SECRET_KEY=$(kubectl get secret --namespace default minio -o 
jsonpath="{.data.secret-key}" | base64 --decode) 

export ACCESS_KEY=$(kubectl get secret --namespace default minio -o 
jsonpath="{.data.access-key}" | base64 --decode) 

  

Those credentials will grant access to the MinIO Console. 
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Figure 29: MinIO Console 

5.5.3 Feast 

Feast26 (whose name is derived from Feature store) is an open-source data system 

for managing and storing the input features for models in production. It can serve 

the features to a model from both an offline (typically used in training) or an online 

store (typically used for real-time prediction). In the workflow, new features will be 

continuously materialized to update and refresh the online store after being added to 

the offline store.  

A Feast feature store needs the following supporting infrastructure: a registry, in 

which metadata will be stored, an offline store to store features and an online store 

to serve the latest features with low latency. This infrastructure and the features 

stored inside it are defined in a feature repository. The versioning capabilities of 

lakeFS can be leveraged to keep track of any changes made to it. 

The registry can be stored in an S3 bucket using MinIO. 

 
26 https://feast.dev/  

https://feast.dev/


 

Project FRACTAL 

Title Platform and building blocks for Federated AI   

Del. Code D5.4   

 

 

  

  

 Copyright © FRACTAL Project Consortium 43 of 110 

 

The online store will be deployed as a Redis database. Multiple stores can use the 

same Redis instance. 

The offline store can be a data warehouse such as BigQuery27 or Redshift28. Due to 

the deployment on OVH Cloud, the “File” offline store will have to be used. This means 

that when fetching features from the offline store, they will be read from the defined 

data sources (parquet files) and joined using Python. If this does not scale well 

enough, Apache Hive29 could be integrated to Spark and MinIO in Kubernetes and be 

used as the offline store. 

5.5.3.1 Installation 

The configuration file (YAML) of Feast is the following: 

apiVersion: v1 

kind: Namespace 

metadata: 

  name: feast-fractal 

--- 

apiVersion: batch/v1 

kind: Job 

metadata: 

  name: feast 

  namespace: feast-fractal 

spec: 

  template: 

    spec: 

      containers: 

        - name: feast-image 

          image: img/feast:redis-s3-dependencies 

          ports: 

            - containerPort: 6566 

          command: ["bin/bash","-c","feast"] 

      restartPolicy: Never 

 

 
27 https://cloud.google.com/bigquery  
28 https://docs.aws.amazon.com/redshift/latest/mgmt/welcome.html  
29 https://hive.apache.org/  

https://cloud.google.com/bigquery
https://docs.aws.amazon.com/redshift/latest/mgmt/welcome.html
https://hive.apache.org/
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Feast has no long running process. It interacts with the various parts of the 

infrastructure mentioned above and with the development environment only when 

invoked through the CLI or Python SDK. Thus, there is no need to deploy a Feast 

service. However, components wishing to update or access the feature store need to 

access the SDK or CLI. Feast could be added to these components as a dependency. 

If this is not possible or practical, a “feast-job.yaml” file has been provided. This 

Kubernetes job can run CLI commands or Python scripts. Feast can be used in the 

FRACTAL Cloud Platform through this job. 

Feast can be installed easily via a pip command and be added to other components 

this way. To use Redis30 and access S3 storage, it needs two dependencies. 

pip install 'feast[redis,aws]’ 

Redis can be deployed on Kubernetes using a Helm Chart provided by bitnami. 

helm repo add bitnami https://charts.bitnami.com/bitnami 
helm install my-release bitnami/redis 

The feast-job.yaml “command” field can be modified to execute various actions using 

feast, or to run a python script. 

The Feast job can be run using the following command: 

kubectl apply –f feast-job.yaml 

To check the actions executed by the job:  

kubectl -n feast-fractal logs job/feast 

5.6 Model repository 

One of the FRACTAL Cloud Platform’s features is the AI model repository, where AI 

models are stored to make them available for the rest of the services. There are 

several options to choose from as a model repository, DVC31, MLflow32, and MLBuffet, 

however, some of them cover the FRACTAL Cloud Platform’s requirements better 

than others. MLBuffet is a lightweight distributed AI model server which is highly 

edge-oriented, and although it could be used for model storage in the cloud, it could 

result in a worse performance than other model repositories specifically developed 

for cloud instances. Lastly, DVC stands as a good option for model storing and version 

controlling. A complete installation procedure is given for DVC, MLBuffet and MLflow 

in the following subsections: 

 
30 https://redis.io/  
31 https://dvc.org/  
32 https://mlflow.org/  

https://charts.bitnami.com/bitnami
https://charts.bitnami.com/bitnami
https://redis.io/
https://dvc.org/
https://mlflow.org/
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5.6.1 DVC  

DVC is a framework created to manage the version control of big files, which includes 

AI models. 

DVC (Data Version Control) can be installed in several ways as a pip python package. 

Here are described two installation methods, the first one being the bare metal 

installation as a pip Python package, and the second one, as a containerized service, 

which will be the preferred method for the OVH Cloud. 

• Python package: This is the most common way to install DVC. This requires 

pip as the Python packages manager: 

$ pip install dvc 

• Local storage type: This is the default version of DVC. This mode only allows 

DVC to use local directories as repositories of the model versions. 

• Remote storage type: DVC has extensions for the most common external 

storage: AWS (S3), Google Drive (gdrive), Google Storage Cloud (gs), 

Microsoft Azure (azure), Aliyun OSS (oss), SSH connection (ssh), HDFS 

(hdfs), so, to make available the use of that extension, this must be added to 

the package installation. For instance, if the AWS extension is wanted to be 

installed, the following command should be written: pip install “dvc[s3]”. 

• Snap: DVC is available in the snap application repositories. To install it in 

Linux-based distributions: 

$ snap install dvc --classic   

• Official repository: DVC can be installed in apt-managed distributions by 

adding the official resources to the apt repository: 

$ sudo wget https://dvc.org/deb/dvc.list -O /etc/apt/sources.list.d/dvc.list 

$ wget -qO - https://dvc.org/deb/iterative.asc | sudo apt-key  add - 

$ sudo apt update 

$ sudo apt install dvc 

• Package: The last way to install DVC is downloading the binary package from 

the home page (https://dvc.org) or the release page on GitHub 

(https://github.com/iterative/dvc/releases/), and executing the file: 

$ sudo apt install ./dvc_<dvc-release-version>_amd64.deb 

When the installation ends, to start using the tool on the directory containing the files 

to be tracked by DVC (usually the root directory of a Git repository), DVC must be 

started: 

https://dvc.org/deb/dvc.list
https://dvc.org/deb/iterative.asc
https://dvc.org/
https://github.com/iterative/dvc/releases/
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$ dvc init -<flag> 

For the OVH Cloud instance, a containerized service to be deployed with Kubernetes 

has been developed. This service utilizes the DVC S3 storage plugin which is also 

compatible with the MinIO object storage deployed in the FRACTAL Cloud Platform. 

The container image must be built first, and the Dockerfile is as follows: 

# syntax=docker/dockerfile:1.2 

ARG PYTHON_VERSION=3.8.1 

FROM python:${PYTHON_VERSION} 

# shows secret from secret location: 

RUN mkdir /run/secrets 

RUN mkdir /run/secrets/dvc 

RUN mkdir /usr/flask_app 

RUN --
mount=type=secret,id=secretaccesskey,dst=/run/secrets/dvc/secretaccesskey.txt 
cat /run/secrets/dvc/secretaccesskey.txt 

RUN --mount=type=secret,id=accesskeyid,dst=/run/secrets/dvc/accesskeyid.txt 
cat /run/secrets/dvc/accesskeyid.txt 

RUN --mount=type=secret,id=login,dst=/run/secrets/dvc/login.txt cat 
/run/secrets/dvc/login.txt 

RUN --mount=type=secret,id=password,dst=/run/secrets/dvc/password.txt cat 
/run/secrets/dvc/password.txt 

RUN pip install --upgrade pip 

RUN pip install "dvc[s3]" 

COPY main.py /usr/src/flask_app/main.py 

RUN pip install flask 

# If DVC will not be used inside a Git repository, add the flag --no-scm to 
'dvc init' command 

RUN dvc init --no-scm 

# https://techinplanet.com/installation-dvc-on-minio-storage/ 

# setup default remote (change "bucket-name" to your minio backet name) 

RUN dvc remote add -d minio s3://bucket-name -f 

# add information about storage url (where "https://minio.mysite.com" your 
url) 

RUN dvc remote modify minio endpointurl https://minio.mysite.com 

#  add info about login and password 

RUN dvc remote modify minio access_key_id my_login 
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RUN dvc remote modify minio secret_access_key my_password 

ENTRYPOINT FLASK_APP=/usr/src/flask_app/main.py flask run --host=0.0.0.0 

With this Dockerfile, the secret passing capabilities into the container of the docker 

build command are used. This is a way to build images with secrets inside which are 

not stored in the layer history or leave any trace during building. For these secrets 

to be passed to the docker build utility, they must be given as a parameter and then 

will be read by the Dockerfile in the RUN instructions, each identified by a unique id. 

Docker build command: 

DOCKER_BUILDKIT=1 docker build --no-cache --secret 
id=secretaccesskey,src=secretaccesskey.txt --secret 
id=accesskeyid,src=accesskeyid.txt --secret id=login,src=login.txt --secret 
id=password,src=password.txt -t dvc . 

Finally, the container is deployed as a Flask API which executes DVC commands with 

the DVC installed in the Python base image. 

5.6.2 MLBuffet 

MLBuffet is a ML orchestration tool which includes model storage features. MLBuffet’s 

source code is available on GitHub (https://github.com/zylklab/mlbuffet) and can be 

downloaded locally with: 

$ git clone https://github.com/zylklab/mlbuffet.git 

MLBuffet is a containerized application, and a container orchestrator is required for 

its deployment. Docker Swarm33 and Kubernetes are supported as orchestrators and 

deployment scripts are available for each of these. 

Firstly, the container images must be built, and for this purpose, Dockerfiles for each 

of the microservices are provided to be built with Docker Engine. Also, for automated 

building of the images, a build.sh script is also provided that builds all the images 

simultaneously. 

$ source mlbuffet/deploy/swarm/build.sh 

Once the images are built, they must be deployed with a container orchestrator. For 

Docker Swarm deployments, a deploy script deploy.sh can be executed: 

$ source mlbuffet/deploy/swarm/deploy.sh 

Then, the script will prompt how many modelhost instances the user wants to deploy. 

After an integer has been given to the script via terminal, the swarm.yaml 

configuration file (also provided) will be deployed. This swarm.yaml deployment file 

 
33 https://docs.docker.com/engine/swarm/  

https://github.com/zylklab/mlbuffet
https://github.com/zylklab/mlbuffet.git
https://docs.docker.com/engine/swarm/
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can be changed in case the user has any requirements, for example, modifying the 

volumes to be used to target any other path in the local filesystem. 

