

Deliverable Id: D5.4

Deliverable name: Platform and building blocks for Federated AI

Status: Draft

Dissemination level: Public

Due date of

deliverable:

2022-08-31 (M24)

Actual submission

date:

2022-08-26 (M24)

Work package: WP5 “AI and Safe Autonomous Decisions”

Organization name of

lead contractor for this

deliverable:

IKERLAN

Authors: Juan Manuel Besga, IKER

Kevin Villalobos, IKER

Mikel Irastorza, IKER

Vahid Mohsseni, UOULU

Huong Nguyen, UOULU

Mickaël Bettinelli, UOULU

Matthieu Chailloux, UOULU

Harisyam Manda, AVL

Alexander Flick, PLC2

Alfonso González, ZYLK

Sergio Martín, ZYLK

Enrico Ferrari, RULEX

Reviewers: Nadia Caterina Zullo Lasala, ROT

Amal Alrish, ROT

Enrico Ferrari, RULEX

Abstract:

D5.4 - Platform and building blocks for Federated AI

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 2 of 110

This deliverable is a part of FRACTAL WP5 Task 5.2 developing a runtime

platform to deploy, test and run the AI algorithms developed in the project.

The deliverable provides technical details about the implementation aspects

of the different modules (installation, configuration, etc.) as well as

instructions for their use and customization by the future users of the cloud

platform, complementing the deliverable D5.2 named “Intermediate platform

for Federated AI”, in which cloud platform logical and functional descriptions

were given.

Co-funded by the Horizon 2020 Programme of the European Union
under grant agreement No 877056.

This project has received funding from the ECSEL
Joint Undertaking (JU) under grant agreement No
877056

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 3 of 110

Contents

1. History ... 6

2. Summary .. 7

3. Introduction .. 8

4. Cloud platform overview .. 11

4.1 Cloud platform modules .. 13

4.1.1 Data ingestion ... 14

4.1.2 Raw data storage ... 14

4.1.3 Data transformation ... 14

4.1.4 Repositories .. 14

4.1.5 Machine learning workflows orchestration.. 15

4.1.6 Workflow management ... 15

4.1.7 Models preparation for FRACTAL Edge ... 15

4.2 Platform infrastructure .. 16

4.2.1 Public cloud services provider .. 16

4.2.2 Public cloud services ... 17

5. Cloud platform modules implementation .. 21

5.1 Module development and deployment guidelines 21

5.2 Data ingestion ... 21

5.2.1 Kafka platform with Strimzi ... 21

5.3 Raw data storage ... 26

5.4 Data preprocessing and feature extraction .. 32

5.5 Dataset repository and feature store .. 37

5.5.1 lakeFS .. 37

5.5.2 MinIO ... 39

5.5.3 Feast .. 42

5.6 Model repository .. 44

5.6.1 DVC.. 45

5.6.2 MLBuffet ... 47

5.6.3 MLflow .. 48

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 4 of 110

5.7 Image repository ... 49

5.7.1 Harbor .. 50

5.7.2 Deploying OVH Managed Private Registry .. 50

5.7.3 Configuring OVH Managed Private Registry .. 51

5.8 ML orchestration .. 55

5.8.1 MLBuffet ... 55

5.8.2 MLflow .. 56

5.8.3 Kubeflow ... 56

5.9 Workflow management ... 59

5.9.1 Airflow .. 60

5.10 Model preparation for FRACTAL Edge .. 63

5.11 Platform infrastructure .. 65

5.11.1 Configuring the OVH Managed Kubernetes 65

5.11.2 Accessing the OVH Managed Kubernetes Service 66

5.11.3 Deploy and access the Kubernetes Dashboard 67

6. Cloud platform use guidelines ... 72

6.1 Data ingestion ... 72

6.1.1 Kafka platform ... 72

6.2 Raw data storage ... 75

6.3 Data preprocessing & feature extraction ... 76

6.4 Dataset repository and feature store .. 79

6.4.1 lakeFS .. 79

6.4.2 Feast .. 82

6.5 Model repository .. 84

6.5.1 DVC.. 85

6.5.2 MLBuffet ... 86

6.5.3 Kubeflow and MLflow .. 87

6.6 Harbor Private Registry ... 89

6.6.1 Using Harbor in FRACTAL Cloud Platform ... 89

6.6.2 Using the Image Repository ... 91

6.6.3 Using the Helm Chart Museum ... 92

6.7 ML orchestration .. 94

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 5 of 110

6.7.1 MLBuffet ... 94

6.7.2 Kubeflow and MLflow .. 96

6.8 Workflow management ... 99

6.8.1 Airflow .. 99

6.9 Model preparation for FRACTAL Edge .. 101

6.9.1 Triggering a preparation run .. 101

6.9.2 Upload model into MLflow Repository within DAG 101

6.10 Upload configuration scripts to FRACTAL Cloud Platform 102

6.10.1 Deployment of a service in Kubernetes with YAML file 102

6.10.2 Deployment of a service in Kubernetes using a Helm Chart 103

7. Conclusions .. 105

8. List of figures ... 106

9. List of tables .. 108

10. List of abbreviations .. 109

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 6 of 110

1. History

Version Date Modification reason Modified by

0.1 2022-03-28 Initial draft
Juan Manuel Besga

(IKER), All authors

0.2 2022-06-14 Final version
Juan Manuel Besga

(IKER), All authors

0.3 2022-06-18
Final polishing before the

internal review

Mikel Irastorza, Juan

Manuel Besga (IKER)

0.4 2022-07-28

Final version with

modifications suggested by

internal reviewers

Mikel Irastorza, Juan

Manuel Besga (IKER)

1.0 2022-08-26
Final clean-up, delivered

version

Mikel Irastorza, Juan

Manuel Besga (IKER)

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 7 of 110

2. Summary

This document presents the specification of the cloud platform for FRACTAL AI,

toolkits, and custom and pre-trained models for AI-based Algorithms developed in

other tasks. It complements to the deliverable D5.2 named “Intermediate platform

for Federated AI”, in which cloud platform logical and functional descriptions were

given, providing technical details about the cloud platform modules, or building

blocks. In this deliverable the cloud platform modules are presented from two points

of view. On the one hand, it covers the implementation aspects of the different

modules (installation, configuration, etc.), while on the other hand it includes

instructions for the use, customization, etc., of the modules by the future users of

the cloud platform.

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 8 of 110

3. Introduction

As mentioned in deliverable D5.1 “Specification of AI methods for use case

applications”, three machine learning approaches will be considered in FRACTAL

Project to meet the requirements of a variety of machine learning models for the

different use cases: centralised, distributed and federated learning.

In the centralized learning approach, data is centralized into a common dataset, on

the top of which different machine learning models are built and trained, actions that

usually are performed in a cloud platform.

In the distributed learning approach, there are several nodes, and each node builds

its own machine learning model which is trained with the data captured by the nodes

(locally). In this approach, a pre-built model can be trained in the cloud platform with

a common dataset, after which this model can be deployed to the different edge

nodes where this model can be retrained with local data.

Finally, in the federated learning approach, the nodes learn collaboratively from a

shared model while keeping their own training data locally. The shared model is first

trained in a centralized way using a large-scale centralized dataset and then, the

distributed nodes download the model and improve it by using their own local data.

Eventually, nodes send models related data (such as performance indicators,

weights, parameters, etc.) to the centralized node where are combined with the

shared model, to improve the overall performance of the models. Then, this shared

model is sent back to the distributed nodes where it could be fine-tuned again with

local data. This way, federated learning ensures to keep the generalization

capabilities of models built over a large-scale dataset, while keeping the privacy of

sensitive (and critical) data and a low latency for real-time predictions or stream data

processing.

In Figure 1, these three approaches are shown.

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 9 of 110

Figure 1. Learning Approaches in FRACTAL: (left) Centralized Learning; (centre) Decentralized Learning;
(right) Federated Learning

The FRACTAL System, which provides the necessary infrastructure needed for this

three machine learning approaches, is an Edge-oriented platform which eventually

would require Cloud support for heavy resource-demanding tasks like video-

processing, heavy ML model training or large data storage (historical data, for

example).

This deliverable reports on the technical definition of the FRACTAL Cloud Platform

and its modules or building blocks, developed in task T5.2 “FRACTAL AI Platform”,

while in the deliverable D6.1 “FRACTAL processing node design and implementation”,

the architecture of the Fractal Edge Node and its building blocks are described.

This deliverable complements the deliverable D5.2 named “Intermediate platform for

Federated AI”, which focuses on the logical and functional descriptions of FRACTAL

Cloud Platform modules, providing a detailed technical description of the

implementation of these modules or building blocks, and giving guidelines for their

use for providing support to the FRACTAL Edge Nodes.

This document is organized as follows. In Section 4, an overview of the FRACTAL AI

cloud platform, its modules, and its relationship with other elements of the FRACTAL

System, such as the FRACTAL Edge Nodes, is provided. Also, a summary of the

platform modules and their functionality is presented (for more detailed information,

see deliverable D5.2 “Intermediate platform for Federated AI”).

From this point on, in Section 5, a detailed technical description of the platform

modules or building blocks is provided, with emphasis on their implementation.

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 10 of 110

Section 6 presents instructions and guidelines for the use of the modules

implemented in the cloud platform, in order to configure, customize and prepare

them to give the required support to FRACTAL nodes.

Finally, some conclusions close the deliverable, summing up the main achievements.

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 11 of 110

4. Cloud platform overview

In FRACTAL System, the edge nodes will be in charge of performing the critical

computations in a timely and power-efficient manner, while the cloud infrastructure

will be available to support the edge in any operation for which the edge is limited or

not performant enough. Thus, the main identified tasks for the cloud will be the most

demanding workloads like data storage, big data processing and model training.

In this manner, depending on the use case, the cloud components that will be used

will vary according to the workload demanded by the use case or the edge

capabilities.

Figure 2 shows the FRACTAL Edge Node architecture and its relationship with the

Cloud Platform.

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 12 of 110

Figure 2: Relationship between the cloud platform and the edge nodes.

In the lower part of the edge node, the hardware architecture is shown, as well as

the basic software elements (operating system, drivers, etc.). This architecture is a

generic architecture that will have different implementations, depending on the

hardware platform used in the node. Above the hardware and basic software layer

(operating system, drivers, etc.), the FRACTAL Edge software layer is shown, which

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 13 of 110

will offer the different services necessary to perform the tasks to be carried out in it

(data ingestion, data processing, inference, training/re-training of these models,

etc.). The services offered by the edge node will depend on the hardware platform,

so that certain services will not be available when using low-resource hardware

platforms.

In cases where the node does not have enough resources to be able to perform the

necessary tasks, the cloud platform described in this deliverable, which is represented

in the upper part of Figure 2, could be used as a support. This cloud platform will

communicate with the edge node using different protocols for the exchange of

captured data, processed datasets and machine learning models.

4.1 Cloud platform modules

The FRACTAL Cloud Platform is composed of different services that are deployed over

the infrastructure of a public cloud services provider. These services offer different

functionalities related to the management of the data and machine learning

workflows in the FRACTAL Project. In the following subsections, the main modules of

the FRACTAL Cloud Platform, shown also in Figure 3, are overviewed.

Figure 3: FRACTAL Cloud Platform modules.

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 14 of 110

4.1.1 Data ingestion

This component provides the required functionality to ingest the data from sensors

and data capture systems as soon as they are captured (i.e., in real time). This is

one of the two approaches in which the cloud platform ingests data, streaming data

ingestion. The other approach, bulk data ingestion, may involve the use of the Raw

Data Storage module or the Processed Dataset Repository depending on whether the

data uploaded are raw data or processed datasets.

4.1.2 Raw data storage

This component allows to store the raw data received in the FRACTAL Cloud Platform,

through the services related to the data ingestion component, in the streaming data

ingestion approach, or directly uploaded to the platform, in the batch data ingestion

approach.

4.1.3 Data transformation

The data stored in the Raw Data Storage module, are retrieved by this module, which

applies different data pre-processing techniques in order to transform them into

datasets that are cleaned, prepared and optimized to be exploited, by using advanced

data analytics techniques, such as machine learning algorithms. New transformations

can also be performed on previously processed data.

4.1.4 Repositories

Different kinds of repositories are included into this component in order to allow the

storage of some of the assets that will be used in the FRACTAL Cloud Platform.

4.1.4.1 Datasets repository

This module allows to store and manage the processed data sets that will be used to

train different machine learning models. These data can be, either the result of a

data transformation, or processed data uploaded directly to the cloud platform (batch

processed data ingestion). The repository also provides enhanced functionalities

related to datasets version control.

4.1.4.2 Models repository

This repository allows to store and manage the different ML models used in the

project. The repository allows the storage not only of the code which allows to build

up and deploy the models, but also of the parametrizations and configurations of

models that have already been trained (freezed and pre-trained models). The

repository also provides capabilities to be integrated with the different components

in charge of machine learning workflow management.

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 15 of 110

4.1.4.3 Container registry

This repository allows to store and deploy different services provided as containerized

images. The images to be stored in this repository can serve for a variety of purposes

such as containerized services involved in different components that compose the

FRACTAL Cloud Platform, images with built-in machine learning models that are ready

to be deployed on the edge, or containerized processes to process and manage data.

4.1.5 Machine learning workflows orchestration

This component is in charge of the management and orchestration of the workflows

related to the machine learning models in the FRACTAL Project. Among the different

tasks to be orchestrated by this component, some of the most relevant ones are the

following:

1. The models training processes.

2. The evaluation and optimization (parameters fine tuning) of the trained

models.

3. Serving the models in the cloud.

4. The integration of the different services of the platform with the model’s

storage systems.

4.1.6 Workflow management

This component is in charge of the management and orchestration of the different

data workflows through the FRACTAL Cloud Platform. Among the different tasks to

be orchestrated by this component, some of the most relevant ones are the following:

1. The storage of the ingested data into the platform.

2. The transformation of raw data into pre-processed datasets and their storage.

3. The integration of the different services of the platform with the data storage

systems.

4. The scheduling of data-related workflows.

Additionally, this component will also be in charge of the orchestration of the different

tasks that allow to prepare the models for being deployed on the edge.

4.1.7 Models preparation for FRACTAL Edge

In this module the preparation required to map ML models to the node computation

resources is performed. Given the different capabilities of nodes, this preparation

may involve only parameter encoding for model update after the re-training of an

already mapped model. Still, it may also need to provide for the (re-)generation of

the actual model executable for a given target.

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 16 of 110

4.2 Platform infrastructure

The FRACTAL Cloud Platform is deployed over the infrastructure of a public cloud

services provider, which offers different services that usually can be grouped in three

categories: Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and

Software as a Service (SaaS). In the following subsections, details about this cloud

services provider and the offered services on the top of which the FRACTAL Cloud

Platform will be deployed, will be provided.

4.2.1 Public cloud services provider

There exist different providers offering cloud computing services that can be publicly

consumed in an on-demand fashion. Among these providers, some of the most

popular ones, that share the highest market quotas1 are Amazon Web Services2,

Microsoft Azure3 and Google Cloud Platform4. However, there exist also other

providers such as Alibaba Cloud5, IBM Cloud6 or OVH7.

In FRACTAL Project, OVH has been selected as cloud services provider, for developing

the FRACTAL Cloud Platform. This selection has been motivated by two main reasons:

on the one hand, considering the research and innovation nature of this project that

has been funded by the European Commission, it seems reasonable to select an

European cloud services provider. On the other hand, OVH is built upon OpenStack8,

an open-source cloud computing platform, which favors the possibilities of migrating

the platform and getting rid of vendor-locking.

4.2.1.1 OVH Public Cloud

With 30 datacenters distributed around the world and more than 1.6 million clients

since 1999, OVH is the one of the largest cloud services providers in the world and

largest one in Europe. As part of its public cloud solution, OVH offers its customers

different resources available through the Internet. These resources are consumed in

an on-demand fashion (resources are allocated and released as required) and in a

’pay as you go’ business model, on which customers only pay for the resources they

use. The services are offered with a high abstraction level from the subjacent

infrastructure (i.e., when customers run a service, they are not aware of the

infrastructure resources on which it runs). In the following subsection, the different

services offered by OVH from each category will be reviewed.

