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Abstract: Task 5.1 studies the theoretical aspects of Fractal system. This 

deliverable synthesizes the outputs of Fractal theoretical studies that have been 

published during M1-M20. The content of the scientific articles published in this 

project represent several different aspects related to intelligence and efficiency 

of fractal-like systems. In this deliverable, Fractal concepts and definitions for 

Fractal AI are defined. Second, project scientific publications are listed and 

summarized. Third, use case related AI studies are identified and summarized. 

Finally, publications related to safety, sustainability and energy-efficiency are 

shown. In the final section, this deliverable links the theoretical studies to the 

implementation plans and activities of integration towards a fully operational 

intelligent Fractal system. 



 

Project FRACTAL 

Title Theoretical study of Fractal AI   

Del. Code D5.3   

 

  

 Copyright © FRACTAL Project Consortium 3 of 36 

 

 

 

Contents 
 
1 History ................................................................................................... 4 

2 Summary ............................................................................................... 5 

3 Introduction ............................................................................................ 6 

3.1 Objectives and Approaches ................................................................. 6 

4 Concepts and definitions ........................................................................... 7 

4.1 Multiagent paradigm & Agent autonomy ............................................... 8 

4.2 Orchestration paradigms .................................................................... 8 

4.3 AI methods...................................................................................... 11 

4.3.1 Distributed learning techniques .................................................... 12 

4.3.2 Decision-making ........................................................................ 13 

5 Theoretical studies.................................................................................. 15 

5.1 AI for edge ...................................................................................... 15 

5.1.1 Vision ....................................................................................... 15 

5.1.2 Analysis .................................................................................... 17 

5.1.3 Method ..................................................................................... 18 

5.1.4 Synthesis .................................................................................. 19 

5.2 AI on edge ...................................................................................... 20 

5.2.1 Fractal features: Safety ............................................................... 23 

5.2.2 Fractal features: sustainability, energy-efficiency and low power ...... 24 

6 Links to other deliverables and implementation .......................................... 26 

6.1.1 T5.2 Fractal AI Platform .............................................................. 26 

6.1.2 T5.3 Applied Fractal AI ................................................................ 27 

6.1.3 T6.1 Edge node design and implementation ................................... 28 

7 Conclusions ........................................................................................... 29 

8 Bibliography .......................................................................................... 30 

9 List of figures ......................................................................................... 34 

10 List of tables .......................................................................................... 35 

11 List of Abbreviations ............................................................................... 36 

 



 

Project FRACTAL 

Title Theoretical study of Fractal AI   

Del. Code D5.3   

 

  

 Copyright © FRACTAL Project Consortium 4 of 36 

 

1 History 
 

Version Date Modification reason Modified by 

0.1 2022-04-11 Initial draft 
Susanna Pirttikangas / 

UOULU 

0.2 2022-07-01 Polished by chapter review 
Susanna Pirttikangas / 

UOULU 

0.3 2022-08-29 Polished by partner review 

Henna Kokkonen, 

Susanna Pirttikangas / 

UOULU 

 

  



 

Project FRACTAL 

Title Theoretical study of Fractal AI   

Del. Code D5.3   

 

  

 Copyright © FRACTAL Project Consortium 5 of 36 

 

2 Summary 

This deliverable belongs to Task 5.1 studying the theoretical aspects of Fractal 

system. In this deliverable, we synthesize the outputs of Fractal theoretical studies 

that have been published during M1-M20. The main features of Fractal have been 

defined in WP2, and this deliverable synthesizes the theoretical studies based on this 

classification. However, the scientific articles published in this project represent a 

larger umbrella of different aspects related to intelligence and efficiency of fractal-

like systems.  

First, this deliverable defines concepts and definitions for Fractal AI. Second, we list 

and synthesize all the published papers on AI for edge, summarizing the visions and 

methods presented in the papers. Third, use case related AI studies are identified 

and summarized. Finally, publications related to safety, sustainability and energy-

efficiency are shown. In the final section, this deliverable links the theoretical studies 

to the implementation plans and activities of integration towards a fully operational 

intelligent Fractal system.   

 



 

Project FRACTAL 

Title Theoretical study of Fractal AI   

Del. Code D5.3   

 

  

 Copyright © FRACTAL Project Consortium 6 of 36 

 

3 Introduction  

3.1 Objectives and Approaches 

The goal of the Fractal project is to create a basic platform called the Fractal node. It 

is a reliable computing platform node able to build a Cognitive Edge (a network that 

makes predictions and diagnoses) under industry standards. The Fractal node will be 

the building block of scalable decentralized Internet of Things (ranging from Smart 

Low-Energy Computing Systems to High-Performance Computing Edge Nodes). 