For Kubernetes deployments, the deploy/kubernetes has all the configuration YAML 

files required to do an automated K8S (Kubernetes) deployment on a dedicated 

namespace. A deploy script is also provided, and will sequentially apply the 

configuration files in the mlbuffet/deploy/kubernetes/autodeploy directory: 

$ source mlbuffet/deploy/kubernetes/deploy.sh 

There is a single configuration file for each of the services, so take this into 

consideration while deploying, because the Image names must be changed to fit the 

image name in the local image repository. Since images are built from source and 

not publicly available on Docker repositories, they must be provided to the local 

Kubernetes cluster, for example, by uploading them to the FRACTAL Cloud Platform’s 

Harbor repository and then referencing them adequately in the YAML files. 

5.6.3 MLflow 

MLflow is an open-source platform to manage the ML lifecycle, including:  

- Experimentation and reproducibility: allow users to track experiments to 

record and compare parameters and results. 

- A central model registry: allow users to manage models with capabilities for 

versioning and annotating. 

- Deployment: allow users to host models as REST endpoints. 

There are two ways to access the model repository, either a UI or an API. The API 

allows users to integrate and run MLflow in other applications to store models.  

MLflow can be installed using pip: 

$ pip install mlflow 

Once it is installed, the user can run MLflow’s UI with the following instruction: 

$ mlflow ui 

The necessary files and instructions to deploy MLflow on Kubernetes for the FRACTAL 

Cloud Platform are available in this repository on GitHub (uploaded by UOULU): 

https://github.com/vahidmohsseni/k8s-mlflow.  

MLflow needs two storage spaces to function. 

The backend store is where MLflow Tracking Server stores experiment and runs 

metadata, as well as params, metrics, and tags for runs. MLflow supports two types 

of backend stores: file store and database-backed store. 

https://github.com/vahidmohsseni/k8s-mlflow
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The artifact store is a location suitable for large data (such as an S3 bucket or shared 

NFS file system) and is where clients log their artifact output (for example, models). 

Here are the different options for both stores:  

https://mlflow.org/docs/latest/tracking.html#backend-stores 

https://mlflow.org/docs/latest/tracking.html#artifact-stores  

Once those have been set up, their location must be referenced in the Dockerfile, or 

in the “mlflow-deployment” YAML file for the Kubernetes deployment. 

The full details of the deployment are as follows. 

General Instruction: 

$ git clone https://github.com/vahidmohsseni/k8s-mlflow 

$ cd k8s-mlflow 

To install only in docker: 

$ cd deploy/docker 

$ docker build -t mlflow . 

$ docker run -p 8001:8001 mlflow 

To deploy on Kubernetes: 

$ chmod +x build.sh 

$ ./build.sh 

5.7 Image repository 

The FRACTAL Cloud Platform is composed of multiple components that are deployed 

in the form of containerized services and microservices on a Kubernetes cluster. 

These services are developed in the form of container images that are stored on a 

common repository which Kubernetes can access to deploy the containerized 

services. Along with these images, different Helm Charts are used to deploy the 

required Kubernetes resources and specify their configuration. In FRACTAL, the OVH 

Managed Private Registry34 has been used for the storage of the container images 

and Helm Charts that will be used for deploying the components that make up the 

cloud platform. 

The OVH Managed Private Registry is a container registry for Docker images built 

upon Harbor: an open source, cloud native container registry and Helm chart 

 
34 https://docs.ovh.com/gb/en/private-registry/  

https://mlflow.org/docs/latest/tracking.html#backend-stores
https://mlflow.org/docs/latest/tracking.html#artifact-stores
https://github.com/vahidmohsseni/k8s-mlflow
https://docs.ovh.com/gb/en/private-registry/
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museum that allows to securely store, share, and manage Docker images and Helm 

charts (a set of manifests that allow to define the required Kubernetes resources and 

deployments along with their configuration). FRACTAL uses Harbor to store and 

manage the different Docker images and Helm charts that will be used to deploy the 

services of the FRACTAL Cloud Platform. In the following sections, details about 

Harbor and how to deploy the OVH Private Managed Registry are provided. 

5.7.1 Harbor 

Harbor35 is a cloud native registry with support for both container images and Helm 

charts. It serves as registry for cloud native environments like container runtimes 

and orchestration platforms. It also supports role-based access control where users 

access different repositories through projects and each user can have different 

permission for images or Helm charts under a project. Harbor also scans images 

regularly for vulnerabilities and has policy checks to prevent vulnerable images from 

being deployed. Moreover, Harbor enables a graphical user portal where users can 

easily browse and search repositories and manage projects. 

5.7.2 Deploying OVH Managed Private Registry  

The OVH private registry, has been deployed through the OVH Cloud Control Panel36 

following the official documentation37. On the OVH Control Panel, once the FRACTAL 

Project has been selected, in Containers and orchestration section Managed Private 

Registry must be selected (see 1 in Figure 30). Then, the desired location for the 

registry must be chosen (see 2 in Figure 30) as well as the desired name for the 

registry (see 3 in Figure 30) and the desired size and billing plan (see 4 in Figure 30). 

Lastly, the Create button must be clicked (see 5 in Figure 30) and the OVH Managed 

Private Registry is created (see the created registry in Figure 31). 

 
35 https://goharbor.io/  
36 https://www.ovh.com/manager/hub/#/  
37 https://docs.ovh.com/gb/en/private-registry/creating-a-private-registry/  

https://goharbor.io/
https://www.ovh.com/manager/hub/#/
https://docs.ovh.com/gb/en/private-registry/creating-a-private-registry/
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Figure 30: Deploying OVH Managed Private Registry through OVH Cloud Control Panel. 

5.7.3 Configuring OVH Managed Private Registry 

For using the OVH Managed Private Registry to store container images and Helm 

charts, first the access to Harbor must be configured, then a project must be created, 

and users must be added to the project as members. 

5.7.3.1 Accessing the OVH Managed Private Registry 

When accessing the OVH Managed Private Registry for the first time, the access 

credentials must be created. For that, after creating the OVH Managed Private 

registry, the Generate Identification Details (see Figure 31) option must be 
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selected38. After generating the access credentials, the registry can be accessed by 

clicking on Harbor user interface39 (see Figure 31). 

 

Figure 31: Created OVH Managed Private Registry 

5.7.3.2 Creating a Project in Harbor 

Before using the image repository and the Helm Chart Museum of the Harbor Private 

registry, first a project must be created. Following the official documentation40, a new 

project can be created with New Project option and fulfilling the required information 

in the form shown in Figure 32. In FRACTAL, the Access Level has not been set to 

public to restrict repository access only to FRACTAL partners. 

 

Figure 32: Creating a New Project in Harbor. 

Inside the created project, the different container repositories and related resources 

can be found (see FRACTAL registry in Figure 33). 

 
38 https://docs.ovh.com/gb/en/private-registry/creating-a-private-registry/  
39 https://docs.ovh.com/gb/en/private-registry/connecting-to-the-ui/  
40 https://docs.ovh.com/gb/en/private-registry/managing-users-and-projects/#creating-a-new-project  

https://docs.ovh.com/gb/en/private-registry/creating-a-private-registry/
https://docs.ovh.com/gb/en/private-registry/connecting-to-the-ui/
https://docs.ovh.com/gb/en/private-registry/managing-users-and-projects/#creating-a-new-project
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Figure 33: FRACTAL Harbor Private Registry. 

5.7.3.3 Adding Users in Harbor 

To add a user to Harbor, under Administration tab, Users option must be selected 

(Figure 33). A new window will be opened to enter the information of the user to be 

added (see Figure 34). Once the user has been created, different user management 

actions can be performed (grant administrator rights, delete user or reset password) 

from the Users control panel (see the official documentation for more details41). 

Lastly, in order to add a created user to a project, it must be added from Members 

tab in the Project Control panel (see Figure 33) by choosing the Add User option. 

Once a user has been added to a project, it would be able to pull and push Docker 

images and Helm Charts. 

 
41 https://docs.ovh.com/gb/en/private-registry/managing-users-and-projects/#creating-a-new-user-
and-giving-it-rights-on-the-private-project  

https://docs.ovh.com/gb/en/private-registry/managing-users-and-projects/#creating-a-new-user-and-giving-it-rights-on-the-private-project
https://docs.ovh.com/gb/en/private-registry/managing-users-and-projects/#creating-a-new-user-and-giving-it-rights-on-the-private-project
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Figure 34: Add a User to Harbor. 

5.7.3.4 Creating a Robot Account 

The previous section shows how to create an account for a user in Harbor and grant 

it access to a project. However, for accessing Harbor from some services, a Service 

Account (i.e., Robot Account) must be created. This kind of service accounts will be 

used to grant different services, such as Kubernetes, access the resources in the 

Harbor repository. For creating a service account, the Robot Accounts tab in the 

project control panel must be selected. A new window will be opened to enter the 

information of the service account to be added (see Figure 35). Once the service 

account has been created, the service account credentials (service account name and 

secret token) will be displayed, and an option to export them to a file will be shown. 

This credentials, will be the ones used by the different services, such as Kubernetes, 

to access the private Harbor registry. 
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Figure 35: Creating a Robot Account for Kubernetes 

5.8 ML orchestration 

Orchestration refers to the process of managing resources, and in the case of ML 

processes, every step of the ML models lifecycle can be orchestrated, from dataset 

treatment and versioning, to training, storage and inference. These processes are 

managed by high-level tools which don’t get actively involved in the processes 

themselves but are in charge of the execution and allocation of resources and tasks, 

which will then be executed by lower-level applications or libraries (ML training 

libraries, inference runtimes, or model deployment frameworks). There are several 

tools that can manage the orchestration of ML artifacts, and the installation steps of 

the ones selected for the FRACTAL Cloud Platform are described in following sections: 

5.8.1 MLBuffet 

MLBuffet is an open-source application that was developed during the FRACTAL 

Project from tasks in WP5. Initially, it was thought to be a model server to perform 

inference on ONNX models, but it evolved to become a multi-library training for 

models, model storage and inference framework. 

MLBuffet installation steps were already described in Section 5.6.2, and its 

implementation details can be found in the GitHub’s README 

(https://github.com/zylklab/mlbuffet/blob/master/README.md). 

During the FRACTAL Project, the MLBuffet tool has been evolving and adding new 

functionalities in terms of artifact orchestration, including model version control, 

model description, containerized training capabilities and prediction caching to 

achieve the best performance for distributed Edge deployments. Although these 

https://github.com/zylklab/mlbuffet/blob/master/README.md
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features may not be completely appropriate for a cloud environment, where 

computational resources are not restrained, MLBuffet can also be deployed on cloud 

for the developers to have a testing environment and make sure that their 

deployments will behave as expected once deployed at the edge. Its containerized 

nature ensures that the artifacts being orchestrated will behave the same on any 

hardware they are deployed on. 

5.8.2 MLflow 

MLflow is an open-source platform to manage the ML lifecycle. Installation steps for 

its setup can be found in Section 5.6.3. 

This framework can be used in the machine learning orchestration to train, store and 

serve models. MLflow is composed of a model repository that can store several 

experiences and versions of ML models. Its tracking feature allows us to store several 

data about the training task such as parameters, artifacts (e.g., files of different 

formats), but also metrics (e.g., accuracy) to compare experiments and versions of 

a model. 