1 https://www.statista.com/chart/18819/worldwide-market-share-of-leading-cloud-infrastructure-
service-providers/
2 https://aws.amazon.com/
3 https://azure.microsoft.com/
4 https://cloud.google.com/
5 https://eu.alibabacloud.com/
6 https://www.ibm.com/
7 https://www.ovhcloud.com/
8 https://www.ovhcloud.com/es-es/public-cloud/why-ovh-public-cloud/ and https://www.openstack.org/

https://www.statista.com/chart/18819/worldwide-market-share-of-leading-cloud-infrastructure-service-providers/
https://www.statista.com/chart/18819/worldwide-market-share-of-leading-cloud-infrastructure-service-providers/
https://aws.amazon.com/
https://azure.microsoft.com/
https://cloud.google.com/
https://eu.alibabacloud.com/
https://www.ibm.com/
https://www.ovhcloud.com/
https://www.ovhcloud.com/es-es/public-cloud/why-ovh-public-cloud/
https://www.openstack.org/

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 17 of 110

4.2.2 Public cloud services

The services offered by OVH can be grouped in three main categories: Infrastructure

as a Service (IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS).

The FRACTAL Cloud Platform will be leveraged by different services from these

categories. In the following sections, the most relevant services and resources from

each category will be presented. However, it is worth mentioning that these are not

the unique resources involved in this platform. There are other services and resources

(e.g., firewalls, public IPs, DNSs, private networks, etc.) that, although they will also

be used, will not be presented since they are more related to the subjacent

infrastructure resources, rather than to the FRACTAL platform.

4.2.2.1 Infrastructure Services (IaaS)

IaaS refers to on-demand provisioning of infrastructural resources, such as storage

space, computing power, networks, and other fundamental computing resources.

Among the different IaaS resources offered by OVH, some of the most relevant ones

in the FRACTAL Cloud Platform are the following:

4.2.2.1.1 Compute Instances

Different compute instances will be used in different pools of nodes that

conform a cluster on which the different services and applications of the

FRACTAL Cloud Platform will run.

4.2.2.1.2 Block Storage

Block Storage resources allow to create storage volumes that can be

associated with the compute instances or specific services of the platform.

4.2.2.1.3 Object Storage

The OVH Object Storage service manages data as objects and allows to

expand the storage capabilities without having to add more hardware. This

service is API compliant9 with AWS Simple Storage Service (S3) API10 which

is an interesting property to be integrated with other services.

4.2.2.1.4 Load Balancer

OVH Load Balancer11 service distributes the load between its different

services, guaranteeing the scaling of the infrastructure in the face of increased

traffic and ensuring fault tolerance and optimization of response times. In

FRACTAL a Load Balancer will be used to provide public access to the different

services running on the platform.

9 https://blog.ovhcloud.com/ovhcloud-object-storage-clusters-support-s3-api/
10 https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
11 https://www.ovh.es/soluciones/load-balancer/

https://blog.ovhcloud.com/ovhcloud-object-storage-clusters-support-s3-api/
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://www.ovh.es/soluciones/load-balancer/

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 18 of 110

4.2.2.2 Platform Services (PaaS)

PaaS refers to providing platform layer resources, including operating system support

and software development frameworks. In the following subsections, the most

relevant PaaS resources offered by OVH, that will be used in the FRACTAL Cloud

Platform, are presented.

4.2.2.2.1 OVH Managed Kubernetes

OVH Managed Kubernetes allows to start a Kubernetes12 cluster to orchestrate

different containerized applications in the OVH cloud in a straightforward manner.

Kubernetes is an open-source container-orchestration system for automating

computer application deployment, scaling, and management. FRACTAL will use a

Kubernetes cluster to deploy, manage and execute the different services

developed alongside the different partners of the FRACTAL Project.

These services will be stored in the form of containerized docker images. These

images, along with the Helm charts specifying their deployment and configuration

will be stored and managed by the Harbor container registry. During the

deployment, Kubernetes will access the registry to get the docker images and

Helm charts to configure and deploy the containerized services in different pods

of the Kubernetes cluster (see Figure 4 and Figure 58).

12 https://kubernetes.io/

https://kubernetes.io/

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 19 of 110

Figure 4: OVH Managed Kubernetes Service.

4.2.2.3 Software Services (SaaS)

Software as a Service (SaaS): SaaS refers to providing on demand applications over

the Internet. SaaS providers offer fully developed, purpose-specific solutions to end

users. The most relevant SaaS resources offered by OVH, that will be used in the

FRACTAL Cloud Platform, are the following:

4.2.2.3.1 OVH Managed Container Registry

The OVH Managed Private Registry presented in Section 5.7.

4.2.2.3.2 Horizon Interface

The Horizon interface is the graphical management interface offered by OVH

to manage OpenStack's resources. In FRACTAL, this interface will be used

since some management functionalities are only available from this interface

and not through OVH portal.

4.2.2.3.3 OVH API

The OVH API is a Web service allowing OVH customers to buy, manage,

upgrade and configure OVH products without using the graphical customer

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 20 of 110

interface (OVH manager). In FRACTAL, this API will be used since some

management functionalities are only available from it and not through OVH

portal.

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 21 of 110

5. Cloud platform modules implementation

This section presents the implementation details of cloud platform modules and the

tools deployed in each one, starting with the guidelines proposed to develop and

deploy the cloud platform modules.

5.1 Module development and deployment guidelines

During the development of the cloud platform, IKERLAN manages the Kubernetes

service deployed over OVH on which the different services that compose the FRACTAL

Cloud Platform will be deployed, so all components developed have to be deployed

by IKERLAN. The steps proposed to develop and deploy components for the cloud

platform are the following:

• The partners that develop different components should develop these

components locally using an existing Kubernetes cluster or creating a new

local Kubernetes cluster (using microk8s13 for example).

• Once the component is developed, deployed and tested locally, each partner

will have to provide the corresponding configuration files (YAML or Helm

charts14) and any additional instructions to deploy each service to IKERLAN.

Examples of this configuration files are included on components description.

• IKERLAN will use those files to deploy the components on the FRACTAL Cloud

Platform.

Any new component that needs to be developed should follow this procedure.

5.2 Data ingestion

5.2.1 Kafka platform with Strimzi

Data ingestion is the first step in any data processing. In FRACTAL Cloud Platform,

data will typically be sent from IoT devices to Kafka brokers on the cloud. IoT devices

will communicate with Kafka15 using MQTT16 (an open source publish/subscribe

messaging protocol) and Kafka Connect (a connector which can establish connection

between MQTT broker and Kafka). This requires an additional MQTT broker to be set

up in Kubernetes (see Figure 5).

13 https://microk8s.io/
14 https://helm.sh/
15 https://kafka.apache.org/
16 https://mqtt.org/

https://microk8s.io/
https://helm.sh/
https://kafka.apache.org/
https://mqtt.org/

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 22 of 110

Figure 5: Data flow using MQTT broker with Connect

Another possible way to communicate from IoT devices is using MQTT broker which

can stream data via Kafka Connect to the Kafka broker. MQTT broker is a go-to way

for connecting devices across unreliable high latency and low network bandwidth

environments in a stable way where only one way communication from IoT devices

to Kafka is needed. This is a very common approach in the automotive industry, see

Figure 26 with schematic of MQTT broker interfacing with Connect

Figure 6: Schematic showing Kafka Connect bridging MQTT broker and Kafka broker

The IoT devices can either communicate with Kafka using the traditional approach of

communication with the MQTT broker on kubernetes or using the Kafka-MQTT proxy

as shown in Figure 7

Figure 7: Communication from Edge to deployed Kafka service

Based on the above-mentioned architecture, Kafka cluster is deployed on Kubernetes

using Strimzi operator, and Kafka Connect is added for connecting MQTT protocol

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 23 of 110

devices. Zookeeper17, an open-source Apache project that provides a centralized

service for providing configuration information, naming, synchronization and group

services over large clusters in distributed systems, is deployed to manage Kafka

cluster.

5.2.1.1 Strimzi Operator

Strimzi18 provides a way to run an Apache Kafka cluster on Kubernetes in various

deployment configurations. Then Kafka can be exposed outside Kubernetes using

NodePort, Load balancer, Ingress and OpenShift Routes, depending on the needs,

and these are easily secured using TLS.

The Kube-native management of Kafka is not limited to the broker. Kafka Topics can

be managed by users, Kafka MirrorMaker and Kafka Connect using Custom

Resources.

Figure 8: Strimzi Operator and Kafka Architecture in K8s

The IoT devices can either communicate with Kafka using the traditional approach of

communication with the MQTT broker on Kubernetes or using the Kafka-MQTT proxy.

5.2.1.2 Pre-requisites Installation

Before installing Strimzi platform on Kubernetes, there are necessary tools that must

be installed on the user’s laptop. The following are the pre-requisites:

1. `kubectl` can be downloaded from Kubernetes-Tools

(https://kubernetes.io/docs/tasks/tools/)

2. Install `helm` by using the instructions in the following link

(https://helm.sh/docs/intro/install/)

17 https://zookeeper.apache.org/
18 https://strimzi.io/

https://kubernetes.io/docs/tasks/tools/
https://helm.sh/docs/intro/install/
https://zookeeper.apache.org/
https://strimzi.io/

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 24 of 110

3. Install Kafka-python library with `pip install kafka-python` for accessing

kafka using python.

5.2.1.3 Strimzi Operator installation

Firstly, a namespace should be created for Kafka in Kubernetes and then Strimzi

operator file should be installed in the same namespace:

kubectl create namespace kafka

The following steps are needed to install the components:

1. Obtain the `kubeconfig` file from the FRACTAL OVH cloud’s Manage

Kubernetes page as shown in Figure 9

Figure 9: Obtaining the kubeconfig file

2. Use `kubeconfig` to set the config for kubectl present in the

`$HOME/.kube/config`

3. Verify the access to Kubernetes control plane using the command `kubectl

cluster-info` in the terminal window

4. Then create the namespace `kafka-stimzi` to use it for deploying all the

components and set it to default for the Kubernetes context using the

commands

kubectl --kubeconfig your-kubeconfig create namespace kafka-strimzi
kubectl --kubeconfig your-kubeconfig config set-context --current --namespace
kafka-strimzi

5. Add Strimzi for Kubernetes operator

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 25 of 110

kubectl create -f https://strimzi.io/install/latest?namespace=kafka -n kafka

6. Install Strimzi Kafka Platform on the Kubernetes cloud using the YAML file

from the repo https://github.com/harisyammnv/kafka-stream-ovh-fractal

kubectl apply -f kafka.yaml -n kafka

With the completion of the above steps the confluent platform with all the

components needed will be deployed. The status of the components can be checked

using the following command

kubectl get pods -n <namespace>

Figure 10: Pods in the K8s cluster

Once the external load balancers are created, the DNS entries for Kafka brokers and

the Kafka bootstrap service will be added to the DNS table which will expose all the

deployed services to the external partners.

Name of the Service Description URL

Kafka Bootstrap Server For communicating with Kafka

brokers

http://kafka-bs.fractal-kafka.ovh/

Schema Registry For sending validation

schemas

http://schemaregistry.fractal-

kafka.ovh/

KSQL DB For SQL Like abstraction on

streaming data

http://ksqldb.fractal-kafka.ovh/

Kafka Connect For enabling connection from

data sinks and sources to

Kafka

http://connect.fractal-kafka.ovh/

Kafka REST Proxy To access Kafka using REST

methods

http://restproxy.fractal-

kafka.ovh/

Table 1: Kafka platform access URLs

https://github.com/harisyammnv/kafka-stream-ovh-fractal

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 26 of 110

5.3 Raw data storage

OVH Cloud Object Storage (OVH S3) service is the first persistent place where raw

data will be stored in the FRACTAL Cloud Platform. In object storage, data is stored

as standalone devices called “objects”. Each of these objects consists of the data, a

unique identifier and the associated metadata. A typical use case for object storage

is for catalogues of documents handled by applications, which provide static content

including images, text files, tables, audio or video. OVH Object storage allows

massive parallel read and write throughput of unstructured data objects. OVH offers

RESTful S3 API to interact with its Object Storage, where the S3 API allows for

accessing the objects programmatically and makes it easy to automate persistence

or deletion of data objects from various applications. The OVH Object Storage service

API is compliant with Amazon Web Services (AWS) Simple storage S3 API which

enables the developers to use the CLI tools from Amazon namely ̀ awscli` and using

python libraries like `boto3` in data processing scripts.

For accessing OVH Object storage a user account has to be setup with appropriate

permissions. This can be done using the OVH Cloud’s Public Cloud panel, add user

and assign ‘ObjectStore operator’ role.

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 27 of 110

Figure 11: User Access and Roles Dashboard

Download the Openstack RC file which is needed to setup the credentials for the

user in the device from where the data is to be transferred

Figure 12: OpenStack RC file for accessing Horizon

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 28 of 110

5.3.1.1 Setting Openstack client

To access Object storage in FRACTAL cloud using python, the openstack client’s

python library must be installed. Install Openstack client using

pip install python-openstackclient

The following setup the OpenStack environment variables using the file downloaded

openrc file from the above step

Figure 13: Installing python openstack client and setup

Then, setup a password of the user’s choice to setup the environment variables. To

access OVH S3 an access key and a secret key are required which can be created

using the openstack API with the following command

openstack ec2 credentials create

After these steps, an output console shows the following credentials:

Figure 14: Creating local credentials for object storage access

Use the credentials shown in the console in AWS config file. First the AWS cli and cli-

plugin endpoint have to be installed using

pip install awscli awscli-plugin-endpoint

Then, setup the AWS credentials using the following and copy the access and secret

key from above

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 29 of 110

Figure 15: Editing credentials in awscli credentials file

After this, setup the AWS config using the following:

Figure 16: Editing AWS config file to access OVH object storage

These steps will setup the access to OVH Object storage from a client. The access to

OVH S3 can be verified using the following command

aws --profile default s3 ls

Figure 17: listing object storage containers in OVH cloud

5.3.1.2 Creating buckets on OVH Object Storage

To create a bucket in OVH Object Storage, Access the OVH cloud console and go to

the Public Cloud page, to use the “Create Object Storage Container” as shown in

Figure 18

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 30 of 110

Figure 18: Object storage container dashboard in OVH cloud

Then access the Object Storage from the left pane to create an object container

Figure 19: Creating Object container in the cloud

An object container is created by following the steps shown in Figure 20

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 31 of 110

Figure 20: Steps to create an object container

This creates the object container as shown in Figure 21:

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 32 of 110

Figure 21: Final status after object container creation

5.4 Data preprocessing and feature extraction

Data preprocessing is one component of data preparation, where raw data is

processed by correcting, manipulating, dropping or re-arranging the data before it is

being used in the data mining process. This step is preformed to ensure and enhance

performance of various machine learning algorithms which consume this data for

training.

Feature extraction is the process of transforming pre-processed data into numerical

features that can be processed while preserving the information in the original raw

data. Feature extraction can be performed either by manual definitions or through

algorithms which can do automatic feature extractions.

In OVH cloud the data pre-processing and feature extraction can be done by using

the “Data Processing” service. This service uses Apache Spark19, processing engine

to process large amounts of data parallelly. To use Apache Spark, there is an

opensource library in python called PySpark20 which offers interface to interact with

Spark

5.4.1.1 Managed data processing - Spark Service

To perform data pre-processing a python spark job has to be programmed and

uploaded to OVH cloud Object Storage. To setup the job in the Data processing

Manager, certain requirements have to be met.