In task 5.1, the theoretical aspects, as well as the reflections of theoretical studies 

towards possible implementation paths of the recursive Fractal system are studied. 

As each node is expected to have autonomy to a certain degree, the focus of the 

task is the interplay between subsystems and nodes, comprising a novel, 

distributed learning, decision-making and data analytics architecture.  

In this deliverable, we synthesize the outputs of Fractal theoretical studies that have 

been published during M1-M20. The main research questions related to the studies 

are listed in Table 1. The research method used for FRACTAL T5.1 is constructive.  

RQ1: What is the state 

of the art in distributed 

learning and control? 

What is the current knowledge on distributed control, 

learning and data that is relevant to the Fractal 

system?  

RQ2: What kind of 

methodology and 

intelligent capabilities 

are required 1) AI for 

edge and 2) AI on edge.  

What kind of novel decision-making, learning and data 

architectures are suitable for Fractal subsystem 

interoperability and enhanced decision-making? How 

to mitigate varying levels of co-operation and local 

decision-making between Fractal subsystems? How can 

we decide the level of autonomy of the individual 

nodes and subsystems? 

RQ3: What are the 

proposed strategies for 

implementation? 

What are the practical implementation paths for Fractal 

AI? This RQ is mainly approached through the links to 

other deliverables of the Fractal project.  

Table 1. D5.3 research questions 
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4 Concepts and definitions 

In this section, we explain the main definitions and concepts behind the Fractal 

system theoretical studies. The Fractal features have been defined in Fractal WP2 

and the upmost level of features is shown in Figure 1.  (The figure is updated based 

on the project advancements. Therefore, the final feature listing can be different from 

the figure below.) 

 

 

Figure 1. Fractal features (modified from deliverable D2.3). 

In this deliverable, we focus on the features that that can be addressed by algorithmic 

solutions and are linked to the high-level behaviours of the Fractal node. For this 

reason, we will focus on the adaptability, context-awareness and decentralization 

features of the Fractal overall architecture. Other features such as reliability, low-

power, safety, security, and openness, which are more related to the hardware 

architecture of the node or to low-level mechanisms, are outside the scope of this 

document. However, we list the scientific publications related to some of the lower-

level features in section 4.2.  

Table 2 associates the relevant concepts from AI literature to the Fractal features. 

The first one, decentralization, refers to the distribution of the system operation. 

Distribution of the decision-making can be achieved with, e.g., a multiagent paradigm 

(Weiss, 2013) where each node of the system is seen as an autonomous agent. 

Autonomy refers to an agent’s ability to achieve its goal without any external control, 

by, e.g., administrators or other agents. Modelling nodes as autonomous agents 

supports loose coupling of the system components and brings more adaptability into 

the nodes' behavior (Mämmelä & Riekki, New network architectures will be weakly 

coupled, 2022). Decentralized behaviors require distributed mechanisms to operate, 

such as distributed learning which allows agents to learn, infer and adapt to uncertain 

and evolving environments.  

Context-awareness is a feature referring to the ability of the node to perceive and 

leverage available information in the environment of the node. It can be any 

information that characterizes the situation of the node such as the time, the 

available data from neighboring nodes, etc. Adaptability represents the capacity of a 

node to change its behavior depending on its objective, its knowledge or even its 

context. To enable context awareness and adaptation, we need mechanisms to 

allow the system to decide how to allocate tasks among the nodes or how to distribute 
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resources of the system. These mechanisms include orchestration paradigms 

(Kokkonen, ym., 2022), which has been one large topic in Fractal theoretical studies. 

To enable decision-making, learning techniques that can provide new ways to make 

agents aware of their situation and adaptable to uncertain and variable environments 

are required. The following sections will define these concepts in more detail. 

Fractal features Related AI concepts from the literature 

Decentralization Multiagent paradigm, orchestration 

paradigms, distributed learning  

  

Context-awareness & Adaptability 

 

Orchestration paradigms, decision-

making 

Table 2. Association of AI concepts to Fractal features 

4.1 Multiagent paradigm & Agent autonomy 

Distributed artificial intelligence is required when individual components of a learning 

system do not have enough information or resources to achieve their objectives. This 

is a common situation in the edge-cloud continuum. Here, multi-agent systems (MAS) 

can be used to provide cooperative and collaborative capabilities as the agents can 

communicate their understanding of the environment, and their progress towards 

their objectives. Agents here refer to a computational abstraction which a) has 

externally set objectives and 2) can affect its environment with actions that bring it 

closer to achieving those objectives. Agents may possess various degrees of 

intelligence, defined by their reactivity, sociality, proactivity, and learning capability 

(Weiss, 2013). Reactivity relates to an agent’s alertness towards environmental 

changes, sociality to its interaction with other agents and proactivity to its capability 

to predict and make changes to its own behavior.  