5.8.3 Kubeflow 

Kubeflow42 is a tool to help users to smoothly implement machine learning workflows 

on Kubernetes. Since it is based on Kubernetes architecture, the first prerequisite is 

setting up a K8S (Kubernetes) cluster and the command-line tool kubectl. 

Kubeflow allows, through user interface or through scripts, the user to create 

Pipelines, running hyperparameter optimization (using Katib43) and launching Jupyter 

Notebook44 serves. 

Pipelines in Kubeflow are directed acyclic graphs (DAG), including all the components 

to be computed in the workflow. Each component is a Docker image containing the 

user code and dependencies to run on Kubernetes. 

The Pipelines SDK includes support for constructing and running pipelines from a 

Jupyter notebook—including the ability to build and compile a pipeline directly from 

Python code that specifies its functionality, without leaving the notebook. Building a 

pipeline for creating a machine learning model from data consists of these steps: (i) 

download data (ii) creating the pipeline (iii) include cloud platform (iv) submit the 

job for execution. 

This is the YAML file that can be used for Kubeflow deployment. 

apiVersion: kfdef.apps.kubeflow.org/v1 

 
42 https://www.kubeflow.org/  
43 https://github.com/kubeflow/katib  
44 https://jupyter.org/  

https://www.kubeflow.org/
https://github.com/kubeflow/katib
https://jupyter.org/
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kind: KfDef 

metadata: 

  namespace: kubeflow 

spec: 

  applications: 

  - kustomizeConfig: 

      repoRef: 

        name: manifests 

        path: namespaces/base 

    name: namespaces 

  - kustomizeConfig: 

      repoRef: 

        name: manifests 

        path: application/v3 

    name: application 

  - kustomizeConfig: 

      repoRef: 

        name: manifests 

        path: stacks/kubernetes/application/istio-1-3-1-stack 

    name: istio-stack 

  - kustomizeConfig: 

      repoRef: 

        name: manifests 

        path: stacks/kubernetes/application/cluster-local-gateway-1-3-1 

    name: cluster-local-gateway 

  - kustomizeConfig: 

      repoRef: 

        name: manifests 

        path: istio/istio/base 

    name: istio 

  - kustomizeConfig: 

      repoRef: 

        name: manifests 

        path: stacks/kubernetes/application/cert-manager-crds 
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    name: cert-manager-crds 

  - kustomizeConfig: 

      repoRef: 

        name: manifests 

        path: stacks/kubernetes/application/cert-manager-kube-system-
resources 

    name: cert-manager-kube-system-resources 

  - kustomizeConfig: 

      repoRef: 

        name: manifests 

        path: stacks/kubernetes/application/cert-manager 

    name: cert-manager 

  - kustomizeConfig: 

      repoRef: 

        name: manifests 

        path: stacks/kubernetes/application/add-anonymous-user-filter 

    name: add-anonymous-user-filter 

  - kustomizeConfig: 

      repoRef: 

        name: manifests 

        path: metacontroller/base 

    name: metacontroller 

  - kustomizeConfig: 

      repoRef: 

        name: manifests 

        path: admission-webhook/bootstrap/overlays/application 

    name: bootstrap 

  - kustomizeConfig: 

      repoRef: 

        name: manifests 

        path: stacks/kubernetes/application/spark-operator 

    name: spark-operator 

  - kustomizeConfig: 

      repoRef: 
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        name: manifests 

        path: stacks/kubernetes 

    name: kubeflow-apps 

  - kustomizeConfig: 

      repoRef: 

        name: manifests 

        path: knative/installs/generic 

    name: knative 

  - kustomizeConfig: 

      repoRef: 

        name: manifests 

        path: kfserving/installs/generic 

    name: kfserving 

  # Spartakus is a separate applications so that kfctl can remove it 

  # to disable usage reporting 

  - kustomizeConfig: 

      repoRef: 

        name: manifests 

        path: stacks/kubernetes/application/spartakus 

    name: spartakus 

  repos: 

  - name: manifests 

    uri: https://github.com/kubeflow/manifests/archive/v1.2.0.tar.gz 

  version: v1.2-branch 

Note that the instructions given in this chapter are compatible until the 1.21 version 

of Kubernetes. If a newer version of Kubernetes is used, the installation process 

would be different, right now, there is no Kubeflow version compatible with 

Kubernetes 1.22 and above so it has been impossible to put those instructions in this 

deliverable.  

5.9 Workflow management 

A workflow is a sequence of operations (tasks) in the FRACTAL Cloud Platform that 

are executed according to a schedule or triggered by an event. The goal of the 

workflow management component consists in ensuring that all the different 
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executions are harmonized to avoid conflicts between them and repercussions of 

possible failures. 

In the FRACTAL Cloud Platform, the Airflow45 service will be used to provide this 

functionality.  

5.9.1 Airflow 

5.9.1.1  Enable nfs file provisioning on Kubernetes 

Airflow consists of several pods that are deployed (worker, scheduler, flower...), 

therefore each pod needs storage. Furthermore, in order to perform correctly the 

deployment, this storage must be shared among pods. If the cloud provider does not 

support volumes that are mounted as readWriteMany, a solution for this is to deploy 

a NFS provisioner which will provide Kubernetes with NFS persistent volumes shared 

by different pods. 

Following are some basic instructions given to deploy an NFS file provisioner in 

Kubernetes 

• Add helm chart repository 

helm repo add kvaps https://kvaps.github.io/charts && helm repo update 

• Setup the persistence that will back the NFS service by creating a file named 

nfs_persistence.yaml. This file specifies the persistence of the NFS 

provisioner. The given size here will be the size of the NFS volume. 

--- 

# Nfs-provisioner params for Helm install 

# 

# For more details and possible options please see the table at: 

#  - <https://github.com/helm/charts/tree/master/stable/nfs-server-
provisioner> 

persistence: 

  # Enables persistence of config values 

  # Including the provisioner ID 

  #  -> Crucial so that the provisioner recognise itself after restarting 

  enabled: true 

  # Note that if storageClass is not defined, 

 
45 https://airflow.apache.org/  

https://kvaps.github.io/charts
https://airflow.apache.org/
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  # Then this parameters defaults to the default storage class in the 
cluster, 

  # which, as of today, in GCP, uses kubernetes.io/gce-pd provisioner 

  # Careful: Don't use EmptyDir, as it will not survive the pod's death 

  #  -> Config will therefore be lost anyway 

  #Set OVH StorageCLass. We have csi-cinder-classic and csi-cinder-high-speed 

  storageClass: csi-cinder-high-speed 

  size: "20Gi" 

storageClass: 

  # Name of the storage class that will be managed by the provisioner 

  defaultClass: true 

 

• Create the nfs namespace 

kubectl create namespace nfs 

• Install the helm chart and provide the newly created file that will override the 

persistence settings. 

helm install nfs-provisioner kvaps/nfs-server-provisioner --namespace nfs--
version 1.3.1 -f nfs_persistence.yaml 

• Check that the following resources have been created  

o NFS provisioner podnamed nfs-provisioner-nfs-server-provisioner-0 

o storageClass named nfs 

o PersistentVolume of 20GB 

o PersistentVolumeClaim named data-nfs-provisioner-nfs-server-

provisioner-0 

5.9.1.2 Install Airflow 

Airflow will be installed through a helm chart provided by the community, which is 

branched from the official Airflow chart, but with extended support and 

documentation. Before proceeding with the installation, two PersistentVolumeClaims 

need to be created, one for the log persistence and another for Airflow's DAG storage. 

• Create airflow namespace 

kubectl create namespace airflow 

• Create a file named PersistentVolumeClaim.yaml with the following content, 

specifying each claim size and storageClass. 

#PVC for airflow logs. 
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apiVersion: v1 

kind: PersistentVolumeClaim 

metadata: 

  name: nfs-claim-airflow-logs 

spec: 

  accessModes: 

    - ReadWriteMany 

  storageClassName: nfs 

  resources: 

    requests: 

      storage: 15Gi 

--- 

#PVC for airflow dags. 

apiVersion: v1  

kind: PersistentVolumeClaim 

metadata: 

  name: nfs-claim-airflow-dags 

spec: 

  accessModes: 

    - ReadWriteMany 

  storageClassName: nfs 

  resources: 

    requests: 

      storage: 2Gi 

• Apply file to create the resouces 

kubectl create -f persistentVolumeClaim.yaml -n airflow 

• Add airflow repository to helm 

helm repo add airflow-stable https://airflow-helm.github.io/chartshelm 
repo update   

• Install helm chat specifying the persistence 

helm install fractal-airflow airflow-stable/airflow --namespace airflow --
version 8.4.1 --values ./airflow_log_dag_persistence.yaml 

https://airflow-helm.github.io/chartshelm
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• Expose airflow web as a LoadBalancer service in order to access it from the 

internet 

kubectl expose service/fractal-airflow-web --type=LoadBalancer --port=8080 --
name fractal-airflow-web-external -n airflow 

• Check the external IP address to access Airflow web using the following 

command 

kubectl get service fractal-airflow-web-external -n airflow -o 
jsonpath="{.status.loadBalancer.ingress[0].ip}" 

• Web UI can be accessed through the returned IP on the port 8080 

5.10 Model preparation for FRACTAL Edge 

For a generic path to deploy models from the framework description to an actual 

physical acceleration target, a target-specific implementation must be available. The 

FRACTAL cloud services can serve to augment the framework-based model with such 

target-specific artifacts, thus providing model preparation support. From the 

elements presented in Sections 5.6, 5.7, 5.8 and 5.9 the chosen approach is to: 

1. Utilize MLflow to store framework-based models in the MLflow repository. 

2. Save these models into volumes that are handed into the processing steps. 

3. Trigger an Airflow DAG execution to do the actual preparation steps. 

4. Load the augmented model back into the MLflow repository. 

These processing steps are collected in an Airflow DAG that binds the data volumes 

to target specific services. The target-specific services are made available as a single 

container for the given implementation for the FRACTAL platforms running on Versal 

VCK190. The container is hosted in Harbor as a prebuilt docker image. This scenario 

can support other target preparation steps by exchanging the proper combination of 

the Airflow DAG and the docker image. Any preprocessing of the model data that 

needs to be accounted for the DAG can add tasks to handle the specifics for the 

docker image to operate correctly. 