19 https://spark.apache.org/
20 https://spark.apache.org/docs/latest/api/python/

https://spark.apache.org/
https://spark.apache.org/docs/latest/api/python/

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 33 of 110

Requirements:

• Access to OVH cloud account with a project

• An Openstack user in the cloud project and access to Openstack Horizon

Dashboard (can be created as shown here)

• Application code as python files

• An environment.yml in Conda standard

To create a simple spark job a starter script has been prepared which can be accessed

in this link https://github.com/harisyammnv/data-transformation-spark-sample. The

script has to be uploaded in an object storage as shown in Figure 22:

Figure 22: Object Container creation

First create a container as shown above in the figure. Once the container is created

upload the python scripts and the environment YAML file to the container as shown

in Figure 23:

https://docs.ovh.com/au/en/public-cloud/creation-and-deletion-of-openstack-user/
https://github.com/harisyammnv/data-transformation-spark-sample

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 34 of 110

Figure 23: Uploading objects to the container

To create the spark job, proceed to the Data processing tab in the OVH cloud Manager

and then create the job with Spark version and region selected to the same one

where the object container resides. These steps can be seen in Figure 24:

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 35 of 110

Figure 24: Setting up a Data processing job

For configuring the job, the environment.yml file has to be present which can be

created as shown at this link https://docs.conda.io/projects/conda/en/latest/user-

guide/tasks/manage-environments.html#sharing-an-environment

https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#sharing-an-environment
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#sharing-an-environment

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 36 of 110

Figure 25: Selecting the container and python script in the data processing job

Then submit the job; the job logs and monitoring can be accessed from the job

submission page. A Grafana dashboard can be used to monitor the progress of the

job when it is running. The logs from the spark runtime are available in the logs tab

Figure 26: Job processing dashboard with logs and monitoring

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 37 of 110

5.5 Dataset repository and feature store

5.5.1 lakeFS

In the FRACTAL Cloud Platform multiple datasets of a variety of use cases will be

stored. To provide this feature to the FRACTAL Cloud Platform, lakeFS will be

deployed over the OVH Managed Kubernetes Service following the official

documentation21 (using the official Helm chart22 stored on the Harbor Helm Charts

Museum).

lakeFS23 is an open-source platform that delivers resilience and manageability to

existing object-based storage data lake. It enables building repeatable, atomic and

versioned data lake operations from complex ETL jobs to data science and analytics.

The main advantage of lakeFS is that it provides a Git-like branching and committing

model that scales to exabytes of data. This branching model makes data lakes ACID

compliant by allowing changes to happen in isolated branches that can be created,

merged, and rolled back atomically and instantly. Since lakeFS is compatible with the

S3 API, all popular applications will work without modification.

As mentioned before, lakeFS is designed to be built on top of a conventional object

storage service. As OVH offers an object storage service, it would be reasonable to

use this service to build lakeFS on top of it. As lakeFS affirms that is compatible with

any S3 compliant object storage service, an initial setup using the OVH object storage

service was built. However, an error has been encountered during the installation of

the lakeFS service when trying to build it on top of the OVH object storage service.

After analyzing the error, an incompatibility has been found on the OVH object

storage side, thus, an issue has been opened on GitHub

(https://github.com/treeverse/lakeFS/issues/2471)

The issue has been fixed few days before writing this deliverable so although the

error is currently fixed, the OVH object storage service was discarded because the

issue was not fixed when the FRACTAL Cloud Platform was under development.

Due to this issue with OVH object storage, an alternative object storage solution was

used. For further details on the selected object storage service, see Section 5.5.2.

5.5.1.1 Installation & Configuration

lakeFS can be installed on Kubernetes by using the official lakeFS Helm Chart. Some

parameters will be customized by applying the lakefs.yml file when installing lakeFS

using the chart.

21 https://docs.lakefs.io/quickstart/more_quickstart_options.html#on-kubernetes-with-helm
22 https://artifacthub.io/packages/helm/lakefs/lakefs
23 https://lakefs.io/

https://github.com/treeverse/lakeFS/issues/2471
https://docs.lakefs.io/quickstart/more_quickstart_options.html#on-kubernetes-with-helm
https://artifacthub.io/packages/helm/lakefs/lakefs
https://lakefs.io/

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 38 of 110

helm repo add lakefs https://charts.lakefs.io

helm install -f lakefs.yml lakefs lakefs/lakefs --namespace fractal

Once lakeFS has been deployed it can be checked by using the following command:

kubectl get all -n fractal

Figure 27. lakeFS Service and Deployment

5.5.1.2 Accessing lakeFS

lakeFS can be exposed by using Ingress (or a Load Balancer) by applying the ingress-

lakefs.yml YAML file:

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 name: lakefs-endpoints

https://charts.lakefs.io/

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 39 of 110

 namespace: fractal

 annotations:

 kubernetes.io/ingress.class: "nginx"

 nginx.ingress.kubernetes.io/proxy-body-size: "0"

 nginx.ingress.kubernetes.io/rewrite-target: /$1

spec:

 ingressClassName: nginx

 rules:

 - host: fractal.ik-europe.eu

 http:

 paths:

 - path: /?(.*)

 pathType: Prefix

 backend:

 service:

 name: lakefs

 port:

 number: 5434

kubectl apply -f ./LakeFs/ingress-lakefs.yml

This will expose the dashboard at http://fractal.ik-europe.eu/.

When accessing lakeFS for the first time, an admin user must be configured. After

creating the admin user, the created credentials must be downloaded to access the

lakeFS Portal.

5.5.2 MinIO

MinIO24 offers high-performance, S3 compatible object storage. Native to

Kubernetes, MinIO is available on every public cloud, every Kubernetes distribution,

the private cloud and the edge. MinIO is software-defined and is 100% open source

under GNU AGPL v3.

MinIO has been chosen as the object storage provider because it suits all the

requirements and does not have any incompatibility issue with lakeFS. To provide a

lakeFS compatible object storage to the FRACTAL Cloud Platform, MinIO will be

24 https://min.io/

http://fractal.ik-europe.eu/
https://min.io/

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 40 of 110

deployed over the OVH Managed Kubernetes Service following the official

documentation (using the official Helm chart25 stored on the Harbor Helm Charts

Museum).

5.5.2.1 Installation & Configuration

MinIO can be installed on Kubernetes by using the Bitnami Object Storage Helm Chart

based on MinIO. Some parameters will be customized by applying the minio.yml file

when installing MinIO using the chart.

helm repo add bitnami https://charts.bitnami.com/bitnamihelm install -f
./Minio/minio.yml minio bitnami/minio --namespace fractal

Once MinIO has been deployed, the status can be checked by using the following

command:

kubectl get all -n fractal

25 https://artifacthub.io/packages/helm/bitnami/minio

https://charts.bitnami.com/bitnamihelm
https://artifacthub.io/packages/helm/bitnami/minio

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 41 of 110

Figure 28: MinIO Service and Deployment

5.5.2.2 Accessing MinIO

The Helm chart used to deploy MinIO allows to configure it to be exposed with an

Ingress service. For that, in the MinIO configuration files used for the deployment

(minio.yml) the hostname on which MinIO will be exposed must be set.

When accessing MinIO portal, it will ask for credentials. Access credentials can be

obtained from the deployment of MinIO by using the following commands:

export SECRET_KEY=$(kubectl get secret --namespace default minio -o
jsonpath="{.data.secret-key}" | base64 --decode)

export ACCESS_KEY=$(kubectl get secret --namespace default minio -o
jsonpath="{.data.access-key}" | base64 --decode)

Those credentials will grant access to the MinIO Console.

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 42 of 110

Figure 29: MinIO Console

5.5.3 Feast

Feast26 (whose name is derived from Feature store) is an open-source data system

for managing and storing the input features for models in production. It can serve

the features to a model from both an offline (typically used in training) or an online

store (typically used for real-time prediction). In the workflow, new features will be

continuously materialized to update and refresh the online store after being added to

the offline store.

A Feast feature store needs the following supporting infrastructure: a registry, in

which metadata will be stored, an offline store to store features and an online store

to serve the latest features with low latency. This infrastructure and the features

stored inside it are defined in a feature repository. The versioning capabilities of

lakeFS can be leveraged to keep track of any changes made to it.

The registry can be stored in an S3 bucket using MinIO.

26 https://feast.dev/

https://feast.dev/

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 43 of 110

The online store will be deployed as a Redis database. Multiple stores can use the

same Redis instance.

The offline store can be a data warehouse such as BigQuery27 or Redshift28. Due to

the deployment on OVH Cloud, the “File” offline store will have to be used. This means

that when fetching features from the offline store, they will be read from the defined

data sources (parquet files) and joined using Python. If this does not scale well

enough, Apache Hive29 could be integrated to Spark and MinIO in Kubernetes and be

used as the offline store.

5.5.3.1 Installation

The configuration file (YAML) of Feast is the following:

apiVersion: v1

kind: Namespace

metadata:

 name: feast-fractal

apiVersion: batch/v1

kind: Job

metadata:

 name: feast

 namespace: feast-fractal

spec:

 template:

 spec:

 containers:

 - name: feast-image

 image: img/feast:redis-s3-dependencies

 ports:

 - containerPort: 6566

 command: ["bin/bash","-c","feast"]

 restartPolicy: Never

27 https://cloud.google.com/bigquery
28 https://docs.aws.amazon.com/redshift/latest/mgmt/welcome.html
29 https://hive.apache.org/

https://cloud.google.com/bigquery
https://docs.aws.amazon.com/redshift/latest/mgmt/welcome.html
https://hive.apache.org/

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 44 of 110

Feast has no long running process. It interacts with the various parts of the

infrastructure mentioned above and with the development environment only when

invoked through the CLI or Python SDK. Thus, there is no need to deploy a Feast

service. However, components wishing to update or access the feature store need to

access the SDK or CLI. Feast could be added to these components as a dependency.

If this is not possible or practical, a “feast-job.yaml” file has been provided. This

Kubernetes job can run CLI commands or Python scripts. Feast can be used in the

FRACTAL Cloud Platform through this job.

Feast can be installed easily via a pip command and be added to other components

this way. To use Redis30 and access S3 storage, it needs two dependencies.

pip install 'feast[redis,aws]’

Redis can be deployed on Kubernetes using a Helm Chart provided by bitnami.

helm repo add bitnami https://charts.bitnami.com/bitnami
helm install my-release bitnami/redis

The feast-job.yaml “command” field can be modified to execute various actions using

feast, or to run a python script.

The Feast job can be run using the following command:

kubectl apply –f feast-job.yaml

To check the actions executed by the job:

kubectl -n feast-fractal logs job/feast

5.6 Model repository

One of the FRACTAL Cloud Platform’s features is the AI model repository, where AI

models are stored to make them available for the rest of the services. There are

several options to choose from as a model repository, DVC31, MLflow32, and MLBuffet,

however, some of them cover the FRACTAL Cloud Platform’s requirements better

than others. MLBuffet is a lightweight distributed AI model server which is highly

edge-oriented, and although it could be used for model storage in the cloud, it could

result in a worse performance than other model repositories specifically developed

for cloud instances. Lastly, DVC stands as a good option for model storing and version

controlling. A complete installation procedure is given for DVC, MLBuffet and MLflow

in the following subsections:

30 https://redis.io/
31 https://dvc.org/
32 https://mlflow.org/

https://charts.bitnami.com/bitnami
https://charts.bitnami.com/bitnami
https://redis.io/
https://dvc.org/
https://mlflow.org/

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 45 of 110

5.6.1 DVC

DVC is a framework created to manage the version control of big files, which includes

AI models.

DVC (Data Version Control) can be installed in several ways as a pip python package.

Here are described two installation methods, the first one being the bare metal

installation as a pip Python package, and the second one, as a containerized service,

which will be the preferred method for the OVH Cloud.

• Python package: This is the most common way to install DVC. This requires

pip as the Python packages manager:

$ pip install dvc

• Local storage type: This is the default version of DVC. This mode only allows

DVC to use local directories as repositories of the model versions.

• Remote storage type: DVC has extensions for the most common external

storage: AWS (S3), Google Drive (gdrive), Google Storage Cloud (gs),

Microsoft Azure (azure), Aliyun OSS (oss), SSH connection (ssh), HDFS

(hdfs), so, to make available the use of that extension, this must be added to

the package installation. For instance, if the AWS extension is wanted to be

installed, the following command should be written: pip install “dvc[s3]”.

• Snap: DVC is available in the snap application repositories. To install it in

Linux-based distributions:

$ snap install dvc --classic

• Official repository: DVC can be installed in apt-managed distributions by

adding the official resources to the apt repository:

$ sudo wget https://dvc.org/deb/dvc.list -O /etc/apt/sources.list.d/dvc.list

$ wget -qO - https://dvc.org/deb/iterative.asc | sudo apt-key add -

$ sudo apt update

$ sudo apt install dvc

• Package: The last way to install DVC is downloading the binary package from

the home page (https://dvc.org) or the release page on GitHub

(https://github.com/iterative/dvc/releases/), and executing the file:

$ sudo apt install ./dvc_<dvc-release-version>_amd64.deb

When the installation ends, to start using the tool on the directory containing the files

to be tracked by DVC (usually the root directory of a Git repository), DVC must be

started:

https://dvc.org/deb/dvc.list
https://dvc.org/deb/iterative.asc
https://dvc.org/
https://github.com/iterative/dvc/releases/

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 46 of 110

$ dvc init -<flag>

For the OVH Cloud instance, a containerized service to be deployed with Kubernetes

has been developed. This service utilizes the DVC S3 storage plugin which is also

compatible with the MinIO object storage deployed in the FRACTAL Cloud Platform.

The container image must be built first, and the Dockerfile is as follows:

syntax=docker/dockerfile:1.2

ARG PYTHON_VERSION=3.8.1

FROM python:${PYTHON_VERSION}

shows secret from secret location:

RUN mkdir /run/secrets

RUN mkdir /run/secrets/dvc

RUN mkdir /usr/flask_app

RUN --
mount=type=secret,id=secretaccesskey,dst=/run/secrets/dvc/secretaccesskey.txt
cat /run/secrets/dvc/secretaccesskey.txt

RUN --mount=type=secret,id=accesskeyid,dst=/run/secrets/dvc/accesskeyid.txt
cat /run/secrets/dvc/accesskeyid.txt

RUN --mount=type=secret,id=login,dst=/run/secrets/dvc/login.txt cat
/run/secrets/dvc/login.txt

RUN --mount=type=secret,id=password,dst=/run/secrets/dvc/password.txt cat
/run/secrets/dvc/password.txt

RUN pip install --upgrade pip

RUN pip install "dvc[s3]"

COPY main.py /usr/src/flask_app/main.py

RUN pip install flask

If DVC will not be used inside a Git repository, add the flag --no-scm to
'dvc init' command

RUN dvc init --no-scm

https://techinplanet.com/installation-dvc-on-minio-storage/

setup default remote (change "bucket-name" to your minio backet name)

RUN dvc remote add -d minio s3://bucket-name -f

add information about storage url (where "https://minio.mysite.com" your
url)

RUN dvc remote modify minio endpointurl https://minio.mysite.com

add info about login and password

RUN dvc remote modify minio access_key_id my_login

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 47 of 110

RUN dvc remote modify minio secret_access_key my_password

ENTRYPOINT FLASK_APP=/usr/src/flask_app/main.py flask run --host=0.0.0.0

With this Dockerfile, the secret passing capabilities into the container of the docker

build command are used. This is a way to build images with secrets inside which are

not stored in the layer history or leave any trace during building. For these secrets

to be passed to the docker build utility, they must be given as a parameter and then

will be read by the Dockerfile in the RUN instructions, each identified by a unique id.

Docker build command:

DOCKER_BUILDKIT=1 docker build --no-cache --secret
id=secretaccesskey,src=secretaccesskey.txt --secret
id=accesskeyid,src=accesskeyid.txt --secret id=login,src=login.txt --secret
id=password,src=password.txt -t dvc .

Finally, the container is deployed as a Flask API which executes DVC commands with

the DVC installed in the Python base image.

5.6.2 MLBuffet

MLBuffet is a ML orchestration tool which includes model storage features. MLBuffet’s

source code is available on GitHub (https://github.com/zylklab/mlbuffet) and can be

downloaded locally with:

$ git clone https://github.com/zylklab/mlbuffet.git

MLBuffet is a containerized application, and a container orchestrator is required for

its deployment. Docker Swarm33 and Kubernetes are supported as orchestrators and

deployment scripts are available for each of these.

Firstly, the container images must be built, and for this purpose, Dockerfiles for each

of the microservices are provided to be built with Docker Engine. Also, for automated

building of the images, a build.sh script is also provided that builds all the images

simultaneously.