To obtain a build of the image for the Xilinx Versal VCK190 development kit the 

complete base Vitis AI repository can be obtained from GitHub: 

git clone https://github.com/Xilinx/Vitis-AI.git 

This checkout provides a wrapper script for the docker environment based on Ubuntu 

20.04 with a Kernel rev. 5.13. Versions of git checkout above and subsequent image 

build must match the versions of any earlier model verification.  

docker_run.sh xilinx/vitis-ai-cpu:2.0 
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The docker image setup, parameters, and mount points are collected and used in the 

Airflow DAG, locally using a DockerOperator, and in the Cloud using a 

KubernetesPodOperator to start the container. The dependencies are shown here for 

local operation: 

    t1 = DockerOperator( 

        task_id = 'vitis_ai_quantizer', 

        # image = 'vtwkpdos.gra7.container-
registry.ovh.net/fractal/xilinx/vitis-ai-cpu:latest', 

        image = 'xilinx/vitis-ai-cpu:latest', 

        api_version='auto', 

        auto_remove=False, 

        #command = ["bash /workspace/source_bashrc.sh ","bash 
/workspace/docker_check.sh ",], 

        command = ' bash /workspace/prepare_model_full.sh', 

        #command = "bash /workspace/docker_check.sh ", 

        docker_url="unix://var/run/docker.sock", 

        network_mode="host", 

        environment ={'USER':os.environ.get('USER'),'UID':1001,'GID':1001}, 

        # user = None, 

        mounts = [ 

            Mount(source='/opt/xilinx/dsa',target='/opt/xilinx/dsa:rw', 
type='bind'), 

            Mount(source ="/opt/xilinx/overlaybins",target= 
"/opt/xilinx/overlaybins",  type='bind'), 

            Mount(source ="/etc/xbutler",target = "/etc/xbutler", type='bind' 
), 

            Mount(source="/dev/shm",target="/dev/shm", type='bind'), 

            Mount(source = "/home/clouduser/vitis-workspace", target = 
"/workspace" , type = 'bind')], 

        working_dir = '/workspace' 

    ) 

These and similar tasks may be called either as a single DAG element to process the 

full model compilation at once or split into multiple subtasks to give a finer granularity 

control to the Airflow scheduler. 
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Figure 36: Airflow DAG model preparation 

5.11 Platform infrastructure 

The FRACTAL Cloud Platform is deployed over the infrastructure of a public cloud 

services provider, which offers different services such as storage space, computing 

power, networks, and other fundamental computing resources. 

5.11.1 Configuring the OVH Managed Kubernetes 

FRACTAL will use a Kubernetes cluster to deploy, manage and execute the different 

services developed alongside the different partners of the FRACTAL Project. 

The OVH Managed Kubernetes service46 has been deployed through the OVH Cloud 

Control Panel following the official documentation47. On the OVH Control Panel, once 

the FRACTAL Project has been selected, in Containers and orchestration section 

Managed Kubernetes Service must be selected (see Figure 37). Then, the following 

steps must be accomplished: 

1. The desired location for the cluster must be chosen. 

2. Select the desired version of Kubernetes. 

 
46 https://www.ovhcloud.com/es-es/public-cloud/kubernetes/  
47 https://docs.ovh.com/gb/en/kubernetes/creating-a-cluster/  

https://www.ovhcloud.com/es-es/public-cloud/kubernetes/
https://docs.ovh.com/gb/en/kubernetes/creating-a-cluster/


 

Project FRACTAL 

Title Platform and building blocks for Federated AI   

Del. Code D5.4   

 

 

  

  

 Copyright © FRACTAL Project Consortium 66 of 110 

 

3. Select a private network for the cluster (or None for using public IPs). In this 

case a private network created beforehand has been selected. 

4. Select the desired instance type for the nodes that conforms the Kubernetes 

cluster. In this case B2-1548 instance type has been selected. 

5. Configure the desired node pool size (i.e., the number of instances that 

compose the cluster). In this case a 3-nodes cluster size has been selected 

with the autoscaling option disabled by default. 

6. Choose the desired billing type. 

7. Select a name for the cluster (fractal-kubernetes-cluster in this case). 

Lastly, the Create button must be clicked and the OVH Managed Kubernetes service 

is created (see the created registry in Figure 37). 

 

Figure 37: Created fractal-kubernetes-cluster. 

5.11.2 Accessing the OVH Managed Kubernetes Service 

In order to be able to access the OVH Managed Kubernetes Service, a ‘kubeconfig’ 

file will be used. This file can be downloaded from the Kubernetes cluster 

configuration pane (see the highlighted section in Figure 37). Then ‘kubectl’ tool must 

be installed49 and configured50. On Linux systems this can be achieved with the 

following commands: 

 
48 https://us.ovhcloud.com/public-cloud/prices/  
49 https://kubernetes.io/docs/tasks/tools/  
50 https://docs.ovh.com/gb/en/kubernetes/configuring-kubectl/#step-1-configure-the-default-settings-
for-kubectl  

https://us.ovhcloud.com/public-cloud/prices/
https://kubernetes.io/docs/tasks/tools/
https://docs.ovh.com/gb/en/kubernetes/configuring-kubectl/#step-1-configure-the-default-settings-for-kubectl
https://docs.ovh.com/gb/en/kubernetes/configuring-kubectl/#step-1-configure-the-default-settings-for-kubectl
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1. Update the apt package index and install packages needed to use the 

Kubernetes apt repository: 

sudo apt-get update 

sudo apt-get install -y apt-transport-https ca-certificates curl 

2. Download the Google Cloud public signing key: 

sudo curl -fsSLo /usr/share/keyrings/kubernetes-archive-keyring.gpg 
https://packages.cloud.google.com/apt/doc/apt-key.gpg 

3. Add the Kubernetes apt repository: 

echo "deb [signed-by=/usr/share/keyrings/kubernetes-archive-keyring.gpg] 

https://apt.kubernetes.io/ kubernetes-xenial main" | sudo tee 

/etc/apt/sources.list.d/kubernetes.list 

4. Update apt package index with the new repository and install kubectl: 

sudo apt-get update 

sudo apt-get install -y kubectl 

5. Load the downloaded kubeconfig file:  

export KUBECONFIG=/Users/myuser/.kube/my-test-cluster.yml 

5.11.3 Deploy and access the Kubernetes Dashboard 

The Kubernetes Dashboard51 is a web-based Kubernetes user interface, that can be 

used to deploy containerized applications to a Kubernetes cluster, troubleshoot 

containerized applications, and manage the cluster resources. It also allows to get an 

overview of applications running on a cluster, as well as for creating or modifying 

individual Kubernetes resources (such as Deployments, Jobs, Daemon Sets, etc.). 

For installing the Kubernetes Dashboard on OVH Cloud Managed Kubernetes Service, 

the official documentation has been52 followed. Check the following subsections for 

more details. 

5.11.3.1 Install & Configure Kubernetes Dashboard 

Kubernetes Dashboard can be installed using the recommended YAML file53 and the 

following command:  

 
51 https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/  
52 https://docs.ovh.com/gb/en/kubernetes/installing-kubernetes-dashboard/  
53https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/#deploying-the-
dashboard-ui  

https://packages.cloud.google.com/apt/doc/apt-key.gpg
https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/
https://docs.ovh.com/gb/en/kubernetes/installing-kubernetes-dashboard/
https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/#deploying-the-dashboard-ui
https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/#deploying-the-dashboard-ui
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kubectl apply -f 
https://raw.githubusercontent.com/kubernetes/dashboard/v2.3.1/aio/deploy/reco
mmended.yaml 

With the following command, it can be checked that the Kubernetes Dashboard is 

deployed and running (see Figure 38). 

kubectl get all -n kubernetes-dashboard 

 

Figure 38: Kubernetes Dashboard Service. 

5.11.3.2 Accessing the Kubernetes Dashboard  

5.11.3.2.1 Create Service Account 

In order to access the Dashboard, a new user must be created with the service 

account mechanism in Kubernetes and granted this user admin permissions. For that, 

the service-account.yml will be used (see Figure 39). When applying with kubectl, 

this YAML file creates a service account (admin-user) in Kubernetes. 

kubectl apply -f ./Kubernetes-Dashboard/service-account.yml 

 

Figure 39: service-account.yml file content. 

https://raw.githubusercontent.com/kubernetes/dashboard/v2.3.1/aio/deploy/recommended.yaml
https://raw.githubusercontent.com/kubernetes/dashboard/v2.3.1/aio/deploy/recommended.yaml
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5.11.3.2.2 Create a Role Binding 

Then a RoleBinding will be created for binding the cluster-admin role in the 

Kubernetes cluster to the created ServiceAccount. For this, the cluster-role-

binding.yml will be used (see Figure 40). 

kubectl apply -f ./Kubernetes-Dashboard/cluster-role-binding.yml 

 

Figure 40: cluster-role-binding.yml 

5.11.3.2.3 Get Bearer Token 

The created service account and role binding will allow to get an access token for the 

Kubernetes dashboard. The token can be retrieved with the following command: 

kubectl -n kubernetes-dashboard describe secret $(kubectl -n kubernetes-
dashboard get secret | grep admin-user-token | awk '{print $1}') 

5.11.3.2.4 Exposing the Dashboard with Ingress 

The Kubernetes dashboard can be accessed by first exposing it using Ingress or a 

Load Balancer. For that, the Ingress service should be installed and configured (check 

Section 6.10). Kubernetes Dashboard can be exposed with Ingress by applying the 

ingress-kubernetes-dashboard.yml YAML file (see Figure 41). 

kubectl apply -f ./Kubernetes-Dashboard/ingress-kubernetes-dashboard.yml 

This will expose the dashboard at https://[INGRESS_IP_OR_DOMAIN]/dashboard/. 
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Figure 41: ingress-kubernetes-dashboard.yml file contents. 

5.11.3.2.5 Accessing the Kubernetes-dashboard 

When accessing the dashboard, it will redirect to the login endpoint on which an 

access token must be provided in order to access the dashboard. By using the 

obtained token in the previous section, the Kubernetes Dashboard can be accessed 

(see Figure 42). 
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Figure 42: Kubernetes dashboard. 
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6. Cloud platform use guidelines 

This section presents the usage guidelines of the cloud components developed and 

deployed in the OVH cloud platform. These components will compose the FRACTAL 

Cloud Platform and will enable the implementation of the functionalities required from 

the Use Cases. The main goal of this section is to give some hints on the use of each 

component so the use cases are aware and familiar with the usage of same.                                                                                                                                                                                                                                               

6.1 Data ingestion 

In FRACTAL Cloud Platform, data ingestion service is provided using Kafka platform. 

Typically, the data is sent from the IoT devices (in this case by the edge nodes), 

using the MQTT protocol. Kafka platform offers a distributed event streaming platform 

for high performance data pipelines, streaming analytics, data integration and 

mission critical applications 

6.1.1 Kafka platform 

The Kafka cluster can be accessed using the links provided Table 1 in Section 5.2.1.3. 

In order to send data to Kafka, the corresponding topics have to be created in the 

Kafka cluster. This can be done using the YAML definitions which have to be applied 

to the cluster as shown below  

For examples referring to the usage of Kafka cluster, check the GitHub repo in the 

following link: https://github.com/harisyammnv/kafka-stream-ovh-

fractal/tree/master/Data-Streaming 

6.1.1.1 Creating Topics 

To create Topics in the Kafka cluster, a YAML file has to be defined with the topic 

name and the cluster identifier as shown 

 

Figure 43: Kafka topic YAML 

https://github.com/harisyammnv/kafka-stream-ovh-fractal/tree/master/Data-Streaming
https://github.com/harisyammnv/kafka-stream-ovh-fractal/tree/master/Data-Streaming
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Once the YAML is ready with new values, it has to be applied against the kubectl 

cluster using the following command 

kubectl apply -f kafkatopic.yml -n <namespace> 

To check if the topic has been created on the cluster, use the following command 

kubectl get kafkatopics.kafka.strimzi.io -n <namespace> 

6.1.1.2 Sending Messages to Topics 

To send the messages to the topics using the topics created in the previous step, a 

python module has to be used. The GitHub repo in the following link: 

https://github.com/harisyammnv/kafka-stream-ovh-fractal/tree/master/Data-

Streaming, shows the steps to install the python-Kafka library. The following Python 

file illustrates the steps to connect to the bootstrap Kafka cluster which enables the  

Kafka Producer module to send or stream messages to the topic. 