$ source mlbuffet/deploy/swarm/build.sh

Once the images are built, they must be deployed with a container orchestrator. For

Docker Swarm deployments, a deploy script deploy.sh can be executed:

$ source mlbuffet/deploy/swarm/deploy.sh

Then, the script will prompt how many modelhost instances the user wants to deploy.

After an integer has been given to the script via terminal, the swarm.yaml

configuration file (also provided) will be deployed. This swarm.yaml deployment file

33 https://docs.docker.com/engine/swarm/

https://github.com/zylklab/mlbuffet
https://github.com/zylklab/mlbuffet.git
https://docs.docker.com/engine/swarm/

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 48 of 110

can be changed in case the user has any requirements, for example, modifying the

volumes to be used to target any other path in the local filesystem.

For Kubernetes deployments, the deploy/kubernetes has all the configuration YAML

files required to do an automated K8S (Kubernetes) deployment on a dedicated

namespace. A deploy script is also provided, and will sequentially apply the

configuration files in the mlbuffet/deploy/kubernetes/autodeploy directory:

$ source mlbuffet/deploy/kubernetes/deploy.sh

There is a single configuration file for each of the services, so take this into

consideration while deploying, because the Image names must be changed to fit the

image name in the local image repository. Since images are built from source and

not publicly available on Docker repositories, they must be provided to the local

Kubernetes cluster, for example, by uploading them to the FRACTAL Cloud Platform’s

Harbor repository and then referencing them adequately in the YAML files.

5.6.3 MLflow

MLflow is an open-source platform to manage the ML lifecycle, including:

- Experimentation and reproducibility: allow users to track experiments to

record and compare parameters and results.

- A central model registry: allow users to manage models with capabilities for

versioning and annotating.

- Deployment: allow users to host models as REST endpoints.

There are two ways to access the model repository, either a UI or an API. The API

allows users to integrate and run MLflow in other applications to store models.

MLflow can be installed using pip:

$ pip install mlflow

Once it is installed, the user can run MLflow’s UI with the following instruction:

$ mlflow ui

The necessary files and instructions to deploy MLflow on Kubernetes for the FRACTAL

Cloud Platform are available in this repository on GitHub (uploaded by UOULU):

https://github.com/vahidmohsseni/k8s-mlflow.

MLflow needs two storage spaces to function.

The backend store is where MLflow Tracking Server stores experiment and runs

metadata, as well as params, metrics, and tags for runs. MLflow supports two types

of backend stores: file store and database-backed store.

https://github.com/vahidmohsseni/k8s-mlflow

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 49 of 110

The artifact store is a location suitable for large data (such as an S3 bucket or shared

NFS file system) and is where clients log their artifact output (for example, models).

Here are the different options for both stores:

https://mlflow.org/docs/latest/tracking.html#backend-stores

https://mlflow.org/docs/latest/tracking.html#artifact-stores

Once those have been set up, their location must be referenced in the Dockerfile, or

in the “mlflow-deployment” YAML file for the Kubernetes deployment.

The full details of the deployment are as follows.

General Instruction:

$ git clone https://github.com/vahidmohsseni/k8s-mlflow

$ cd k8s-mlflow

To install only in docker:

$ cd deploy/docker

$ docker build -t mlflow .

$ docker run -p 8001:8001 mlflow

To deploy on Kubernetes:

$ chmod +x build.sh

$./build.sh

5.7 Image repository

The FRACTAL Cloud Platform is composed of multiple components that are deployed

in the form of containerized services and microservices on a Kubernetes cluster.

These services are developed in the form of container images that are stored on a

common repository which Kubernetes can access to deploy the containerized

services. Along with these images, different Helm Charts are used to deploy the

required Kubernetes resources and specify their configuration. In FRACTAL, the OVH

Managed Private Registry34 has been used for the storage of the container images

and Helm Charts that will be used for deploying the components that make up the

cloud platform.

The OVH Managed Private Registry is a container registry for Docker images built

upon Harbor: an open source, cloud native container registry and Helm chart

34 https://docs.ovh.com/gb/en/private-registry/

https://mlflow.org/docs/latest/tracking.html#backend-stores
https://mlflow.org/docs/latest/tracking.html#artifact-stores
https://github.com/vahidmohsseni/k8s-mlflow
https://docs.ovh.com/gb/en/private-registry/

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 50 of 110

museum that allows to securely store, share, and manage Docker images and Helm

charts (a set of manifests that allow to define the required Kubernetes resources and

deployments along with their configuration). FRACTAL uses Harbor to store and

manage the different Docker images and Helm charts that will be used to deploy the

services of the FRACTAL Cloud Platform. In the following sections, details about

Harbor and how to deploy the OVH Private Managed Registry are provided.

5.7.1 Harbor

Harbor35 is a cloud native registry with support for both container images and Helm

charts. It serves as registry for cloud native environments like container runtimes

and orchestration platforms. It also supports role-based access control where users

access different repositories through projects and each user can have different

permission for images or Helm charts under a project. Harbor also scans images

regularly for vulnerabilities and has policy checks to prevent vulnerable images from

being deployed. Moreover, Harbor enables a graphical user portal where users can

easily browse and search repositories and manage projects.

5.7.2 Deploying OVH Managed Private Registry

The OVH private registry, has been deployed through the OVH Cloud Control Panel36

following the official documentation37. On the OVH Control Panel, once the FRACTAL

Project has been selected, in Containers and orchestration section Managed Private

Registry must be selected (see 1 in Figure 30). Then, the desired location for the

registry must be chosen (see 2 in Figure 30) as well as the desired name for the

registry (see 3 in Figure 30) and the desired size and billing plan (see 4 in Figure 30).

Lastly, the Create button must be clicked (see 5 in Figure 30) and the OVH Managed

Private Registry is created (see the created registry in Figure 31).

35 https://goharbor.io/
36 https://www.ovh.com/manager/hub/#/
37 https://docs.ovh.com/gb/en/private-registry/creating-a-private-registry/

https://goharbor.io/
https://www.ovh.com/manager/hub/#/
https://docs.ovh.com/gb/en/private-registry/creating-a-private-registry/

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 51 of 110

Figure 30: Deploying OVH Managed Private Registry through OVH Cloud Control Panel.

5.7.3 Configuring OVH Managed Private Registry

For using the OVH Managed Private Registry to store container images and Helm

charts, first the access to Harbor must be configured, then a project must be created,

and users must be added to the project as members.

5.7.3.1 Accessing the OVH Managed Private Registry

When accessing the OVH Managed Private Registry for the first time, the access

credentials must be created. For that, after creating the OVH Managed Private

registry, the Generate Identification Details (see Figure 31) option must be

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 52 of 110

selected38. After generating the access credentials, the registry can be accessed by

clicking on Harbor user interface39 (see Figure 31).

Figure 31: Created OVH Managed Private Registry

5.7.3.2 Creating a Project in Harbor

Before using the image repository and the Helm Chart Museum of the Harbor Private

registry, first a project must be created. Following the official documentation40, a new

project can be created with New Project option and fulfilling the required information

in the form shown in Figure 32. In FRACTAL, the Access Level has not been set to

public to restrict repository access only to FRACTAL partners.

Figure 32: Creating a New Project in Harbor.

Inside the created project, the different container repositories and related resources

can be found (see FRACTAL registry in Figure 33).

38 https://docs.ovh.com/gb/en/private-registry/creating-a-private-registry/
39 https://docs.ovh.com/gb/en/private-registry/connecting-to-the-ui/
40 https://docs.ovh.com/gb/en/private-registry/managing-users-and-projects/#creating-a-new-project

https://docs.ovh.com/gb/en/private-registry/creating-a-private-registry/
https://docs.ovh.com/gb/en/private-registry/connecting-to-the-ui/
https://docs.ovh.com/gb/en/private-registry/managing-users-and-projects/#creating-a-new-project

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 53 of 110

Figure 33: FRACTAL Harbor Private Registry.

5.7.3.3 Adding Users in Harbor

To add a user to Harbor, under Administration tab, Users option must be selected

(Figure 33). A new window will be opened to enter the information of the user to be

added (see Figure 34). Once the user has been created, different user management

actions can be performed (grant administrator rights, delete user or reset password)

from the Users control panel (see the official documentation for more details41).

Lastly, in order to add a created user to a project, it must be added from Members

tab in the Project Control panel (see Figure 33) by choosing the Add User option.

Once a user has been added to a project, it would be able to pull and push Docker

images and Helm Charts.

41 https://docs.ovh.com/gb/en/private-registry/managing-users-and-projects/#creating-a-new-user-
and-giving-it-rights-on-the-private-project

https://docs.ovh.com/gb/en/private-registry/managing-users-and-projects/#creating-a-new-user-and-giving-it-rights-on-the-private-project
https://docs.ovh.com/gb/en/private-registry/managing-users-and-projects/#creating-a-new-user-and-giving-it-rights-on-the-private-project

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 54 of 110

Figure 34: Add a User to Harbor.

5.7.3.4 Creating a Robot Account

The previous section shows how to create an account for a user in Harbor and grant

it access to a project. However, for accessing Harbor from some services, a Service

Account (i.e., Robot Account) must be created. This kind of service accounts will be

used to grant different services, such as Kubernetes, access the resources in the

Harbor repository. For creating a service account, the Robot Accounts tab in the

project control panel must be selected. A new window will be opened to enter the

information of the service account to be added (see Figure 35). Once the service

account has been created, the service account credentials (service account name and

secret token) will be displayed, and an option to export them to a file will be shown.

This credentials, will be the ones used by the different services, such as Kubernetes,

to access the private Harbor registry.

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 55 of 110

Figure 35: Creating a Robot Account for Kubernetes

5.8 ML orchestration

Orchestration refers to the process of managing resources, and in the case of ML

processes, every step of the ML models lifecycle can be orchestrated, from dataset

treatment and versioning, to training, storage and inference. These processes are

managed by high-level tools which don’t get actively involved in the processes

themselves but are in charge of the execution and allocation of resources and tasks,

which will then be executed by lower-level applications or libraries (ML training

libraries, inference runtimes, or model deployment frameworks). There are several

tools that can manage the orchestration of ML artifacts, and the installation steps of

the ones selected for the FRACTAL Cloud Platform are described in following sections:

5.8.1 MLBuffet

MLBuffet is an open-source application that was developed during the FRACTAL

Project from tasks in WP5. Initially, it was thought to be a model server to perform

inference on ONNX models, but it evolved to become a multi-library training for

models, model storage and inference framework.

MLBuffet installation steps were already described in Section 5.6.2, and its

implementation details can be found in the GitHub’s README

(https://github.com/zylklab/mlbuffet/blob/master/README.md).

During the FRACTAL Project, the MLBuffet tool has been evolving and adding new

functionalities in terms of artifact orchestration, including model version control,

model description, containerized training capabilities and prediction caching to

achieve the best performance for distributed Edge deployments. Although these

https://github.com/zylklab/mlbuffet/blob/master/README.md

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 56 of 110

features may not be completely appropriate for a cloud environment, where

computational resources are not restrained, MLBuffet can also be deployed on cloud

for the developers to have a testing environment and make sure that their

deployments will behave as expected once deployed at the edge. Its containerized

nature ensures that the artifacts being orchestrated will behave the same on any

hardware they are deployed on.

5.8.2 MLflow

MLflow is an open-source platform to manage the ML lifecycle. Installation steps for

its setup can be found in Section 5.6.3.

This framework can be used in the machine learning orchestration to train, store and

serve models. MLflow is composed of a model repository that can store several

experiences and versions of ML models. Its tracking feature allows us to store several

data about the training task such as parameters, artifacts (e.g., files of different

formats), but also metrics (e.g., accuracy) to compare experiments and versions of

a model.

5.8.3 Kubeflow

Kubeflow42 is a tool to help users to smoothly implement machine learning workflows

on Kubernetes. Since it is based on Kubernetes architecture, the first prerequisite is

setting up a K8S (Kubernetes) cluster and the command-line tool kubectl.

Kubeflow allows, through user interface or through scripts, the user to create

Pipelines, running hyperparameter optimization (using Katib43) and launching Jupyter

Notebook44 serves.

Pipelines in Kubeflow are directed acyclic graphs (DAG), including all the components

to be computed in the workflow. Each component is a Docker image containing the

user code and dependencies to run on Kubernetes.

The Pipelines SDK includes support for constructing and running pipelines from a

Jupyter notebook—including the ability to build and compile a pipeline directly from

Python code that specifies its functionality, without leaving the notebook. Building a

pipeline for creating a machine learning model from data consists of these steps: (i)

download data (ii) creating the pipeline (iii) include cloud platform (iv) submit the

job for execution.

This is the YAML file that can be used for Kubeflow deployment.

apiVersion: kfdef.apps.kubeflow.org/v1

42 https://www.kubeflow.org/
43 https://github.com/kubeflow/katib
44 https://jupyter.org/

https://www.kubeflow.org/
https://github.com/kubeflow/katib
https://jupyter.org/

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 57 of 110

kind: KfDef

metadata:

 namespace: kubeflow

spec:

 applications:

 - kustomizeConfig:

 repoRef:

 name: manifests

 path: namespaces/base

 name: namespaces

 - kustomizeConfig:

 repoRef:

 name: manifests

 path: application/v3

 name: application

 - kustomizeConfig:

 repoRef:

 name: manifests

 path: stacks/kubernetes/application/istio-1-3-1-stack

 name: istio-stack

 - kustomizeConfig:

 repoRef:

 name: manifests

 path: stacks/kubernetes/application/cluster-local-gateway-1-3-1

 name: cluster-local-gateway

 - kustomizeConfig:

 repoRef:

 name: manifests

 path: istio/istio/base

 name: istio

 - kustomizeConfig:

 repoRef:

 name: manifests

 path: stacks/kubernetes/application/cert-manager-crds

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 58 of 110

 name: cert-manager-crds

 - kustomizeConfig:

 repoRef:

 name: manifests

 path: stacks/kubernetes/application/cert-manager-kube-system-
resources

 name: cert-manager-kube-system-resources

 - kustomizeConfig:

 repoRef:

 name: manifests

 path: stacks/kubernetes/application/cert-manager

 name: cert-manager

 - kustomizeConfig:

 repoRef:

 name: manifests

 path: stacks/kubernetes/application/add-anonymous-user-filter

 name: add-anonymous-user-filter

 - kustomizeConfig:

 repoRef:

 name: manifests

 path: metacontroller/base

 name: metacontroller

 - kustomizeConfig:

 repoRef:

 name: manifests

 path: admission-webhook/bootstrap/overlays/application

 name: bootstrap

 - kustomizeConfig:

 repoRef:

 name: manifests

 path: stacks/kubernetes/application/spark-operator

 name: spark-operator

 - kustomizeConfig:

 repoRef:

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 59 of 110

 name: manifests

 path: stacks/kubernetes

 name: kubeflow-apps

 - kustomizeConfig:

 repoRef:

 name: manifests

 path: knative/installs/generic

 name: knative

 - kustomizeConfig:

 repoRef:

 name: manifests

 path: kfserving/installs/generic

 name: kfserving

 # Spartakus is a separate applications so that kfctl can remove it

 # to disable usage reporting

 - kustomizeConfig:

 repoRef:

 name: manifests

 path: stacks/kubernetes/application/spartakus

 name: spartakus

 repos:

 - name: manifests

 uri: https://github.com/kubeflow/manifests/archive/v1.2.0.tar.gz

 version: v1.2-branch

Note that the instructions given in this chapter are compatible until the 1.21 version

of Kubernetes. If a newer version of Kubernetes is used, the installation process

would be different, right now, there is no Kubeflow version compatible with

Kubernetes 1.22 and above so it has been impossible to put those instructions in this

deliverable.

5.9 Workflow management

A workflow is a sequence of operations (tasks) in the FRACTAL Cloud Platform that

are executed according to a schedule or triggered by an event. The goal of the

workflow management component consists in ensuring that all the different

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 60 of 110

executions are harmonized to avoid conflicts between them and repercussions of

possible failures.

In the FRACTAL Cloud Platform, the Airflow45 service will be used to provide this

functionality.