 

Figure 44: Streaming messages to Topics 

https://github.com/harisyammnv/kafka-stream-ovh-fractal/tree/master/Data-Streaming
https://github.com/harisyammnv/kafka-stream-ovh-fractal/tree/master/Data-Streaming
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Executing the simple producer script from the command line with python would send 

the messages to the Kafka Topics 

$ python3 simpler_producer.py 

 

Figure 45: Executing the simple_producer.py 

6.1.1.3 Consuming Messages to Topics 

For consuming the messages produced in the previous section, the Python file for the Kafka 

Consumer i.e., simple_consumer.py from the GitHub repo 

https://github.com/harisyammnv/kafka-stream-ovh-fractal/tree/master/Data-

Streaming is used. The python file is run from the command line to extract messages 

from the topic as shown below: 

$ python3 simpler_consumer.py 

https://github.com/harisyammnv/kafka-stream-ovh-fractal/tree/master/Data-Streaming
https://github.com/harisyammnv/kafka-stream-ovh-fractal/tree/master/Data-Streaming
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Figure 46: Using Kafka Consumer to extract messages 

6.2 Raw data storage 

For connecting to OVH object storage from Python, the module from Amazon SDK, 

i.e. the boto3 library, has to be installed in the Python environment. 

pip install boto3 

The following snippet of Python code will send messages to the object storage. The 

s3_region is the region where the storage was created, and access_key and 

secret_key were obtained in the previous chapter: 

session = boto3.Session(aws_access_key_id=access_key, 

aws_secret_access_key=secret_key) 

s3_client = session.client('s3', 

endpoint_url=f"https://s3.{s3_region}.cloud.ovh.net/", 

region_name=s3_region) 

The following line will create  new bucket on the OVH Object Storage 

s3_client.create_bucket(Bucket=bucket_name, 
CreateBucketConfiguration={'LocationConstraint': s3_region}) 

http://cloud.ovh.net/


 

Project FRACTAL 

Title Platform and building blocks for Federated AI   

Del. Code D5.4   

 

 

  

  

 Copyright © FRACTAL Project Consortium 76 of 110 

 

To upload some data to the OVH Object Storage, the following line has to be 

executed. Beware: filename and bucket name are regular Python strings, but data 

has to be encoded into the byte array format.  

s3_client.upload_fileobj(Fileobj=io.BytesIO(data), Bucket=bucket_name, 
Key=filename) 

Other sample scripts can be accessed in the following link: 

https://github.com/harisyammnv/kafka-stream-ovh-fractal/blob/master/Data-

Processing/s3-boto-sample.py 

6.3 Data preprocessing & feature extraction 

6.3.1.1 Timeseries data processing 

Typically, the data coming from IoT devices are sensor measurements which 

generally have associated timestamps with the readings. The readings are sent 

generally at a fixed sampling rate or on value change to MQTT brokers. Kafka 

connect, which accesses the MQTT brokers, forwards the sensor data as JSON objects 

to Kafka cluster. A python job generally aggregates the raw data and stores them 

into batch collected CSV object in the object storage. For example, the object storage 

could contain batch files as shown in Figure 47 

 

Figure 47: Batch aggregates of raw drive cycles 

https://github.com/harisyammnv/kafka-stream-ovh-fractal/blob/master/Data-Processing/s3-boto-sample.py
https://github.com/harisyammnv/kafka-stream-ovh-fractal/blob/master/Data-Processing/s3-boto-sample.py
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Using the CSV files in the object container, the data preprocessing can be executed 

using the following code snippet, which in this case as an example, combines the 

drive cycles and calculates the distance travelled using vehicle speed and time. 

 

Figure 48: Timeseries data processing script 

This code can be uploaded in the data processing section to create a spark job which 

is shown in the next sub-section. More complex data processing scripts are available 

in the GitHub repo, in the following link https://github.com/harisyammnv/kafka-

stream-ovh-fractal/tree/master/Data-Processing. 

6.3.1.2 Multimedia data processing 

For Computer Vision applications, the raw data is in the form of images various sizes. 

To use the images for training a ML model, the images have to be converted into 

tensors according to the model architecture. When there are thousands of images 

this process takes time and spark can be used to speed up the process, using snippets 

as the one shown in Figure 49.  

https://github.com/harisyammnv/kafka-stream-ovh-fractal/tree/master/Data-Processing
https://github.com/harisyammnv/kafka-stream-ovh-fractal/tree/master/Data-Processing
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Figure 49: Image processing snippet 

The environment YAML file is as shown below 

 

Figure 50: Sample environment file 
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The data processing job can be setup from the OVH cloud terminal as shown in Figure 

51.  

 

Figure 51: Setting up the spark job 

Similar to the image processing script, for more reference, there are text processing 

script samples provided in the GitHub repo, in the following link 

https://github.com/harisyammnv/kafka-stream-ovh-fractal/blob/master/Data-

Processing/word-count-s3.py  

6.4 Dataset repository and feature store 

6.4.1 lakeFS 

6.4.1.1 Creating users & permissions 

To add a new user, it will be necessary to go to the administration panel and add the 

corresponding user. It is worth mentioning that once the user is created, it will be 

necessary to assign the new user to a user group. User groups are used to assign 

specific policies (permissions) to the members of each group.  

https://github.com/harisyammnv/kafka-stream-ovh-fractal/blob/master/Data-Processing/word-count-s3.py
https://github.com/harisyammnv/kafka-stream-ovh-fractal/blob/master/Data-Processing/word-count-s3.py
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Figure 52: Creating users in lakeFS 

 

Figure 53: User group administration in lakeFS 

6.4.1.2 Creating a repository & branches 

Repositories and branches are used inside lakeFS to organize and structure the 

different data sources, use cases, and stages of the data. lakeFS provides those 

features on a GIT like way and they can be created using the UI. 
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Figure 54: Creating repository in lakeFS 

 

Figure 55: Creating a branch in lakeFS 

6.4.1.3 Uploading & committing 

In the same way, lakeFS offers the versioning of datasets. To do so, datasets can be 

uploaded and committed to specific branches. 

 

Figure 56: Uploading objects in lakeFS 

6.4.1.4 Other interactions 

lakeFS also supports integrations with other programming languages and platforms. 

There are many different possibilities, the main interactions guidelines being as 

follows. 
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For example, if lakeFS is used on an Airflow DAG, the Airflow integration could be 

used to perform the required tasks. 

https://docs.lakefs.io/integrations/airflow.html 

LakeFS could also be used by Kubeflow, so in this case, the Kubeflow integration 

could be used. 

https://docs.lakefs.io/integrations/kubeflow.html 

In a more generic use case, the python integration could be used. For example, the 

edge node could be using the FRACTAL Cloud Platform lakeFS service using the 

python integration. 

https://docs.lakefs.io/integrations/python.html 

6.4.2 Feast   

There are 5 main steps to set up a Feast repository, including:  

1. Create feast repo 

2. Register for feature definition 

3. Generate features data 

4. Load features to feast online store 

5. Retrieve online-stored features and use 

The first step is creating a Feast directory. It can be achieved with the following 

instruction: 

$ feast init -m repo_name 

The repository’s name is the place where Feast will store features. This command will 

also auto-generate the YAML file inside the repo_name folder. It would look like this 

# feature_store.yaml 

project: repo_name 

registry: data/registry.db 

provider: local 

online_store: 

path: data/online_store.db 

where: 

- project allows to isolate feast repositories using the same infrastructure. 

https://docs.lakefs.io/integrations/airflow.html
https://docs.lakefs.io/integrations/kubeflow.html
https://docs.lakefs.io/integrations/python.html
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- registry is the path of the registry file where Feast will store the feature definitions 

- provider is the target environment where features are stored. Providers allow for 

the use of custom logic tailored to a specific infrastructure. Feast has 3 basic 

providers: AWS (Amazon Web Services), GCP (Google Cloud Platform), and local, 

which does not have any cloud-specific logic. A custom provider could be created to 

associate custom logic to feast actions. 

- online_store is the path of the environment that Feast uses to store features for 

low-latency inference. 

A feature repository using the infrastructure defined in Section 5.5.3 would look like 

this: 

 

Figure 57: Feature repository definition 

To follow the feast repo hierarchy of the first example above, the data/ directory 

must be created, and move all raw data into it. 

# go to the feast directory  

$ cd repo_name 

# create data folder 

$ mkdir data/ 

# move all raw data into data folder 

$ mv [raw_data_file_] data/ 

In the second step, a python file to define the features must be created, called here 

def.py. 

$ nano def.py 

Inside this document, Entity, FileSource, FeatureView, etc., are created. The 

documentation54 shows a complete example of how to write this document and 

what fields the user should mention. One important parameter is the ttl which is 

related to the time that the Feature View will be cached for. Feast uses this to make 

sure that only new features are served to the model. Also, because of this, a 

 
54 https://docs.feast.dev/getting-started/concepts 

https://docs.feast.dev/getting-started/concepts
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timestamp column needs to be created for the raw data, so feast can find out the 

proper features to serve.  

Once the document is created, the user should run the apply command to register 

all the entities and feature views defined. 

$ feast apply 

Features can be saved in a dataset through this method: 

dataset = store.create_saved_dataset( 

    from_=data_retrieval, 

    name="name_dataset", 

    storage=SavedDatasetFileStorage("/path/to/save/name.parquet") 

) 

Last step to use Feast is to be able to load features data to online store. It can be 

achieved by running the same materialize_incremental command such as: 

CURRENT_TIME=$(date -u +"%Y-%m-%dT%H:%M:%S") 

feast materialize-incremental $CURRENT_TIME 

Finally, after pushing features to Feast stores, features from both online or offline 

stores can be fetched and used for training/inferencing. For example, to get the data 

from the saved offline store, the following python code can be used:  

training_df = store.get_saved_dataset(name="name_dataset").to_df() 

To retrieve the low-latency data from online store, the function get_online_features 

should be called: 

test_data = store.get_online_features( 

    features=infer_features,     

    entity_rows=[{"row_id": 568}] 

).to_dict() 

Full code that integrates Feast to run on Kubeflow is available on the following  GitHub 

repository https://github.com/Nannakaroliina/kubeflow-pipeline-

demo/tree/kubeflow-feast. 

6.5 Model repository 

One of the FRACTAL Cloud Platform’s features is the AI model repository, where AI 

models are stored to make them available for the rest of the services. There are 

several options to choose from as a model repository, DVC, MLflow, and MLBuffet, 

https://github.com/Nannakaroliina/kubeflow-pipeline-demo/tree/kubeflow-feast
https://github.com/Nannakaroliina/kubeflow-pipeline-demo/tree/kubeflow-feast
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however, some of them cover the FRACTAL Cloud Platform’s requirements better 

than others. MLBuffet is a lightweight distributed AI model server which is highly 

edge-oriented, and although it could be used for model storage in the cloud, it could 

result in a worse performance than other model repositories specifically developed 

for Cloud instances. Lastly, DVC stands as a good option for model storing and version 

controlling. Complete use steps are given for DVC, MLBuffet, and MLflow in the 

following subsections: 

6.5.1 DVC 

Once DVC is started on the directory or parent directory, every file or directory of the 

parent directory can be tracked by DVC with Git-like syntaxis: 

Adding files or directories to a repository 

To add a file or folder to the repository: 

$ dvc add (-<flags>) target (target2 …) 

This command generates a file (or a pair of files, if being used in a Git repository) in 

the tracked directory. 

• .gitignore file. This file disables Git tracking from the file being now managed 

by DVC. This file is generated only if DVC is being used as file-tracking system 

inside a Git repository. 

• <filename/directory>.dvc file. This file has all the information that DVC needs 

to track the file on the DVC repository (both on the cloud and locally). 

While adding directories to the repository, some files can be ignored adding the path 

to the .dvcignore file (like Git ignored files) placed on the directory where DVC was 

initialized.  

Upload (push) files/directories to the repository 

After adding the files/directories to be tracked by DVC, those must be pushed to the 

repository: 

$ dvc push (-<flags> <options>) 

This command makes a copy of the target files/directories added to DVC on the file 

repository with codified names using the hash numbers written on the .dvc files.  

Download (pull) files/directories from the repository 

Once the target files/directories are pushed to the repository, those are available to 

be pulled as many times as required. Having the corresponding .dvc files: 

$ dvc pull (-<flags> <options>) 
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All the tracked files will be downloaded to the folder, or the directory with its own 

directory tree and files. 

More information on how to use DVC can be found on the official documentation 

(https://dvc.org/doc) 

Set local (or remote) storage 

A custom and generic cloud can be linked to a DVC repository to be used as a data 

registry (https://dvc.org/doc/command-reference/remote): 

$ dvc remote add -d myremote /path/to/remote 

The project's config file can also be modified locally: 

['remote "myremote"'] 

url = /path/to/remote 

[core] 

remote = myremote 

6.5.2 MLBuffet 

MLBuffet provides a set of instructions to interact with its main API, and it can be 

used to store models locally or on the cloud These models could be uploaded and 

downloaded from the edge to the cloud (and vice-versa), and managed in multiple 

ways, updating the model versions, deleting no longer needed models, uploading new 

models and providing information about each of their versions. 

A summary of all the model-handling related actions and example curl HTTP requests 

for each of them is given below. A more detailed description and updated information 

can be found on the GitHub’s README 

(https://github.com/zylklab/mlbuffet/#readme): 

Note: The URIs to access the services should be substituted with the Ingress service 

or the endpoint for each of the deployments, either on Kubernetes, Docker Swarm or 

Docker standalone deployments. 

Test the API: 

curl inferrer:8000/ 

Access help: 

curl inferrer:8000/help 

Model handling: 

- Display the full list of available models: 

https://dvc.org/doc
https://github.com/zylklab/mlbuffet/#readme
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curl –X GET inferrer:8000/api/v1/models 

- Display a model provided information: 

curl –X GET inferrer:8000/api/v1/models(<tag>/information 

- Update a model’s information: 

curl -X PUT -H "Content-Type: application/json" --data 
'{"model_description":"<model_description>"}' 
inferrer:8000/api/v1/models/<tag>/information 

- Upload a new model: 

curl -X POST -F "path=@/path/to/local/model" 
inferrer:8000/api/v1/models/<tag> 

- Download a stored model locally: 

wget inferrer:8000/api/v1/models/<tag>/download --content-disposition 

- Delete a stored model: 

curl –X DELETE inferrer:8000/api/v1/models/<tag> 

- Set a model as default: 

curl -X POST -H "Content-Type: application/json" --data '{"default": <new 
default version>}' inferrer:8000/api/v1/models/<tag>/default 

 

6.5.3 Kubeflow and MLflow 

Kubeflow will be used with MLflow in order to train and store models. When a new 

model is sent to the cloud, Kubeflow trains it by using a preprocessed dataset. The 

new model is then evaluated and sent to the model repository powered by MLflow. 

MLflow will save the model storing along its version and several parameters that can 

be tracked and compared. Any model stored by MLflow can then be loaded using its 

name. 

Once Kubeflow and MLflow services are up and running in the cluster, the APIs and 

user interface can be accessed by their associated IP addresses. The guidelines to 

check their readiness and usage are introduced below.  

There are a couple of essential points for the usage regarding exposing the Kubeflow 

interface to be accessed from outside of the Kubernetes cluster and creating the user 

accounts.  

inferrer:8000/api/v1/models/iris_model/information
inferrer:8000/api/v1/models/%3ctag
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Kubeflow uses the NodePort type to expose its core service using the Istio ingress-

gateway. In order to make the Kubeflow accessible from the outside, first, a 

mechanism is needed to assign an IP address to the LoadBalancer type in the 

Kubernetes; this mechanism should be already available by the cloud provider, or 

services such as MetalLB55 can do the same.  

Second, the host of HTTPS must be added to the Istio service; otherwise, some 

services, such as notebook, will not work properly. The instructions for this part are 

available in the following link https://v0-7.kubeflow.org/docs/started/k8s/kfctl-

existing-arrikto/#secure-with-https. Although it is from one old version, it is the 

same procedure as the latest version of Kubeflow. 

Another point worth mentioning here is that Kubeflow uses the Dex authentication 

service to manage the users. By default, it has the user user@example.com with 

password 12341234. It is required to remove any default users and create other users 

to eliminate the security risks56. 

Check the status of all the pods in kubeflow namespace are ready 

$ kubectl get pod -n kubeflow 

Get the IP address and access the UI 

$ export KUBEFLOW_IP=$(kubectl -n istio-system get service istio-
ingressgateway -o jsonpath='{.status.loadBalancer.ingress[].ip}') 

$ echo $KUBEFLOW_IP 

The default username and password to access the UI is the same as mentioned 

above, unless change the user authentication in Dex is changed.  

Besides Kubeflow, MLflow will be used as another (or alternative) model repository. 

The configuration of the MLflow is pretty simple for the cloud operator for the 

deployment. All necessary configuration variables are available in the YAML files in 

the repository mentioned in the Section 5.6.3. It is worth noting that the only 

Tracking Server of MLflow is being used to store the model, and it is compatible with 

multiple storages such as S3, NFS (Network File System), and HDFS (Hadoop 

Distributed File System). The default value in configuration is to use a file in the 

container. 

The configuration can be changed as desired in deploy/kubernetes/mlflow-

deployment.yaml. There are environment variables to be set. As an example, 

ARTIFACT_ROOT refers to the --default-artifact-root which can be set to one of the 

mentioned storage classes that are available. More information about configuring the 

 
55 https://metallb.universe.tf/installation/  
56 https://v0-7.kubeflow.org/docs/started/k8s/kfctl-existing-arrikto/#add-static-users-for-basic-auth 

https://v0-7.kubeflow.org/docs/started/k8s/kfctl-existing-arrikto/%23secure-with-https
https://v0-7.kubeflow.org/docs/started/k8s/kfctl-existing-arrikto/%23secure-with-https
https://metallb.universe.tf/installation/
https://v0-7.kubeflow.org/docs/started/k8s/kfctl-existing-arrikto/#add-static-users-for-basic-auth
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storage can be found at https://mlflow.org/docs/latest/tracking.html#id14. Below, 

some basic commands for MLflow are included, to make sure that it is functioning 

correctly. Since Kubeflow is exposed to the user and will interact with MLflow, the 

MLflow is only accessible within the Kubernetes cluster. Exposing the MLflow outside 

the cluster without an authentication mechanism such as Nginx or Dex will 

compromise the security. 

Get the IP address and Port of the MLflow 

$ export MLFLOW_IP=$(kubectl -n mlflow-k8s get service mlflow -o 
jsonpath='{.spec.clusterIP}') 

$ export MLFLOW_PORT=$(kubectl -n mlflow-k8s get service mlflow -o 
jsonpath='{.spec.ports[].port}' 

 

Check that the service is working 

$ curl -X GET http://$MLFLOW_IP:$MLFLOW_PORT 

Note that the IP address and port number of MLflow should be given correctly to 

pipeline, so the pipeline stores the generated model in the repository. 

More information about the Kubeflow and MLflow usage is included in Section 6.7.2 

6.6 Harbor Private Registry 

FRACTAL will use Kubernetes to deploy, manage and execute the different 

containerized services developed by the different partners of the FRACTAL Project. 

These services have been developed in the form of container images, along with 

different Helm charts specifying their deployment and configuration that are stored 

and managed by the Harbor private registry. During the deployment, Kubernetes 

access the registry to get the Docker images and Helm charts to configure and deploy 

the containerized services in different pods of the Kubernetes cluster. In the following 

sections, how the Harbor registry is used in the FRACTAL Cloud Platform is detailed. 

6.6.1 Using Harbor in FRACTAL Cloud Platform 

During the deployment of the different services that compose the FRACTAL Cloud 

Platform, Kubernetes access the registry to get the Docker images and Helm charts 

to configure and deploy the containerized services in different pods of the Kubernetes 

cluster (see Figure 58).  

https://mlflow.org/docs/latest/tracking.html#id14
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Figure 58: Interaction between Harbor (Image repository) and the Kubernetes cluster.57 

6.6.1.1 Accessing Harbor Container Registry from Kubernetes 

For the deployment of a Docker Container in the Kubernetes platform, a YAML file 

must be created specifying the deployment for the container58. In this file, the Docker 

image that will be used to deploy the container must be specified. As an example, in 

Figure 59, the YAML file (inferrer.yml) used for the deployment of the FRACTAL 

inferrer is shown. In the section of code shown in this figure, it can be seen the 

Docker image used for the deployment of the container. During the deployment, 

Kubernetes pulls this image from the Harbor container registry and creates a 

containerized service in a pod (the Docker image must be previously uploaded to the 

container registry, as shown in Subsection 6.6.2.1). 

For accessing the private registry, Kubernetes also uses a secret59 (see the secret 

named fractalregistry in the imagePullSecret section of code in Figure 59) with the 

access credentials for the Harbor container registry (see Section 5.7.3 for how to 

configure and create a secret in Kubernetes). 

 
57https://blog.ovhcloud.com/managing-harbor-at-cloud-scale-the-story-behind-harbor-kubernetes-

operator/ 

58 https://kubernetes.io/docs/concepts/workloads/controllers/deployment/  
59 https://kubernetes.io/es/docs/concepts/configuration/secret/  

https://blog.ovhcloud.com/managing-harbor-at-cloud-scale-the-story-behind-harbor-kubernetes-operator/
https://blog.ovhcloud.com/managing-harbor-at-cloud-scale-the-story-behind-harbor-kubernetes-operator/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/es/docs/concepts/configuration/secret/
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Figure 59: YAML File for the Deployment of FRACTAL Inferrer Container. 