5.9.1 Airflow

5.9.1.1 Enable nfs file provisioning on Kubernetes

Airflow consists of several pods that are deployed (worker, scheduler, flower...),

therefore each pod needs storage. Furthermore, in order to perform correctly the

deployment, this storage must be shared among pods. If the cloud provider does not

support volumes that are mounted as readWriteMany, a solution for this is to deploy

a NFS provisioner which will provide Kubernetes with NFS persistent volumes shared

by different pods.

Following are some basic instructions given to deploy an NFS file provisioner in

Kubernetes

• Add helm chart repository

helm repo add kvaps https://kvaps.github.io/charts && helm repo update

• Setup the persistence that will back the NFS service by creating a file named

nfs_persistence.yaml. This file specifies the persistence of the NFS

provisioner. The given size here will be the size of the NFS volume.

Nfs-provisioner params for Helm install

For more details and possible options please see the table at:

- <https://github.com/helm/charts/tree/master/stable/nfs-server-
provisioner>

persistence:

 # Enables persistence of config values

 # Including the provisioner ID

 # -> Crucial so that the provisioner recognise itself after restarting

 enabled: true

 # Note that if storageClass is not defined,

45 https://airflow.apache.org/

https://kvaps.github.io/charts
https://airflow.apache.org/

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 61 of 110

 # Then this parameters defaults to the default storage class in the
cluster,

 # which, as of today, in GCP, uses kubernetes.io/gce-pd provisioner

 # Careful: Don't use EmptyDir, as it will not survive the pod's death

 # -> Config will therefore be lost anyway

 #Set OVH StorageCLass. We have csi-cinder-classic and csi-cinder-high-speed

 storageClass: csi-cinder-high-speed

 size: "20Gi"

storageClass:

 # Name of the storage class that will be managed by the provisioner

 defaultClass: true

• Create the nfs namespace

kubectl create namespace nfs

• Install the helm chart and provide the newly created file that will override the

persistence settings.

helm install nfs-provisioner kvaps/nfs-server-provisioner --namespace nfs--
version 1.3.1 -f nfs_persistence.yaml

• Check that the following resources have been created

o NFS provisioner podnamed nfs-provisioner-nfs-server-provisioner-0

o storageClass named nfs

o PersistentVolume of 20GB

o PersistentVolumeClaim named data-nfs-provisioner-nfs-server-

provisioner-0

5.9.1.2 Install Airflow

Airflow will be installed through a helm chart provided by the community, which is

branched from the official Airflow chart, but with extended support and

documentation. Before proceeding with the installation, two PersistentVolumeClaims

need to be created, one for the log persistence and another for Airflow's DAG storage.

• Create airflow namespace

kubectl create namespace airflow

• Create a file named PersistentVolumeClaim.yaml with the following content,

specifying each claim size and storageClass.

#PVC for airflow logs.

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 62 of 110

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: nfs-claim-airflow-logs

spec:

 accessModes:

 - ReadWriteMany

 storageClassName: nfs

 resources:

 requests:

 storage: 15Gi

#PVC for airflow dags.

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: nfs-claim-airflow-dags

spec:

 accessModes:

 - ReadWriteMany

 storageClassName: nfs

 resources:

 requests:

 storage: 2Gi

• Apply file to create the resouces

kubectl create -f persistentVolumeClaim.yaml -n airflow

• Add airflow repository to helm

helm repo add airflow-stable https://airflow-helm.github.io/chartshelm
repo update

• Install helm chat specifying the persistence

helm install fractal-airflow airflow-stable/airflow --namespace airflow --
version 8.4.1 --values ./airflow_log_dag_persistence.yaml

https://airflow-helm.github.io/chartshelm

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 63 of 110

• Expose airflow web as a LoadBalancer service in order to access it from the

internet

kubectl expose service/fractal-airflow-web --type=LoadBalancer --port=8080 --
name fractal-airflow-web-external -n airflow

• Check the external IP address to access Airflow web using the following

command

kubectl get service fractal-airflow-web-external -n airflow -o
jsonpath="{.status.loadBalancer.ingress[0].ip}"

• Web UI can be accessed through the returned IP on the port 8080

5.10 Model preparation for FRACTAL Edge

For a generic path to deploy models from the framework description to an actual

physical acceleration target, a target-specific implementation must be available. The

FRACTAL cloud services can serve to augment the framework-based model with such

target-specific artifacts, thus providing model preparation support. From the

elements presented in Sections 5.6, 5.7, 5.8 and 5.9 the chosen approach is to:

1. Utilize MLflow to store framework-based models in the MLflow repository.

2. Save these models into volumes that are handed into the processing steps.

3. Trigger an Airflow DAG execution to do the actual preparation steps.

4. Load the augmented model back into the MLflow repository.

These processing steps are collected in an Airflow DAG that binds the data volumes

to target specific services. The target-specific services are made available as a single

container for the given implementation for the FRACTAL platforms running on Versal

VCK190. The container is hosted in Harbor as a prebuilt docker image. This scenario

can support other target preparation steps by exchanging the proper combination of

the Airflow DAG and the docker image. Any preprocessing of the model data that

needs to be accounted for the DAG can add tasks to handle the specifics for the

docker image to operate correctly.

To obtain a build of the image for the Xilinx Versal VCK190 development kit the

complete base Vitis AI repository can be obtained from GitHub:

git clone https://github.com/Xilinx/Vitis-AI.git

This checkout provides a wrapper script for the docker environment based on Ubuntu

20.04 with a Kernel rev. 5.13. Versions of git checkout above and subsequent image

build must match the versions of any earlier model verification.

docker_run.sh xilinx/vitis-ai-cpu:2.0

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 64 of 110

The docker image setup, parameters, and mount points are collected and used in the

Airflow DAG, locally using a DockerOperator, and in the Cloud using a

KubernetesPodOperator to start the container. The dependencies are shown here for

local operation:

 t1 = DockerOperator(

 task_id = 'vitis_ai_quantizer',

 # image = 'vtwkpdos.gra7.container-
registry.ovh.net/fractal/xilinx/vitis-ai-cpu:latest',

 image = 'xilinx/vitis-ai-cpu:latest',

 api_version='auto',

 auto_remove=False,

 #command = ["bash /workspace/source_bashrc.sh ","bash
/workspace/docker_check.sh ",],

 command = ' bash /workspace/prepare_model_full.sh',

 #command = "bash /workspace/docker_check.sh ",

 docker_url="unix://var/run/docker.sock",

 network_mode="host",

 environment ={'USER':os.environ.get('USER'),'UID':1001,'GID':1001},

 # user = None,

 mounts = [

 Mount(source='/opt/xilinx/dsa',target='/opt/xilinx/dsa:rw',
type='bind'),

 Mount(source ="/opt/xilinx/overlaybins",target=
"/opt/xilinx/overlaybins", type='bind'),

 Mount(source ="/etc/xbutler",target = "/etc/xbutler", type='bind'
),

 Mount(source="/dev/shm",target="/dev/shm", type='bind'),

 Mount(source = "/home/clouduser/vitis-workspace", target =
"/workspace" , type = 'bind')],

 working_dir = '/workspace'

)

These and similar tasks may be called either as a single DAG element to process the

full model compilation at once or split into multiple subtasks to give a finer granularity

control to the Airflow scheduler.

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 65 of 110

Figure 36: Airflow DAG model preparation

5.11 Platform infrastructure

The FRACTAL Cloud Platform is deployed over the infrastructure of a public cloud

services provider, which offers different services such as storage space, computing

power, networks, and other fundamental computing resources.

5.11.1 Configuring the OVH Managed Kubernetes

FRACTAL will use a Kubernetes cluster to deploy, manage and execute the different

services developed alongside the different partners of the FRACTAL Project.

The OVH Managed Kubernetes service46 has been deployed through the OVH Cloud

Control Panel following the official documentation47. On the OVH Control Panel, once

the FRACTAL Project has been selected, in Containers and orchestration section

Managed Kubernetes Service must be selected (see Figure 37). Then, the following

steps must be accomplished:

1. The desired location for the cluster must be chosen.

2. Select the desired version of Kubernetes.

46 https://www.ovhcloud.com/es-es/public-cloud/kubernetes/
47 https://docs.ovh.com/gb/en/kubernetes/creating-a-cluster/

https://www.ovhcloud.com/es-es/public-cloud/kubernetes/
https://docs.ovh.com/gb/en/kubernetes/creating-a-cluster/

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 66 of 110

3. Select a private network for the cluster (or None for using public IPs). In this

case a private network created beforehand has been selected.

4. Select the desired instance type for the nodes that conforms the Kubernetes

cluster. In this case B2-1548 instance type has been selected.

5. Configure the desired node pool size (i.e., the number of instances that

compose the cluster). In this case a 3-nodes cluster size has been selected

with the autoscaling option disabled by default.

6. Choose the desired billing type.

7. Select a name for the cluster (fractal-kubernetes-cluster in this case).

Lastly, the Create button must be clicked and the OVH Managed Kubernetes service

is created (see the created registry in Figure 37).

Figure 37: Created fractal-kubernetes-cluster.

5.11.2 Accessing the OVH Managed Kubernetes Service

In order to be able to access the OVH Managed Kubernetes Service, a ‘kubeconfig’

file will be used. This file can be downloaded from the Kubernetes cluster

configuration pane (see the highlighted section in Figure 37). Then ‘kubectl’ tool must

be installed49 and configured50. On Linux systems this can be achieved with the

following commands:

48 https://us.ovhcloud.com/public-cloud/prices/
49 https://kubernetes.io/docs/tasks/tools/
50 https://docs.ovh.com/gb/en/kubernetes/configuring-kubectl/#step-1-configure-the-default-settings-
for-kubectl

https://us.ovhcloud.com/public-cloud/prices/
https://kubernetes.io/docs/tasks/tools/
https://docs.ovh.com/gb/en/kubernetes/configuring-kubectl/#step-1-configure-the-default-settings-for-kubectl
https://docs.ovh.com/gb/en/kubernetes/configuring-kubectl/#step-1-configure-the-default-settings-for-kubectl

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 67 of 110

1. Update the apt package index and install packages needed to use the

Kubernetes apt repository:

sudo apt-get update

sudo apt-get install -y apt-transport-https ca-certificates curl

2. Download the Google Cloud public signing key:

sudo curl -fsSLo /usr/share/keyrings/kubernetes-archive-keyring.gpg
https://packages.cloud.google.com/apt/doc/apt-key.gpg

3. Add the Kubernetes apt repository:

echo "deb [signed-by=/usr/share/keyrings/kubernetes-archive-keyring.gpg]

https://apt.kubernetes.io/ kubernetes-xenial main" | sudo tee

/etc/apt/sources.list.d/kubernetes.list

4. Update apt package index with the new repository and install kubectl:

sudo apt-get update

sudo apt-get install -y kubectl

5. Load the downloaded kubeconfig file:

export KUBECONFIG=/Users/myuser/.kube/my-test-cluster.yml

5.11.3 Deploy and access the Kubernetes Dashboard

The Kubernetes Dashboard51 is a web-based Kubernetes user interface, that can be

used to deploy containerized applications to a Kubernetes cluster, troubleshoot

containerized applications, and manage the cluster resources. It also allows to get an

overview of applications running on a cluster, as well as for creating or modifying

individual Kubernetes resources (such as Deployments, Jobs, Daemon Sets, etc.).

For installing the Kubernetes Dashboard on OVH Cloud Managed Kubernetes Service,

the official documentation has been52 followed. Check the following subsections for

more details.

5.11.3.1 Install & Configure Kubernetes Dashboard

Kubernetes Dashboard can be installed using the recommended YAML file53 and the

following command:

51 https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/
52 https://docs.ovh.com/gb/en/kubernetes/installing-kubernetes-dashboard/
53https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/#deploying-the-
dashboard-ui

https://packages.cloud.google.com/apt/doc/apt-key.gpg
https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/
https://docs.ovh.com/gb/en/kubernetes/installing-kubernetes-dashboard/
https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/#deploying-the-dashboard-ui
https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/#deploying-the-dashboard-ui

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 68 of 110

kubectl apply -f
https://raw.githubusercontent.com/kubernetes/dashboard/v2.3.1/aio/deploy/reco
mmended.yaml

With the following command, it can be checked that the Kubernetes Dashboard is

deployed and running (see Figure 38).

kubectl get all -n kubernetes-dashboard

Figure 38: Kubernetes Dashboard Service.

5.11.3.2 Accessing the Kubernetes Dashboard

5.11.3.2.1 Create Service Account

In order to access the Dashboard, a new user must be created with the service

account mechanism in Kubernetes and granted this user admin permissions. For that,

the service-account.yml will be used (see Figure 39). When applying with kubectl,

this YAML file creates a service account (admin-user) in Kubernetes.

kubectl apply -f ./Kubernetes-Dashboard/service-account.yml

Figure 39: service-account.yml file content.

https://raw.githubusercontent.com/kubernetes/dashboard/v2.3.1/aio/deploy/recommended.yaml
https://raw.githubusercontent.com/kubernetes/dashboard/v2.3.1/aio/deploy/recommended.yaml

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 69 of 110

5.11.3.2.2 Create a Role Binding

Then a RoleBinding will be created for binding the cluster-admin role in the

Kubernetes cluster to the created ServiceAccount. For this, the cluster-role-

binding.yml will be used (see Figure 40).

kubectl apply -f ./Kubernetes-Dashboard/cluster-role-binding.yml

Figure 40: cluster-role-binding.yml

5.11.3.2.3 Get Bearer Token

The created service account and role binding will allow to get an access token for the

Kubernetes dashboard. The token can be retrieved with the following command:

kubectl -n kubernetes-dashboard describe secret $(kubectl -n kubernetes-
dashboard get secret | grep admin-user-token | awk '{print $1}')

5.11.3.2.4 Exposing the Dashboard with Ingress

The Kubernetes dashboard can be accessed by first exposing it using Ingress or a

Load Balancer. For that, the Ingress service should be installed and configured (check

Section 6.10). Kubernetes Dashboard can be exposed with Ingress by applying the

ingress-kubernetes-dashboard.yml YAML file (see Figure 41).

kubectl apply -f ./Kubernetes-Dashboard/ingress-kubernetes-dashboard.yml

This will expose the dashboard at https://[INGRESS_IP_OR_DOMAIN]/dashboard/.

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 70 of 110

Figure 41: ingress-kubernetes-dashboard.yml file contents.

5.11.3.2.5 Accessing the Kubernetes-dashboard

When accessing the dashboard, it will redirect to the login endpoint on which an

access token must be provided in order to access the dashboard. By using the

obtained token in the previous section, the Kubernetes Dashboard can be accessed

(see Figure 42).

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 71 of 110

Figure 42: Kubernetes dashboard.

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 72 of 110

6. Cloud platform use guidelines

This section presents the usage guidelines of the cloud components developed and

deployed in the OVH cloud platform. These components will compose the FRACTAL

Cloud Platform and will enable the implementation of the functionalities required from

the Use Cases. The main goal of this section is to give some hints on the use of each

component so the use cases are aware and familiar with the usage of same.

6.1 Data ingestion

In FRACTAL Cloud Platform, data ingestion service is provided using Kafka platform.

Typically, the data is sent from the IoT devices (in this case by the edge nodes),

using the MQTT protocol. Kafka platform offers a distributed event streaming platform

for high performance data pipelines, streaming analytics, data integration and

mission critical applications

6.1.1 Kafka platform

The Kafka cluster can be accessed using the links provided Table 1 in Section 5.2.1.3.

In order to send data to Kafka, the corresponding topics have to be created in the

Kafka cluster. This can be done using the YAML definitions which have to be applied

to the cluster as shown below

For examples referring to the usage of Kafka cluster, check the GitHub repo in the

following link: https://github.com/harisyammnv/kafka-stream-ovh-

fractal/tree/master/Data-Streaming

6.1.1.1 Creating Topics

To create Topics in the Kafka cluster, a YAML file has to be defined with the topic

name and the cluster identifier as shown

Figure 43: Kafka topic YAML

https://github.com/harisyammnv/kafka-stream-ovh-fractal/tree/master/Data-Streaming
https://github.com/harisyammnv/kafka-stream-ovh-fractal/tree/master/Data-Streaming

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 73 of 110

Once the YAML is ready with new values, it has to be applied against the kubectl

cluster using the following command

kubectl apply -f kafkatopic.yml -n <namespace>

To check if the topic has been created on the cluster, use the following command

kubectl get kafkatopics.kafka.strimzi.io -n <namespace>

6.1.1.2 Sending Messages to Topics

To send the messages to the topics using the topics created in the previous step, a

python module has to be used. The GitHub repo in the following link:

https://github.com/harisyammnv/kafka-stream-ovh-fractal/tree/master/Data-

Streaming, shows the steps to install the python-Kafka library. The following Python

file illustrates the steps to connect to the bootstrap Kafka cluster which enables the

Kafka Producer module to send or stream messages to the topic.