6.6.1.2 Accessing Harbor Helm Chart Museum from Kubernetes 

For the deployment of a service in the Kubernetes platform using a Helm Chart, 

Kubernetes accesses the Helm Chart Museum of the Harbor private registry. Helm 

uses the $KUBECONFIG environment variable60 used to specify the Kubernetes 

configuration file to deploy charts from the available repositories in Kubernetes. 

However, for accessing the Chart Museum of the Harbor Private Registry, it must be 

added as a Helm repository (see Section 6.6.3.1 for details of how to add a repository 

to Helm). 

6.6.2 Using the Image Repository 

To use the image repository, first users must authenticate by using the docker login 

command61. After introducing their access credentials, the user is authenticated and 

will be able to work with the image repository. See the following subsections for 

pushing and pulling images to the repository.  

docker login https://vtwkpdos.gra7.container-registry.ovh.net/  

6.6.2.1 Pushing a Docker Image to the Container Registry 

In order to push an image to a repository, first, the image must be tagged with the 

desired name and tag. In the project control panel (see Figure 33) in Push Command, 

a command reference can be found for tagging, and pushing docker images: 

docker tag SOURCE_IMAGE[:TAG] vtwkpdos.gra7.container-
registry.ovh.net/fractal/REPOSITORY[:TAG] 

docker push vtwkpdos.gra7.container-registry.ovh.net/fractal/REPOSITORY[:TAG] 

Following the command reference, an image can be tagged and pushed to the 

repository using the following commands: 

 
60 https://helm.sh/docs/helm/helm/  
61 Docker must be installed: https://docs.docker.com/desktop/windows/install/.  

https://vtwkpdos.gra7.container-registry.ovh.net/
https://helm.sh/docs/helm/helm/
https://docs.docker.com/desktop/windows/install/
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docker tag vitis-ai-cpu:latest vtwkpdos.gra7.container-
registry.ovh.net/fractal/xilinx/vitis-ai-cpu:demo 

docker push vtwkpdos.gra7.container-registry.ovh.net/fractal/xilinx/vitis-ai-
cpu:demo  

Figure 60 shows the pushed docker image into the Xilinx repository. 

 

Figure 60: Pushed Docker Image to Xilinx Repository in FRACTAL Project 

6.6.2.2 Pulling a Docker Image to the Container Registry 

The images from the Harbor repositories can be pulled using the pull command 

available along with the artifact in the Harbor repository (see Pull Command section 

in Figure 60). This will copy to the clipboard the docker command for pulling the 

image. Next, the command for pulling the image pushed in the previous subsection 

is shown: 

docker pull vtwkpdos.gra7.container-registry.ovh.net/fractal/xilinx/vitis-ai-
cpu@sha256:b4d2f62f6411f88e3f6f5ce917332e7dc5569e5e3b4dd145d1baba8e4f3b5219 

6.6.3 Using the Helm Chart Museum 

For using the Helm Chart Museum62 to store and access Helm charts, first, a 

repository must be added in Helm63. Helm will keep a list of the repositories where 

the different charts are stored for their usage on deployments. Next, the steps to add 

a repository to Helm and how to push and pull charts from it will be detailed. 

6.6.3.1 Adding the FRACTAL Repository in Helm 

For using the Harbor Helm Chart Museum with Helm, first, the repository must be 

added to the repository list64. With the following command, the repository for the 

FRACTAL Project can be added. 

 
62 https://docs.ovh.com/sg/en/private-registry/using-helm-chart-museum/#instructions  
63 Helm must be installed: https://helm.sh/docs/intro/install/  
64 https://goharbor.io/docs/1.10/working-with-projects/working-with-images/managing-helm-charts/  

mailto:vtwkpdos.gra7.container-registry.ovh.net/fractal/xilinx/vitis-ai-cpu@sha256:b4d2f62f6411f88e3f6f5ce917332e7dc5569e5e3b4dd145d1baba8e4f3b5219
mailto:vtwkpdos.gra7.container-registry.ovh.net/fractal/xilinx/vitis-ai-cpu@sha256:b4d2f62f6411f88e3f6f5ce917332e7dc5569e5e3b4dd145d1baba8e4f3b5219
https://docs.ovh.com/sg/en/private-registry/using-helm-chart-museum/#instructions
https://helm.sh/docs/intro/install/
https://goharbor.io/docs/1.10/working-with-projects/working-with-images/managing-helm-charts/
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helm repo add --username=<USERNAME> --password=<PASSWORD> fractal 
https://vtwkpdos.gra7.container-registry.ovh.net/chartrepo/fractal 

To check the available repositories in helm the following command can be used: 

helm repo ls 

6.6.3.2 Pushing a Chart to the Helm Repository 

Once the repository has been added to the Helm repository list, a chart can be pushed 

using the commands from the command reference available in the project control 

panel (see Figure 33). 

In FRACTAL Project, different Helm Charts from most common repositories (e.g., 

Artifact Hub65) will be used. Normally, these charts have been widely used and tested 

by the community and they offer a faster and simpler approach to deploying services, 

rather than creating custom charts66. However, with the aim of keeping a copy of the 

used charts, these charts will be downloaded and pushed to the Helm Chart Museum 

in Harbor. Next, an example of how to pull the official Helm chart67 for lakeFS and 

push68 it to the Helm Chart Museum is shown.  

helm pull lakefs/lakefs 

helm plugin install https://github.com/chartmuseum/helm-push 

helm cm-push -u=<USERNAME> -p=<PASSWORD> lakefs-0.5.56.tgz fractal 

In Figure 61 the uploaded charts to the lakeFS repository can be seen: 

 

Figure 61: Helm Chart Museum. 

 
65 https://artifacthub.io/  
66 https://helm.sh/docs/helm/helm_create/  
67 https://github.com/treeverse/charts/tree/master/charts/lakefs  
68 For pushing the Helm chart, chart museum push plugin has been used: 
https://github.com/chartmuseum/helm-push  

https://github.com/chartmuseum/helm-push
https://artifacthub.io/
https://helm.sh/docs/helm/helm_create/
https://github.com/treeverse/charts/tree/master/charts/lakefs
https://github.com/chartmuseum/helm-push
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6.6.3.3 Pulling a Chart to the Helm Repository 

For pulling a chart from a Helm Repository, the pull command will be used: 

 helm pull lakefs/lakefs 

However, in FRACTAL usually, helm charts will be directly accessed from the 

repository and installed69: 

helm install lakefs fractal/lakefs --version 0.5.56 

6.7 ML orchestration 

6.7.1 MLBuffet 

MLBuffet acts mainly as a distributed ML Model server, where models are deployed 

and they can perform inference in an asynchronous manner. This is done through a 

modular architecture where the models are stored and distributed over a subnet of 

modelhost containers which hold the models and deploy them, so the APIs can 

communicate with each other, and the application runtime is not blocked by late 

inferences.  

In addition, it can be provided with a train script, a dataset and a requirements file 

to perform training either in the cloud or the edge, on theoretically any ML training 

library. Two training mechanisms are provided: The first one is through Kubernetes 

clustering and is the recommended way of training since MLBuffet is recommended 

to be deployed over K8S. By providing all the necessary files for the training, the 

Trainer pod will be created and the model will be taken by the trainer and sent to the 

Inferrer for automatic storage and deployment. The second mechanisms are through 

Docker sockets and the daemon API, which could be the way to go in RISC-V or not 

supporting K8S platforms. Instructions on how to set up these can be found in the 

README document and below.  

In practice, all the ML lifecycle steps can be performed on MLBuffet, from model 

design, training, deploying, and inference, and all the orchestration processes which 

come after the models have been created can also be addressed, like model 

optimization, model updating, re-training of the models, and model version control. 

Its lightweight implementation makes it a flexible tool, being deployable on any 

machine which can perform containerization, either resource limited or not.  

Also, it can be easily integrated with other ML tools (e.g., Kubeflow), just by sending 

an HTTP request to the main API, other tools can perform any of the actions in 

 
69 https://helm.sh/docs/helm/helm_install/  

https://helm.sh/docs/helm/helm_install/
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MLBuffet (model hosting, training, and inference) and include the results in their 

workflows and pipelines, by parsing the JSON response MLBuffet provides back. 

Note: The URIs to access the services should be substituted with the Ingress service 

or the endpoint for each of the deployments, either on Kubernetes, Docker Swarm or 

Docker standalone deployments. 

Model predictions: 

- JSON array input: 

curl -X POST -H "Content-Type: application/json" --data '{"values":[2, 5, 1, 
4]}' inferrer:8000/api/v1/models/<tag>/prediction 

- Images or files as input: 

curl -X GET -F "file=@image.jpeg" 
inferrer:8000/api/v1/models/<tag>/prediction | jq 

Train a model: 

curl -X POST inferrer:8000/api/v1/train/<tag>/<model_name> -F 
"dataset=@/path/to/dataset.csv" -F "script=@/path/to/train.py" -F 
"requirements=@/path/to/requirements.txt" 

For model training, some considerations must be taken into account. This feature 

requires the Docker daemon host to be exposed securely, this means, providing 

MLBuffet with an accessible way to deploy Docker containers on the training machine. 

The TLS (Transport Layer Security) implementation is a good practice when a Docker 

daemon is exposed in a host’s port because exposing the Docker daemon insecurely 

can lead to root access from attacking external users. However, the implementation 

details of this kind of communication are out of the scope of this document. 

A detailed guide on how to expose the Docker daemon securely can be found on: 

https://docs.docker.com/config/daemon/ 

Another guide on implementing TLS secure communications for external applications 

with the exposed Docker daemon can be found in this link: 

https://docs.docker.com/engine/security/protect-access/ 

Once the Docker daemon is exposed and secured, the client certificates must be 

provided to the Inferrer container in the mlbuffet/inferrer/flask_app/utils/client 

directory, which will be used by a Python Client to schedule training containers on 

the host machine. 

For Kubernetes deployments, training can also be done through Docker by accessing 

external daemons, however, the Kubernetes MLBuffet Trainer is recommended, 

http://ind/api/v1/models/iris_model/prediction
https://docs.docker.com/config/daemon/
https://docs.docker.com/engine/security/protect-access/
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which takes care of managing certificates automatically and is more user-

transparent. 

6.7.2 Kubeflow and MLflow 

MLflow can be used in Kubeflow to store models. To do this, both tools need to run 

in docker components to enable communication between each other. In this section, 

a simple pipeline composed of 3 steps will be used: the data preprocessing, the model 

training, and the model validating. Each step of the pipeline is a python file that runs 

the required code to achieve its goal.  

MLflow’s API provides a means to use MLflow in the pipeline components of Kubeflow. 

The main methods to do this are: set_tracking_uri() which allows to connect to 

MLflow from Kubeflow, log_model(), which registers a model in MLflow, and 

get_register_model(), which loads a stored model. In the following example, our 

code allows us to store a model previously trained by Kubeflow, load it using its 

name, modify its description and update it in the model repository. This code can be 

written in the validating step of Kubeflow’s pipeline. By doing this, the performance 

(e.g., accuracy) of the model can be stored in MLflow along the parameters. 