Figure 44: Streaming messages to Topics

https://github.com/harisyammnv/kafka-stream-ovh-fractal/tree/master/Data-Streaming
https://github.com/harisyammnv/kafka-stream-ovh-fractal/tree/master/Data-Streaming

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 74 of 110

Executing the simple producer script from the command line with python would send

the messages to the Kafka Topics

$ python3 simpler_producer.py

Figure 45: Executing the simple_producer.py

6.1.1.3 Consuming Messages to Topics

For consuming the messages produced in the previous section, the Python file for the Kafka

Consumer i.e., simple_consumer.py from the GitHub repo

https://github.com/harisyammnv/kafka-stream-ovh-fractal/tree/master/Data-

Streaming is used. The python file is run from the command line to extract messages

from the topic as shown below:

$ python3 simpler_consumer.py

https://github.com/harisyammnv/kafka-stream-ovh-fractal/tree/master/Data-Streaming
https://github.com/harisyammnv/kafka-stream-ovh-fractal/tree/master/Data-Streaming

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 75 of 110

Figure 46: Using Kafka Consumer to extract messages

6.2 Raw data storage

For connecting to OVH object storage from Python, the module from Amazon SDK,

i.e. the boto3 library, has to be installed in the Python environment.

pip install boto3

The following snippet of Python code will send messages to the object storage. The

s3_region is the region where the storage was created, and access_key and

secret_key were obtained in the previous chapter:

session = boto3.Session(aws_access_key_id=access_key,

aws_secret_access_key=secret_key)

s3_client = session.client('s3',

endpoint_url=f"https://s3.{s3_region}.cloud.ovh.net/",

region_name=s3_region)

The following line will create new bucket on the OVH Object Storage

s3_client.create_bucket(Bucket=bucket_name,
CreateBucketConfiguration={'LocationConstraint': s3_region})

http://cloud.ovh.net/

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 76 of 110

To upload some data to the OVH Object Storage, the following line has to be

executed. Beware: filename and bucket name are regular Python strings, but data

has to be encoded into the byte array format.

s3_client.upload_fileobj(Fileobj=io.BytesIO(data), Bucket=bucket_name,
Key=filename)

Other sample scripts can be accessed in the following link:

https://github.com/harisyammnv/kafka-stream-ovh-fractal/blob/master/Data-

Processing/s3-boto-sample.py

6.3 Data preprocessing & feature extraction

6.3.1.1 Timeseries data processing

Typically, the data coming from IoT devices are sensor measurements which

generally have associated timestamps with the readings. The readings are sent

generally at a fixed sampling rate or on value change to MQTT brokers. Kafka

connect, which accesses the MQTT brokers, forwards the sensor data as JSON objects

to Kafka cluster. A python job generally aggregates the raw data and stores them

into batch collected CSV object in the object storage. For example, the object storage

could contain batch files as shown in Figure 47

Figure 47: Batch aggregates of raw drive cycles

https://github.com/harisyammnv/kafka-stream-ovh-fractal/blob/master/Data-Processing/s3-boto-sample.py
https://github.com/harisyammnv/kafka-stream-ovh-fractal/blob/master/Data-Processing/s3-boto-sample.py

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 77 of 110

Using the CSV files in the object container, the data preprocessing can be executed

using the following code snippet, which in this case as an example, combines the

drive cycles and calculates the distance travelled using vehicle speed and time.

Figure 48: Timeseries data processing script

This code can be uploaded in the data processing section to create a spark job which

is shown in the next sub-section. More complex data processing scripts are available

in the GitHub repo, in the following link https://github.com/harisyammnv/kafka-

stream-ovh-fractal/tree/master/Data-Processing.

6.3.1.2 Multimedia data processing

For Computer Vision applications, the raw data is in the form of images various sizes.

To use the images for training a ML model, the images have to be converted into

tensors according to the model architecture. When there are thousands of images

this process takes time and spark can be used to speed up the process, using snippets

as the one shown in Figure 49.

https://github.com/harisyammnv/kafka-stream-ovh-fractal/tree/master/Data-Processing
https://github.com/harisyammnv/kafka-stream-ovh-fractal/tree/master/Data-Processing

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 78 of 110

Figure 49: Image processing snippet

The environment YAML file is as shown below

Figure 50: Sample environment file

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 79 of 110

The data processing job can be setup from the OVH cloud terminal as shown in Figure

51.

Figure 51: Setting up the spark job

Similar to the image processing script, for more reference, there are text processing

script samples provided in the GitHub repo, in the following link

https://github.com/harisyammnv/kafka-stream-ovh-fractal/blob/master/Data-

Processing/word-count-s3.py

6.4 Dataset repository and feature store

6.4.1 lakeFS

6.4.1.1 Creating users & permissions

To add a new user, it will be necessary to go to the administration panel and add the

corresponding user. It is worth mentioning that once the user is created, it will be

necessary to assign the new user to a user group. User groups are used to assign

specific policies (permissions) to the members of each group.

https://github.com/harisyammnv/kafka-stream-ovh-fractal/blob/master/Data-Processing/word-count-s3.py
https://github.com/harisyammnv/kafka-stream-ovh-fractal/blob/master/Data-Processing/word-count-s3.py

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 80 of 110

Figure 52: Creating users in lakeFS

Figure 53: User group administration in lakeFS

6.4.1.2 Creating a repository & branches

Repositories and branches are used inside lakeFS to organize and structure the

different data sources, use cases, and stages of the data. lakeFS provides those

features on a GIT like way and they can be created using the UI.

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 81 of 110

Figure 54: Creating repository in lakeFS

Figure 55: Creating a branch in lakeFS

6.4.1.3 Uploading & committing

In the same way, lakeFS offers the versioning of datasets. To do so, datasets can be

uploaded and committed to specific branches.

Figure 56: Uploading objects in lakeFS

6.4.1.4 Other interactions

lakeFS also supports integrations with other programming languages and platforms.

There are many different possibilities, the main interactions guidelines being as

follows.

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 82 of 110

For example, if lakeFS is used on an Airflow DAG, the Airflow integration could be

used to perform the required tasks.

https://docs.lakefs.io/integrations/airflow.html

LakeFS could also be used by Kubeflow, so in this case, the Kubeflow integration

could be used.

https://docs.lakefs.io/integrations/kubeflow.html

In a more generic use case, the python integration could be used. For example, the

edge node could be using the FRACTAL Cloud Platform lakeFS service using the

python integration.

https://docs.lakefs.io/integrations/python.html

6.4.2 Feast

There are 5 main steps to set up a Feast repository, including:

1. Create feast repo

2. Register for feature definition

3. Generate features data

4. Load features to feast online store

5. Retrieve online-stored features and use

The first step is creating a Feast directory. It can be achieved with the following

instruction:

$ feast init -m repo_name

The repository’s name is the place where Feast will store features. This command will

also auto-generate the YAML file inside the repo_name folder. It would look like this

feature_store.yaml

project: repo_name

registry: data/registry.db

provider: local

online_store:

path: data/online_store.db

where:

- project allows to isolate feast repositories using the same infrastructure.

https://docs.lakefs.io/integrations/airflow.html
https://docs.lakefs.io/integrations/kubeflow.html
https://docs.lakefs.io/integrations/python.html

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 83 of 110

- registry is the path of the registry file where Feast will store the feature definitions

- provider is the target environment where features are stored. Providers allow for

the use of custom logic tailored to a specific infrastructure. Feast has 3 basic

providers: AWS (Amazon Web Services), GCP (Google Cloud Platform), and local,

which does not have any cloud-specific logic. A custom provider could be created to

associate custom logic to feast actions.

- online_store is the path of the environment that Feast uses to store features for

low-latency inference.

A feature repository using the infrastructure defined in Section 5.5.3 would look like

this:

Figure 57: Feature repository definition

To follow the feast repo hierarchy of the first example above, the data/ directory

must be created, and move all raw data into it.

go to the feast directory

$ cd repo_name

create data folder

$ mkdir data/

move all raw data into data folder

$ mv [raw_data_file_] data/

In the second step, a python file to define the features must be created, called here

def.py.

$ nano def.py

Inside this document, Entity, FileSource, FeatureView, etc., are created. The

documentation54 shows a complete example of how to write this document and

what fields the user should mention. One important parameter is the ttl which is

related to the time that the Feature View will be cached for. Feast uses this to make

sure that only new features are served to the model. Also, because of this, a

54 https://docs.feast.dev/getting-started/concepts

https://docs.feast.dev/getting-started/concepts

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 84 of 110

timestamp column needs to be created for the raw data, so feast can find out the

proper features to serve.

Once the document is created, the user should run the apply command to register

all the entities and feature views defined.

$ feast apply

Features can be saved in a dataset through this method:

dataset = store.create_saved_dataset(

 from_=data_retrieval,

 name="name_dataset",

 storage=SavedDatasetFileStorage("/path/to/save/name.parquet")

)

Last step to use Feast is to be able to load features data to online store. It can be

achieved by running the same materialize_incremental command such as:

CURRENT_TIME=$(date -u +"%Y-%m-%dT%H:%M:%S")

feast materialize-incremental $CURRENT_TIME

Finally, after pushing features to Feast stores, features from both online or offline

stores can be fetched and used for training/inferencing. For example, to get the data

from the saved offline store, the following python code can be used:

training_df = store.get_saved_dataset(name="name_dataset").to_df()

To retrieve the low-latency data from online store, the function get_online_features

should be called:

test_data = store.get_online_features(

 features=infer_features,

 entity_rows=[{"row_id": 568}]

).to_dict()

Full code that integrates Feast to run on Kubeflow is available on the following GitHub

repository https://github.com/Nannakaroliina/kubeflow-pipeline-

demo/tree/kubeflow-feast.

6.5 Model repository

One of the FRACTAL Cloud Platform’s features is the AI model repository, where AI

models are stored to make them available for the rest of the services. There are

several options to choose from as a model repository, DVC, MLflow, and MLBuffet,

https://github.com/Nannakaroliina/kubeflow-pipeline-demo/tree/kubeflow-feast
https://github.com/Nannakaroliina/kubeflow-pipeline-demo/tree/kubeflow-feast

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 85 of 110

however, some of them cover the FRACTAL Cloud Platform’s requirements better

than others. MLBuffet is a lightweight distributed AI model server which is highly

edge-oriented, and although it could be used for model storage in the cloud, it could

result in a worse performance than other model repositories specifically developed

for Cloud instances. Lastly, DVC stands as a good option for model storing and version

controlling. Complete use steps are given for DVC, MLBuffet, and MLflow in the

following subsections:

6.5.1 DVC

Once DVC is started on the directory or parent directory, every file or directory of the

parent directory can be tracked by DVC with Git-like syntaxis:

Adding files or directories to a repository

To add a file or folder to the repository:

$ dvc add (-<flags>) target (target2 …)

This command generates a file (or a pair of files, if being used in a Git repository) in

the tracked directory.

• .gitignore file. This file disables Git tracking from the file being now managed

by DVC. This file is generated only if DVC is being used as file-tracking system

inside a Git repository.

• <filename/directory>.dvc file. This file has all the information that DVC needs

to track the file on the DVC repository (both on the cloud and locally).

While adding directories to the repository, some files can be ignored adding the path

to the .dvcignore file (like Git ignored files) placed on the directory where DVC was

initialized.

Upload (push) files/directories to the repository

After adding the files/directories to be tracked by DVC, those must be pushed to the

repository:

$ dvc push (-<flags> <options>)

This command makes a copy of the target files/directories added to DVC on the file

repository with codified names using the hash numbers written on the .dvc files.

Download (pull) files/directories from the repository

Once the target files/directories are pushed to the repository, those are available to

be pulled as many times as required. Having the corresponding .dvc files:

$ dvc pull (-<flags> <options>)

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 86 of 110

All the tracked files will be downloaded to the folder, or the directory with its own

directory tree and files.

More information on how to use DVC can be found on the official documentation

(https://dvc.org/doc)

Set local (or remote) storage

A custom and generic cloud can be linked to a DVC repository to be used as a data

registry (https://dvc.org/doc/command-reference/remote):

$ dvc remote add -d myremote /path/to/remote

The project's config file can also be modified locally:

['remote "myremote"']

url = /path/to/remote

[core]

remote = myremote

6.5.2 MLBuffet

MLBuffet provides a set of instructions to interact with its main API, and it can be

used to store models locally or on the cloud These models could be uploaded and

downloaded from the edge to the cloud (and vice-versa), and managed in multiple

ways, updating the model versions, deleting no longer needed models, uploading new

models and providing information about each of their versions.

A summary of all the model-handling related actions and example curl HTTP requests

for each of them is given below. A more detailed description and updated information

can be found on the GitHub’s README

(https://github.com/zylklab/mlbuffet/#readme):

Note: The URIs to access the services should be substituted with the Ingress service

or the endpoint for each of the deployments, either on Kubernetes, Docker Swarm or

Docker standalone deployments.

Test the API:

curl inferrer:8000/

Access help:

curl inferrer:8000/help

Model handling:

- Display the full list of available models:

https://dvc.org/doc
https://github.com/zylklab/mlbuffet/#readme

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 87 of 110

curl –X GET inferrer:8000/api/v1/models

- Display a model provided information:

curl –X GET inferrer:8000/api/v1/models(<tag>/information

- Update a model’s information:

curl -X PUT -H "Content-Type: application/json" --data
'{"model_description":"<model_description>"}'
inferrer:8000/api/v1/models/<tag>/information

- Upload a new model:

curl -X POST -F "path=@/path/to/local/model"
inferrer:8000/api/v1/models/<tag>

- Download a stored model locally:

wget inferrer:8000/api/v1/models/<tag>/download --content-disposition

- Delete a stored model:

curl –X DELETE inferrer:8000/api/v1/models/<tag>

- Set a model as default:

curl -X POST -H "Content-Type: application/json" --data '{"default": <new
default version>}' inferrer:8000/api/v1/models/<tag>/default

6.5.3 Kubeflow and MLflow

Kubeflow will be used with MLflow in order to train and store models. When a new

model is sent to the cloud, Kubeflow trains it by using a preprocessed dataset. The

new model is then evaluated and sent to the model repository powered by MLflow.

MLflow will save the model storing along its version and several parameters that can

be tracked and compared. Any model stored by MLflow can then be loaded using its

name.

Once Kubeflow and MLflow services are up and running in the cluster, the APIs and

user interface can be accessed by their associated IP addresses. The guidelines to

check their readiness and usage are introduced below.

There are a couple of essential points for the usage regarding exposing the Kubeflow

interface to be accessed from outside of the Kubernetes cluster and creating the user

accounts.

inferrer:8000/api/v1/models/iris_model/information
inferrer:8000/api/v1/models/%3ctag

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 88 of 110

Kubeflow uses the NodePort type to expose its core service using the Istio ingress-

gateway. In order to make the Kubeflow accessible from the outside, first, a

mechanism is needed to assign an IP address to the LoadBalancer type in the

Kubernetes; this mechanism should be already available by the cloud provider, or

services such as MetalLB55 can do the same.

Second, the host of HTTPS must be added to the Istio service; otherwise, some

services, such as notebook, will not work properly. The instructions for this part are

available in the following link https://v0-7.kubeflow.org/docs/started/k8s/kfctl-

existing-arrikto/#secure-with-https. Although it is from one old version, it is the

same procedure as the latest version of Kubeflow.

Another point worth mentioning here is that Kubeflow uses the Dex authentication

service to manage the users. By default, it has the user user@example.com with

password 12341234. It is required to remove any default users and create other users

to eliminate the security risks56.