 

Figure 62: Use of MLflow in the pipeline components of Kubeflow 

Now it has been seen how to integrate MLflow in Kubeflow, the rest of this section 

will present how to run both frameworks. Firstly, the following instructions allow to 

build the images of each step that composes a pipeline: 

$ docker build ./preprocess_data --tag 
kubeflow_pipeline_mlflow_preprocessing:latest 
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$ docker push kubeflow_pipeline_mlflow_preprocessing:latest 

$ docker build ./train_model --tag kubeflow_pipeline_mlflow_train:latest 

$ docker push kubeflow_pipeline_mlflow_train:latest 

$ docker build ./predict --tag milowb/kubeflow_pipeline_mlflow_predict:latest 

$ docker push kubeflow_pipeline_mlflow_predict:latest 

Once Kubeflow images are built, Kubeflow can be launched: 

$ export PIPELINE_VERSION=1.8.1 

$ kubectl apply -k 
"github.com/kubeflow/pipelines/manifests/kustomize/cluster-scoped-
resources?ref=$PIPELINE_VERSION" 

$ kubectl wait --for condition=established --timeout=60s 
crd/applications.app.k8s.io 

$ kubectl apply -k 
"github.com/kubeflow/pipelines/manifests/kustomize/env/platform-agnostic-
pns?ref=$PIPELINE_VERSION" 

$ kubectl port-forward -n kubeflow svc/ml-pipeline-ui 8080:80 

MLFlow installation instructions are detailed in the section X.X. Then it can 
be run with docker with the following instruction: 

$ docker run -it --rm -p 5000:5000 -v /local/path:/mlflow --name mlflow-
server atcommons/mlflow-server 

The expected result, after running Kubeflow, should be the following: 

 

Figure 63: Result after running Kubeflow 

Now UI can be accessed at http:/localhost:8080 to run experiments or use Kubeflow’s 

SDK. 

There are two Kubeflow concepts of interest in this section: 

1. A run: it is a single execution of a pipeline. Runs comprise an immutable log 

of all experiments that the user attempts, and are designed to be self-

contained to allow for reproducibility. 
2. A pipeline: it is a workspace where the user can run several runs of one 

pipeline. 

There are two ways of making new pipelines and runs: 
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1. Through the UI. The button Upload pipeline allows to add one.  

 

Figure 64: Kubeflow pipelines UI. 

Adding a pipeline requires importing the pipeline.yaml. This file is a 

configuration file describing how the pipeline is built and where to find images 

of each step. 

 

Figure 65: Adding a pipeline in Kubeflow. 

Once the pipeline is created, the UI asks to the user to start a run. 
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2. A second method is to use Kubeflow’s SDK in Python with the following line of 

Python: 

import kfp 
client = kfp.Client(host='http://localhost:8080) 

client.create_run_from_pipeline_func( 
      my_pipeline, 
         arguments={ 
         'url': 'https://storage.googleapis.com/ml-pipeline-playground  
 /iris-csv-files.tar.gz' 
    }) 

This code allows the user to connect to Kubeflow and create a run for a pipeline 

(here called my_pipeline) without having to use the UI. It is possible to send 

a parameter to the pipeline through the last arguments of the method. 

6.8 Workflow management 

6.8.1 Airflow 

Workflows are defined in Airflow by DAGs (Directed Acyclic Graphs). Those DAGs are 

python files with a specific structure. An example of that structure is shown below: 

#Step 1 

from airflow import DAG 

from datetime import datetime, timedelta 

from airflow.operators.dummy_operator import DummyOperator 

from airflow.operators.python_operator import PythonOperator 

#step 2 

default_args = { 

    'owner' : 'airflow', 

    'depends_onpast' : False, 

    'start_date' : datetime(2021,11,4), 

    'retries':0 

} 

#step 3 

dag = DAG(dag_id='DAG-1', default_args=default_args, catchup=False, 
schedule_interval='@once') 

#step 4 

start = DummyOperator(task_id='start', dag=dag) 

end = DummyOperator(task_id='end', dag=dag) 

https://storage.googleapis.com/ml-pipeline-playground/iris-csv-files.tar.gz
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#step 5 

start >> end 

The example shown above explains how to structure, create and operate different 

tasks among a DAG in Airflow. It is worth mentioning that every task that Airflow has 

to execute is defined by an operator70. There are three main types of operators: 

• Action operators: they perform an action or tell another system to perform an 

action. 

• Transfer operators: they move data from one system to another system. 

• Sensor operators: they allow to check if a criterion is met to get completed. 

The created DAGs can be managed in the DAG page of the Airflow service. In this 

page, an overview of each DAG execution can be seen, including the number of 

successful executions, the periodicity, the latest execution date, and more. 

 

Figure 66: Airflow DAG list UI 

 
70 https://airflow.apache.org/docs/apache-airflow/stable/python-api-ref.html#operators 
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6.9 Model preparation for FRACTAL Edge 

6.9.1 Triggering a preparation run 

There are multiple ways to drive a model preparation run for deployment.  

With any new model being registered in the Model Repository, the next Airflow 

scheduled run can detect this and operate the preparation, the model is to be exposed 

to. Qualifiers added to each model guide the correct Airflow DAG to operate, as to 

which target to be built for, and the steps required to achieve the target.  

If the orchestration does not schedule the Airflow operation regularly, a manual 

trigger can be issued by the uploading entity. This may be generated from a 

retraining step of a model that invalidates the model and explicitly triggers a 

preparation. These mechanics need to be covered on the orchestration layer. 

 

Figure 67: Model registration GUI in MLflow 

6.9.2 Upload model into MLflow Repository within DAG 

After the Airflow DAG tasks have generated the target implementation and other 

artifacts, the data structure of the model is augmented and the artifacts are uploaded 

into the MLflow model repository. 
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6.10 Upload configuration scripts to FRACTAL Cloud 

Platform 

As mentioned in Section 5.1 one possibility for partners to contribute to the FRACTAL 

Cloud Platform is directly providing the deployment and configuration YAML files or 

Helm Charts that will be used to deploy the different services that conform the 

FRACTAL Cloud Platform in Kubernetes. This section will show how the deployment 

of two different services of the FRACTAL Cloud Platform in the OVH Managed 

Kubernetes platform could be accomplished (one using a YAML file and another one 

using a Helm Chart).  

6.10.1 Deployment of a service in Kubernetes with YAML file 

Kubernetes uses some entities known as Kubernetes objects71 to represent the state 

of the cluster and the different services and applications that run on it. Usually, these 

objects are used to describe: 

• What containerized applications are running (and on which nodes). 

• The resources available to those applications. 

• The policies around how those applications behave, such as restart policies, 

upgrades, and fault-tolerance. 

For creating objects in a Kubernetes system, the Kubernetes API is used (either 

directly or via kubectl). When creating an object in Kubernetes, the object 

specification that describes its desired state, as well as some basic information about 

the object (such as a name) must be provided. This object specification must be 

included as JSON data in the API request body. However, most often, the information 

is provided to kubectl tool in a .yaml file that then, kubectl converts to JSON for the 

API request. The next subsection shows how to deploy an ingress service using a 

.yaml file. 

6.10.1.1 Deploying an Ingress Controller in Kubernetes with a YAML File 

Ingress is a specialized load balancer for Kubernetes. It accepts traffic from outside 

the Kubernetes platform, and load balances it to pods or containers running inside 

the platform (see Figure 68). Ingress exposes HTTP and HTTPS routes from outside 

the cluster to services within the cluster. Traffic routing is controlled by rules defined 

on the Ingress resource. For deploying an Ingress Controller in Kubernetes72 the 

.yaml file available at https://raw.githubusercontent.com/kubernetes/ingress-

nginx/controller-v0.44.0/deploy/static/provider/cloud/deploy.yaml has been used. 

This service can be deployed to Kubernetes with the following command: 

 
71 https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/  
72 https://kubernetes.io/docs/concepts/services-networking/ingress/  

https://raw.githubusercontent.com/kubernetes/ingress-nginx/controller-v0.44.0/deploy/static/provider/cloud/deploy.yaml
https://raw.githubusercontent.com/kubernetes/ingress-nginx/controller-v0.44.0/deploy/static/provider/cloud/deploy.yaml
https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/
https://kubernetes.io/docs/concepts/services-networking/ingress/
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kubectl apply -f https://raw.githubusercontent.com/kubernetes/ingress-
nginx/controller-v0.44.0/deploy/static/provider/cloud/deploy.yaml 

 

Figure 68: Ingress Load Balancer for Kubernetes. 

6.10.2 Deployment of a service in Kubernetes using a Helm Chart 

Helm charts are a set of manifests that allow to define the required Kubernetes 

resources and deployments along with their configuration. For the deployment of a 

service in the Kubernetes platform using a Helm Chart, Kubernetes accesses the Helm 

Chart Museum of the Harbor private registry (see Section 5.7). Helm uses the 

$KUBECONFIG environment variable used to specify the Kubernetes configuration file 

to deploy charts from the available repositories in Kubernetes. The next subsection 

shows how to deploy lakeFS dataset repository using a Helm chart (see also Section 

5.7 for working with Helm charts in Harbor Helm chart museum). 

6.10.2.1 Deploying lakeFS Dataset Repository with a Helm Chart 

lakeFS can be installed on Kubernetes by using the Official lakeFS Helm Chart73. 

Some parameters could be customized74 by applying the lakefs.yml file (see Figure 

69) when installing lakeFS using the Helm chart. To install lakeFS with the desired 

parameters customization, the following command can be used (please, note that 

this chart is being accessed from the FRACTAL repository in the Harbor Helm Chart 

museum as described in Section 5.7): 

 
73 https://artifacthub.io/packages/helm/lakefs/lakefs  
74 https://docs.lakefs.io/reference/configuration.html#example-minio  

https://raw.githubusercontent.com/kubernetes/ingress-nginx/controller-v0.44.0/deploy/static/provider/cloud/deploy.yaml
https://raw.githubusercontent.com/kubernetes/ingress-nginx/controller-v0.44.0/deploy/static/provider/cloud/deploy.yaml
https://artifacthub.io/packages/helm/lakefs/lakefs
https://docs.lakefs.io/reference/configuration.html#example-minio
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helm install -f lake.yml lakefs fractal/lakefs --version 0.5.56 

 

 

Figure 69: lakeFS Helm Charts parameters customization YAML file. 
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7. Conclusions 

This deliverable is part of the FRACTAL Task 5.2 developing a runtime platform to 

deploy, test and run the AI algorithms and it is a continuation of the previous 

deliverable D5.2 Intermediate Platform for Federated AI. In the previous deliverable, 

a list of requirements for the FRACTAL Cloud Platform were presented in addition to 

functional and technical descriptions of different technologies that could fit with those 

requirements. 

In this deliverable, the list of the specific technologies selected for the FRACTAL Cloud 

Platform was presented, as well as a detailed procedure of the installation of each 

technology/component. On top of that, user guidelines were specified for each 

component on the FRACTAL Cloud Platform, which lead to detailed instructions for 

the Use Cases to use the components identified according to their needs. 
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