Check the status of all the pods in kubeflow namespace are ready

$ kubectl get pod -n kubeflow

Get the IP address and access the UI

$ export KUBEFLOW_IP=$(kubectl -n istio-system get service istio-
ingressgateway -o jsonpath='{.status.loadBalancer.ingress[].ip}')

$ echo $KUBEFLOW_IP

The default username and password to access the UI is the same as mentioned

above, unless change the user authentication in Dex is changed.

Besides Kubeflow, MLflow will be used as another (or alternative) model repository.

The configuration of the MLflow is pretty simple for the cloud operator for the

deployment. All necessary configuration variables are available in the YAML files in

the repository mentioned in the Section 5.6.3. It is worth noting that the only

Tracking Server of MLflow is being used to store the model, and it is compatible with

multiple storages such as S3, NFS (Network File System), and HDFS (Hadoop

Distributed File System). The default value in configuration is to use a file in the

container.

The configuration can be changed as desired in deploy/kubernetes/mlflow-

deployment.yaml. There are environment variables to be set. As an example,

ARTIFACT_ROOT refers to the --default-artifact-root which can be set to one of the

mentioned storage classes that are available. More information about configuring the

55 https://metallb.universe.tf/installation/
56 https://v0-7.kubeflow.org/docs/started/k8s/kfctl-existing-arrikto/#add-static-users-for-basic-auth

https://v0-7.kubeflow.org/docs/started/k8s/kfctl-existing-arrikto/%23secure-with-https
https://v0-7.kubeflow.org/docs/started/k8s/kfctl-existing-arrikto/%23secure-with-https
https://metallb.universe.tf/installation/
https://v0-7.kubeflow.org/docs/started/k8s/kfctl-existing-arrikto/#add-static-users-for-basic-auth

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 89 of 110

storage can be found at https://mlflow.org/docs/latest/tracking.html#id14. Below,

some basic commands for MLflow are included, to make sure that it is functioning

correctly. Since Kubeflow is exposed to the user and will interact with MLflow, the

MLflow is only accessible within the Kubernetes cluster. Exposing the MLflow outside

the cluster without an authentication mechanism such as Nginx or Dex will

compromise the security.

Get the IP address and Port of the MLflow

$ export MLFLOW_IP=$(kubectl -n mlflow-k8s get service mlflow -o
jsonpath='{.spec.clusterIP}')

$ export MLFLOW_PORT=$(kubectl -n mlflow-k8s get service mlflow -o
jsonpath='{.spec.ports[].port}'

Check that the service is working

$ curl -X GET http://$MLFLOW_IP:$MLFLOW_PORT

Note that the IP address and port number of MLflow should be given correctly to

pipeline, so the pipeline stores the generated model in the repository.

More information about the Kubeflow and MLflow usage is included in Section 6.7.2

6.6 Harbor Private Registry

FRACTAL will use Kubernetes to deploy, manage and execute the different

containerized services developed by the different partners of the FRACTAL Project.

These services have been developed in the form of container images, along with

different Helm charts specifying their deployment and configuration that are stored

and managed by the Harbor private registry. During the deployment, Kubernetes

access the registry to get the Docker images and Helm charts to configure and deploy

the containerized services in different pods of the Kubernetes cluster. In the following

sections, how the Harbor registry is used in the FRACTAL Cloud Platform is detailed.

6.6.1 Using Harbor in FRACTAL Cloud Platform

During the deployment of the different services that compose the FRACTAL Cloud

Platform, Kubernetes access the registry to get the Docker images and Helm charts

to configure and deploy the containerized services in different pods of the Kubernetes

cluster (see Figure 58).

https://mlflow.org/docs/latest/tracking.html#id14

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 90 of 110

Figure 58: Interaction between Harbor (Image repository) and the Kubernetes cluster.57

6.6.1.1 Accessing Harbor Container Registry from Kubernetes

For the deployment of a Docker Container in the Kubernetes platform, a YAML file

must be created specifying the deployment for the container58. In this file, the Docker

image that will be used to deploy the container must be specified. As an example, in

Figure 59, the YAML file (inferrer.yml) used for the deployment of the FRACTAL

inferrer is shown. In the section of code shown in this figure, it can be seen the

Docker image used for the deployment of the container. During the deployment,

Kubernetes pulls this image from the Harbor container registry and creates a

containerized service in a pod (the Docker image must be previously uploaded to the

container registry, as shown in Subsection 6.6.2.1).

For accessing the private registry, Kubernetes also uses a secret59 (see the secret

named fractalregistry in the imagePullSecret section of code in Figure 59) with the

access credentials for the Harbor container registry (see Section 5.7.3 for how to

configure and create a secret in Kubernetes).

57https://blog.ovhcloud.com/managing-harbor-at-cloud-scale-the-story-behind-harbor-kubernetes-

operator/

58 https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
59 https://kubernetes.io/es/docs/concepts/configuration/secret/

https://blog.ovhcloud.com/managing-harbor-at-cloud-scale-the-story-behind-harbor-kubernetes-operator/
https://blog.ovhcloud.com/managing-harbor-at-cloud-scale-the-story-behind-harbor-kubernetes-operator/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/es/docs/concepts/configuration/secret/

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 91 of 110

Figure 59: YAML File for the Deployment of FRACTAL Inferrer Container.

6.6.1.2 Accessing Harbor Helm Chart Museum from Kubernetes

For the deployment of a service in the Kubernetes platform using a Helm Chart,

Kubernetes accesses the Helm Chart Museum of the Harbor private registry. Helm

uses the $KUBECONFIG environment variable60 used to specify the Kubernetes

configuration file to deploy charts from the available repositories in Kubernetes.

However, for accessing the Chart Museum of the Harbor Private Registry, it must be

added as a Helm repository (see Section 6.6.3.1 for details of how to add a repository

to Helm).

6.6.2 Using the Image Repository

To use the image repository, first users must authenticate by using the docker login

command61. After introducing their access credentials, the user is authenticated and

will be able to work with the image repository. See the following subsections for

pushing and pulling images to the repository.

docker login https://vtwkpdos.gra7.container-registry.ovh.net/

6.6.2.1 Pushing a Docker Image to the Container Registry

In order to push an image to a repository, first, the image must be tagged with the

desired name and tag. In the project control panel (see Figure 33) in Push Command,

a command reference can be found for tagging, and pushing docker images:

docker tag SOURCE_IMAGE[:TAG] vtwkpdos.gra7.container-
registry.ovh.net/fractal/REPOSITORY[:TAG]

docker push vtwkpdos.gra7.container-registry.ovh.net/fractal/REPOSITORY[:TAG]

Following the command reference, an image can be tagged and pushed to the

repository using the following commands:

60 https://helm.sh/docs/helm/helm/
61 Docker must be installed: https://docs.docker.com/desktop/windows/install/.

https://vtwkpdos.gra7.container-registry.ovh.net/
https://helm.sh/docs/helm/helm/
https://docs.docker.com/desktop/windows/install/

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 92 of 110

docker tag vitis-ai-cpu:latest vtwkpdos.gra7.container-
registry.ovh.net/fractal/xilinx/vitis-ai-cpu:demo

docker push vtwkpdos.gra7.container-registry.ovh.net/fractal/xilinx/vitis-ai-
cpu:demo

Figure 60 shows the pushed docker image into the Xilinx repository.

Figure 60: Pushed Docker Image to Xilinx Repository in FRACTAL Project

6.6.2.2 Pulling a Docker Image to the Container Registry

The images from the Harbor repositories can be pulled using the pull command

available along with the artifact in the Harbor repository (see Pull Command section

in Figure 60). This will copy to the clipboard the docker command for pulling the

image. Next, the command for pulling the image pushed in the previous subsection

is shown:

docker pull vtwkpdos.gra7.container-registry.ovh.net/fractal/xilinx/vitis-ai-
cpu@sha256:b4d2f62f6411f88e3f6f5ce917332e7dc5569e5e3b4dd145d1baba8e4f3b5219

6.6.3 Using the Helm Chart Museum

For using the Helm Chart Museum62 to store and access Helm charts, first, a

repository must be added in Helm63. Helm will keep a list of the repositories where

the different charts are stored for their usage on deployments. Next, the steps to add

a repository to Helm and how to push and pull charts from it will be detailed.

6.6.3.1 Adding the FRACTAL Repository in Helm

For using the Harbor Helm Chart Museum with Helm, first, the repository must be

added to the repository list64. With the following command, the repository for the

FRACTAL Project can be added.

62 https://docs.ovh.com/sg/en/private-registry/using-helm-chart-museum/#instructions
63 Helm must be installed: https://helm.sh/docs/intro/install/
64 https://goharbor.io/docs/1.10/working-with-projects/working-with-images/managing-helm-charts/

mailto:vtwkpdos.gra7.container-registry.ovh.net/fractal/xilinx/vitis-ai-cpu@sha256:b4d2f62f6411f88e3f6f5ce917332e7dc5569e5e3b4dd145d1baba8e4f3b5219
mailto:vtwkpdos.gra7.container-registry.ovh.net/fractal/xilinx/vitis-ai-cpu@sha256:b4d2f62f6411f88e3f6f5ce917332e7dc5569e5e3b4dd145d1baba8e4f3b5219
https://docs.ovh.com/sg/en/private-registry/using-helm-chart-museum/#instructions
https://helm.sh/docs/intro/install/
https://goharbor.io/docs/1.10/working-with-projects/working-with-images/managing-helm-charts/

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 93 of 110

helm repo add --username=<USERNAME> --password=<PASSWORD> fractal
https://vtwkpdos.gra7.container-registry.ovh.net/chartrepo/fractal

To check the available repositories in helm the following command can be used:

helm repo ls

6.6.3.2 Pushing a Chart to the Helm Repository

Once the repository has been added to the Helm repository list, a chart can be pushed

using the commands from the command reference available in the project control

panel (see Figure 33).

In FRACTAL Project, different Helm Charts from most common repositories (e.g.,

Artifact Hub65) will be used. Normally, these charts have been widely used and tested

by the community and they offer a faster and simpler approach to deploying services,

rather than creating custom charts66. However, with the aim of keeping a copy of the

used charts, these charts will be downloaded and pushed to the Helm Chart Museum

in Harbor. Next, an example of how to pull the official Helm chart67 for lakeFS and

push68 it to the Helm Chart Museum is shown.

helm pull lakefs/lakefs

helm plugin install https://github.com/chartmuseum/helm-push

helm cm-push -u=<USERNAME> -p=<PASSWORD> lakefs-0.5.56.tgz fractal

In Figure 61 the uploaded charts to the lakeFS repository can be seen:

Figure 61: Helm Chart Museum.

65 https://artifacthub.io/
66 https://helm.sh/docs/helm/helm_create/
67 https://github.com/treeverse/charts/tree/master/charts/lakefs
68 For pushing the Helm chart, chart museum push plugin has been used:
https://github.com/chartmuseum/helm-push

https://github.com/chartmuseum/helm-push
https://artifacthub.io/
https://helm.sh/docs/helm/helm_create/
https://github.com/treeverse/charts/tree/master/charts/lakefs
https://github.com/chartmuseum/helm-push

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 94 of 110

6.6.3.3 Pulling a Chart to the Helm Repository

For pulling a chart from a Helm Repository, the pull command will be used:

 helm pull lakefs/lakefs

However, in FRACTAL usually, helm charts will be directly accessed from the

repository and installed69:

helm install lakefs fractal/lakefs --version 0.5.56

6.7 ML orchestration

6.7.1 MLBuffet

MLBuffet acts mainly as a distributed ML Model server, where models are deployed

and they can perform inference in an asynchronous manner. This is done through a

modular architecture where the models are stored and distributed over a subnet of

modelhost containers which hold the models and deploy them, so the APIs can

communicate with each other, and the application runtime is not blocked by late

inferences.

In addition, it can be provided with a train script, a dataset and a requirements file

to perform training either in the cloud or the edge, on theoretically any ML training

library. Two training mechanisms are provided: The first one is through Kubernetes

clustering and is the recommended way of training since MLBuffet is recommended

to be deployed over K8S. By providing all the necessary files for the training, the

Trainer pod will be created and the model will be taken by the trainer and sent to the

Inferrer for automatic storage and deployment. The second mechanisms are through

Docker sockets and the daemon API, which could be the way to go in RISC-V or not

supporting K8S platforms. Instructions on how to set up these can be found in the

README document and below.

In practice, all the ML lifecycle steps can be performed on MLBuffet, from model

design, training, deploying, and inference, and all the orchestration processes which

come after the models have been created can also be addressed, like model

optimization, model updating, re-training of the models, and model version control.

Its lightweight implementation makes it a flexible tool, being deployable on any

machine which can perform containerization, either resource limited or not.

Also, it can be easily integrated with other ML tools (e.g., Kubeflow), just by sending

an HTTP request to the main API, other tools can perform any of the actions in

69 https://helm.sh/docs/helm/helm_install/

https://helm.sh/docs/helm/helm_install/

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 95 of 110

MLBuffet (model hosting, training, and inference) and include the results in their

workflows and pipelines, by parsing the JSON response MLBuffet provides back.

Note: The URIs to access the services should be substituted with the Ingress service

or the endpoint for each of the deployments, either on Kubernetes, Docker Swarm or

Docker standalone deployments.

Model predictions:

- JSON array input:

curl -X POST -H "Content-Type: application/json" --data '{"values":[2, 5, 1,
4]}' inferrer:8000/api/v1/models/<tag>/prediction

- Images or files as input:

curl -X GET -F "file=@image.jpeg"
inferrer:8000/api/v1/models/<tag>/prediction | jq

Train a model:

curl -X POST inferrer:8000/api/v1/train/<tag>/<model_name> -F
"dataset=@/path/to/dataset.csv" -F "script=@/path/to/train.py" -F
"requirements=@/path/to/requirements.txt"

For model training, some considerations must be taken into account. This feature

requires the Docker daemon host to be exposed securely, this means, providing

MLBuffet with an accessible way to deploy Docker containers on the training machine.

The TLS (Transport Layer Security) implementation is a good practice when a Docker

daemon is exposed in a host’s port because exposing the Docker daemon insecurely

can lead to root access from attacking external users. However, the implementation

details of this kind of communication are out of the scope of this document.

A detailed guide on how to expose the Docker daemon securely can be found on:

https://docs.docker.com/config/daemon/

Another guide on implementing TLS secure communications for external applications

with the exposed Docker daemon can be found in this link:

https://docs.docker.com/engine/security/protect-access/

Once the Docker daemon is exposed and secured, the client certificates must be

provided to the Inferrer container in the mlbuffet/inferrer/flask_app/utils/client

directory, which will be used by a Python Client to schedule training containers on

the host machine.

For Kubernetes deployments, training can also be done through Docker by accessing

external daemons, however, the Kubernetes MLBuffet Trainer is recommended,

http://ind/api/v1/models/iris_model/prediction
https://docs.docker.com/config/daemon/
https://docs.docker.com/engine/security/protect-access/

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 96 of 110

which takes care of managing certificates automatically and is more user-

transparent.

6.7.2 Kubeflow and MLflow

MLflow can be used in Kubeflow to store models. To do this, both tools need to run

in docker components to enable communication between each other. In this section,

a simple pipeline composed of 3 steps will be used: the data preprocessing, the model

training, and the model validating. Each step of the pipeline is a python file that runs

the required code to achieve its goal.

MLflow’s API provides a means to use MLflow in the pipeline components of Kubeflow.

The main methods to do this are: set_tracking_uri() which allows to connect to

MLflow from Kubeflow, log_model(), which registers a model in MLflow, and

get_register_model(), which loads a stored model. In the following example, our

code allows us to store a model previously trained by Kubeflow, load it using its

name, modify its description and update it in the model repository. This code can be

written in the validating step of Kubeflow’s pipeline. By doing this, the performance

(e.g., accuracy) of the model can be stored in MLflow along the parameters.

Figure 62: Use of MLflow in the pipeline components of Kubeflow

Now it has been seen how to integrate MLflow in Kubeflow, the rest of this section

will present how to run both frameworks. Firstly, the following instructions allow to

build the images of each step that composes a pipeline:

$ docker build ./preprocess_data --tag
kubeflow_pipeline_mlflow_preprocessing:latest

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 97 of 110

$ docker push kubeflow_pipeline_mlflow_preprocessing:latest

$ docker build ./train_model --tag kubeflow_pipeline_mlflow_train:latest

$ docker push kubeflow_pipeline_mlflow_train:latest

$ docker build ./predict --tag milowb/kubeflow_pipeline_mlflow_predict:latest

$ docker push kubeflow_pipeline_mlflow_predict:latest

Once Kubeflow images are built, Kubeflow can be launched:

$ export PIPELINE_VERSION=1.8.1

$ kubectl apply -k
"github.com/kubeflow/pipelines/manifests/kustomize/cluster-scoped-
resources?ref=$PIPELINE_VERSION"

$ kubectl wait --for condition=established --timeout=60s
crd/applications.app.k8s.io

$ kubectl apply -k
"github.com/kubeflow/pipelines/manifests/kustomize/env/platform-agnostic-
pns?ref=$PIPELINE_VERSION"

$ kubectl port-forward -n kubeflow svc/ml-pipeline-ui 8080:80

MLFlow installation instructions are detailed in the section X.X. Then it can
be run with docker with the following instruction:

$ docker run -it --rm -p 5000:5000 -v /local/path:/mlflow --name mlflow-
server atcommons/mlflow-server

The expected result, after running Kubeflow, should be the following:

Figure 63: Result after running Kubeflow

Now UI can be accessed at http:/localhost:8080 to run experiments or use Kubeflow’s

SDK.

There are two Kubeflow concepts of interest in this section:

1. A run: it is a single execution of a pipeline. Runs comprise an immutable log

of all experiments that the user attempts, and are designed to be self-

contained to allow for reproducibility.
2. A pipeline: it is a workspace where the user can run several runs of one

pipeline.

There are two ways of making new pipelines and runs:

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 98 of 110

1. Through the UI. The button Upload pipeline allows to add one.

Figure 64: Kubeflow pipelines UI.

Adding a pipeline requires importing the pipeline.yaml. This file is a

configuration file describing how the pipeline is built and where to find images

of each step.

Figure 65: Adding a pipeline in Kubeflow.

Once the pipeline is created, the UI asks to the user to start a run.

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 99 of 110

2. A second method is to use Kubeflow’s SDK in Python with the following line of

Python:

import kfp
client = kfp.Client(host='http://localhost:8080)

client.create_run_from_pipeline_func(
 my_pipeline,
 arguments={
 'url': 'https://storage.googleapis.com/ml-pipeline-playground
 /iris-csv-files.tar.gz'
 })

This code allows the user to connect to Kubeflow and create a run for a pipeline

(here called my_pipeline) without having to use the UI. It is possible to send

a parameter to the pipeline through the last arguments of the method.

6.8 Workflow management

6.8.1 Airflow

Workflows are defined in Airflow by DAGs (Directed Acyclic Graphs). Those DAGs are

python files with a specific structure. An example of that structure is shown below:

#Step 1

from airflow import DAG

from datetime import datetime, timedelta

from airflow.operators.dummy_operator import DummyOperator

from airflow.operators.python_operator import PythonOperator

#step 2

default_args = {

 'owner' : 'airflow',

 'depends_onpast' : False,

 'start_date' : datetime(2021,11,4),

 'retries':0

}

#step 3

dag = DAG(dag_id='DAG-1', default_args=default_args, catchup=False,
schedule_interval='@once')

#step 4

start = DummyOperator(task_id='start', dag=dag)

end = DummyOperator(task_id='end', dag=dag)

https://storage.googleapis.com/ml-pipeline-playground/iris-csv-files.tar.gz

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 100 of 110

#step 5

start >> end

The example shown above explains how to structure, create and operate different

tasks among a DAG in Airflow. It is worth mentioning that every task that Airflow has

to execute is defined by an operator70. There are three main types of operators:

• Action operators: they perform an action or tell another system to perform an

action.

• Transfer operators: they move data from one system to another system.

• Sensor operators: they allow to check if a criterion is met to get completed.

The created DAGs can be managed in the DAG page of the Airflow service. In this

page, an overview of each DAG execution can be seen, including the number of

successful executions, the periodicity, the latest execution date, and more.

Figure 66: Airflow DAG list UI

70 https://airflow.apache.org/docs/apache-airflow/stable/python-api-ref.html#operators

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 101 of 110

6.9 Model preparation for FRACTAL Edge

6.9.1 Triggering a preparation run

There are multiple ways to drive a model preparation run for deployment.

With any new model being registered in the Model Repository, the next Airflow

scheduled run can detect this and operate the preparation, the model is to be exposed

to. Qualifiers added to each model guide the correct Airflow DAG to operate, as to

which target to be built for, and the steps required to achieve the target.

If the orchestration does not schedule the Airflow operation regularly, a manual

trigger can be issued by the uploading entity. This may be generated from a

retraining step of a model that invalidates the model and explicitly triggers a

preparation. These mechanics need to be covered on the orchestration layer.

Figure 67: Model registration GUI in MLflow

6.9.2 Upload model into MLflow Repository within DAG

After the Airflow DAG tasks have generated the target implementation and other

artifacts, the data structure of the model is augmented and the artifacts are uploaded

into the MLflow model repository.

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 102 of 110

6.10 Upload configuration scripts to FRACTAL Cloud

Platform

As mentioned in Section 5.1 one possibility for partners to contribute to the FRACTAL

Cloud Platform is directly providing the deployment and configuration YAML files or

Helm Charts that will be used to deploy the different services that conform the

FRACTAL Cloud Platform in Kubernetes. This section will show how the deployment

of two different services of the FRACTAL Cloud Platform in the OVH Managed

Kubernetes platform could be accomplished (one using a YAML file and another one

using a Helm Chart).

6.10.1 Deployment of a service in Kubernetes with YAML file

Kubernetes uses some entities known as Kubernetes objects71 to represent the state

of the cluster and the different services and applications that run on it. Usually, these

objects are used to describe:

• What containerized applications are running (and on which nodes).

• The resources available to those applications.

• The policies around how those applications behave, such as restart policies,

upgrades, and fault-tolerance.

For creating objects in a Kubernetes system, the Kubernetes API is used (either

directly or via kubectl). When creating an object in Kubernetes, the object

specification that describes its desired state, as well as some basic information about

the object (such as a name) must be provided. This object specification must be

included as JSON data in the API request body. However, most often, the information

is provided to kubectl tool in a .yaml file that then, kubectl converts to JSON for the

API request. The next subsection shows how to deploy an ingress service using a

.yaml file.

6.10.1.1 Deploying an Ingress Controller in Kubernetes with a YAML File

Ingress is a specialized load balancer for Kubernetes. It accepts traffic from outside

the Kubernetes platform, and load balances it to pods or containers running inside

the platform (see Figure 68). Ingress exposes HTTP and HTTPS routes from outside

the cluster to services within the cluster. Traffic routing is controlled by rules defined

on the Ingress resource. For deploying an Ingress Controller in Kubernetes72 the

.yaml file available at https://raw.githubusercontent.com/kubernetes/ingress-

nginx/controller-v0.44.0/deploy/static/provider/cloud/deploy.yaml has been used.

This service can be deployed to Kubernetes with the following command:

71 https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/
72 https://kubernetes.io/docs/concepts/services-networking/ingress/

https://raw.githubusercontent.com/kubernetes/ingress-nginx/controller-v0.44.0/deploy/static/provider/cloud/deploy.yaml
https://raw.githubusercontent.com/kubernetes/ingress-nginx/controller-v0.44.0/deploy/static/provider/cloud/deploy.yaml
https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/
https://kubernetes.io/docs/concepts/services-networking/ingress/

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 103 of 110

kubectl apply -f https://raw.githubusercontent.com/kubernetes/ingress-
nginx/controller-v0.44.0/deploy/static/provider/cloud/deploy.yaml

Figure 68: Ingress Load Balancer for Kubernetes.

6.10.2 Deployment of a service in Kubernetes using a Helm Chart

Helm charts are a set of manifests that allow to define the required Kubernetes

resources and deployments along with their configuration. For the deployment of a

service in the Kubernetes platform using a Helm Chart, Kubernetes accesses the Helm

Chart Museum of the Harbor private registry (see Section 5.7). Helm uses the

$KUBECONFIG environment variable used to specify the Kubernetes configuration file

to deploy charts from the available repositories in Kubernetes. The next subsection

shows how to deploy lakeFS dataset repository using a Helm chart (see also Section

5.7 for working with Helm charts in Harbor Helm chart museum).

6.10.2.1 Deploying lakeFS Dataset Repository with a Helm Chart

lakeFS can be installed on Kubernetes by using the Official lakeFS Helm Chart73.

Some parameters could be customized74 by applying the lakefs.yml file (see Figure

69) when installing lakeFS using the Helm chart. To install lakeFS with the desired

parameters customization, the following command can be used (please, note that

this chart is being accessed from the FRACTAL repository in the Harbor Helm Chart

museum as described in Section 5.7):

73 https://artifacthub.io/packages/helm/lakefs/lakefs
74 https://docs.lakefs.io/reference/configuration.html#example-minio

https://raw.githubusercontent.com/kubernetes/ingress-nginx/controller-v0.44.0/deploy/static/provider/cloud/deploy.yaml
https://raw.githubusercontent.com/kubernetes/ingress-nginx/controller-v0.44.0/deploy/static/provider/cloud/deploy.yaml
https://artifacthub.io/packages/helm/lakefs/lakefs
https://docs.lakefs.io/reference/configuration.html#example-minio

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 104 of 110

helm install -f lake.yml lakefs fractal/lakefs --version 0.5.56

Figure 69: lakeFS Helm Charts parameters customization YAML file.

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 105 of 110

7. Conclusions

This deliverable is part of the FRACTAL Task 5.2 developing a runtime platform to

deploy, test and run the AI algorithms and it is a continuation of the previous

deliverable D5.2 Intermediate Platform for Federated AI. In the previous deliverable,

a list of requirements for the FRACTAL Cloud Platform were presented in addition to

functional and technical descriptions of different technologies that could fit with those

requirements.

In this deliverable, the list of the specific technologies selected for the FRACTAL Cloud

Platform was presented, as well as a detailed procedure of the installation of each

technology/component. On top of that, user guidelines were specified for each

component on the FRACTAL Cloud Platform, which lead to detailed instructions for

the Use Cases to use the components identified according to their needs.

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 106 of 110

8. List of figures

Figure 1. Learning Approaches in FRACTAL: (left) Centralized Learning; (centre)

Decentralized Learning; (right) Federated Learning .. 9

Figure 2: Relationship between the cloud platform and the edge nodes. 12

Figure 3: FRACTAL Cloud Platform modules. .. 13

Figure 4: OVH Managed Kubernetes Service. ... 19

Figure 5: Data flow using MQTT broker with Connect .. 22

Figure 6: Schematic showing Kafka Connect bridging MQTT broker and Kafka broker

 .. 22

Figure 7: Communication from Edge to deployed Kafka service 22

Figure 8: Strimzi Operator and Kafka Architecture in K8s 23

Figure 9: Obtaining the kubeconfig file .. 24

Figure 10: Pods in the K8s cluster .. 25

Figure 11: User Access and Roles Dashboard ... 27

Figure 12: OpenStack RC file for accessing Horizon ... 27

Figure 13: Installing python openstack client and setup..................................... 28

Figure 14: Creating local credentials for object storage access 28

Figure 15: Editing credentials in awscli credentials file 29

Figure 16: Editing AWS config file to access OVH object storage 29

Figure 17: listing object storage containers in OVH cloud 29

Figure 18: Object storage container dashboard in OVH cloud 30

Figure 19: Creating Object container in the cloud ... 30

Figure 20: Steps to create an object container ... 31

Figure 21: Final status after object container creation 32

Figure 22: Object Container creation ... 33

Figure 23: Uploading objects to the container .. 34

Figure 24: Setting up a Data processing job ... 35

Figure 25: Selecting the container and python script in the data processing job.... 36

Figure 26: Job processing dashboard with logs and monitoring 36

Figure 27. lakeFS Service and Deployment .. 38

Figure 28: MinIO Service and Deployment ... 41

Figure 29: MinIO Console .. 42

Figure 30: Deploying OVH Managed Private Registry through OVH Cloud Control

Panel. ... 51

Figure 31: Created OVH Managed Private Registry .. 52

Figure 32: Creating a New Project in Harbor. ... 52

Figure 33: FRACTAL Harbor Private Registry. ... 53

Figure 34: Add a User to Harbor. .. 54

Figure 35: Creating a Robot Account for Kubernetes ... 55

Figure 36: Airflow DAG model preparation ... 65

Figure 37: Created fractal-kubernetes-cluster. ... 66

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 107 of 110

Figure 38: Kubernetes Dashboard Service. .. 68

Figure 39: service-account.yml file content. ... 68

Figure 40: cluster-role-binding.yml ... 69

Figure 41: ingress-kubernetes-dashboard.yml file contents. 70

Figure 42: Kubernetes dashboard. .. 71

Figure 43: Kafka topic YAML .. 72

Figure 44: Streaming messages to Topics .. 73

Figure 45: Executing the simple_producer.py ... 74

Figure 46: Using Kafka Consumer to extract messages 75

Figure 47: Batch aggregates of raw drive cycles ... 76

Figure 48: Timeseries data processing script .. 77

Figure 49: Image processing snippet ... 78

Figure 50: Sample environment file .. 78

Figure 51: Setting up the spark job .. 79

Figure 52: Creating users in lakeFS .. 80

Figure 53: User group administration in lakeFS .. 80

Figure 54: Creating repository in lakeFS .. 81

Figure 55: Creating a branch in lakeFS .. 81

Figure 56: Uploading objects in lakeFS .. 81

Figure 57: Feature repository definition ... 83

Figure 58: Interaction between Harbor (Image repository) and the Kubernetes

cluster... 90

Figure 59: YAML File for the Deployment of FRACTAL Inferrer Container. 91

Figure 60: Pushed Docker Image to Xilinx Repository in FRACTAL Project 92

Figure 61: Helm Chart Museum. ... 93

Figure 62: Use of MLflow in the pipeline components of Kubeflow 96

Figure 63: Result after running Kubeflow ... 97

Figure 64: Kubeflow pipelines UI. ... 98

Figure 65: Adding a pipeline in Kubeflow. .. 98

Figure 66: Airflow DAG list UI .. 100

Figure 67: Model registration GUI in MLflow ... 101

Figure 68: Ingress Load Balancer for Kubernetes. ... 103

Figure 69: lakeFS Helm Charts parameters customization YAML file. 104

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 108 of 110

9. List of tables

Table 1: Kafka platform access URLs ... 25

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 109 of 110

10. List of abbreviations

ACID Atomicity, Consistency, Isolation and Durability

AI Artificial Intelligence

API Application Programming Interface

AWS Amazon Web Services

CLI Command Line Interface

CSV Comma Separated Values

DAG Directed Acyclic Graph

DNS Domain Name System

DVC Data Version Control

ETL Extract, Transform and Load

GCP Google Cloud Platform

GB GigaByte

GNU AGPL GNU (GNU's Not Unix) Affero General Public

License

HDFS Hadoop Distributed File System

HTTP HyperText Transfer Protocol

HTTPS HyperText Transfer Protocol Secure

IaaS Infrastructure as a Service

IoT Internet of Things

IP Internet Protocol

JSON JavaScript Object Notation

ML Machine Learning

Project FRACTAL

Title Platform and building blocks for Federated AI

Del. Code D5.4

 Copyright © FRACTAL Project Consortium 110 of 110

MQTT Message Queuing Telemetry Transport

NFS Network File System

ONNX Open Neural Network Exchange

PaaS Platform as a Service

REST Representational State Transfer

S3 Simple Storage Service

SaaS Software as a Service

SDK Software Development Kit

SSH Secure SHell

TLS Transport Layer Security

URI Uniform Resource Identifier

URL Uniform Resource Locator

UI User Interface

YAML YAML Ain't Markup Language