Autonomy refers to an agent’s ability to make independent decisions on how to reach 

its objectives, without any influence of external authority such as users, 

administrators, or other agents. On distributed application level, agents have distinct 

roles and behaviors, and they need to negotiate and share their resources – the 

system behavior emerges through the actions and interactions of the autonomous or 

partially autonomous individual agents, with the guidance of an orchestrator or 

through a choreography of the autonomous participants. In open systems, such as 

the Internet of Things (IoT), a MAS often needs to dynamically reorganize itself to 

adapt and to evolve in response to changes in the participating agents or in the 

environment. These aspects ultimately facilitate individual and collaborative learning 

to improve operations towards common goals and proactive behavior(s). 

4.2 Orchestration paradigms 

Computational resources span over the network infrastructure, all the way from a 

central data center to the user at the edge of the network. Several architectural 
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approaches, including fog and edge computing, mobile cloud computing (MCC), and 

multi-access edge computing (MEC) (Taleb, 2017), (Ranaweera;Jurcut;& Liyanage, 

2021), take advantage of these resources, expanding the cloud computing paradigm. 

Although each approach encompasses its own paradigm and requirements, they bring 

services closer to the user while simultaneously addressing challenges inherent in 

edge application deployments, such as latency requirements, bandwidth constraints 

or energy utilization. The cloud, with ample resources for computing and storage, is 

still often a necessity, calling for hybrid edge–cloud architectures (Xiong, 2018), 

(Brabakaran, 2020), (Yuan, 2020), or even a continuum of computational resources 

between the devices and the cloud, where applications can choose the best resource 

usage policy based on current needs (Balouek-Thomert, 2019), (Dustdar;Pujol;& 

Donta, 2022). Accordingly, in this document, we collectively refer to edge and fog 

computing, MEC, and other similar distributed computing approaches with 

heterogeneous and opportunistic resources by the term computing continuum.  

Synthesizing the taxonomies in a number of recent works (see e.g. 

(Mampage;Karunasekera;& Buyya, 2022) (Costa, 2022) (Hong, 2020) (Toczé & 

Nadjm-Tehrani, 2018) (Zhong, 2021)), we take a holistic approach to the resources 

in the computing continuum. These resources, as depicted in Figure 2, are present 

on a number of levels, ranging from fundamental resources such as energy or time 

(see (Mämmelä;Riekki;Kotelba;& Anttonen, 2018)), through cyber-physical (CP), 

hardware (HW), operating system (OS), middleware (MW) and application (APP) 

resources, finally to workflow (WF) resources catering to the highest-level application 

business logic or clients. In this hierarchy of levels, higher level resources rely on the 

lower ones to fulfill their function. Further, from hardware level up, the resources can 

be divided in three distinct categories, namely, communication, computation, and 

data-related. It should be noted that this hierarchy of levels does not constitute a 

layered architecture in the sense that a level would only be aware of its immediate 

lower level. For example, data sets on the workflow level may be sourced from 

sensors on the cyber-physical level.  

This holistic viewpoint is not emphasized in many of the related studies. These studies 

often refer to entities on HW and OS levels as resources, and entities on MW and 

application levels as services. However, there is considerable ambiguity in these 

conventions, and we find that an explicit consideration of Everything as a Resource 

(EaaR) simplifies the overall view.  

The cyber-physical resources of a computing continuum may comprise sensors, 

actuators, and other connected user devices which have a physical form and function. 

They may act as sources (sensors) or sinks (actuators) of data flows in the computing 

continuum. Hardware resources in the communication category comprise, for 

example, network interfaces, access points, and base stations. Computational 

hardware resources refer to processing units (e.g., CPU, GPU, AI related 

accelerators), whereas data-related hardware resources include, for example, hard 

drives and SSDs. OS resources include, for example, connections (and related 

abstractions such as sockets), OS services such as processes (threads), and 

filesystems, as well as support for virtual machines (VM) and containers. 
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Figure 2. Resources in the computing continuum. 

 

A simplified example of two IoT applications in the computing continuum is depicted 

in Figure 3. The workflows of the applications start with data lifted from sensors. The 

data is processed in a sequence of tasks, running on containerized services in edge 

devices or cloud-based serverless functions. The containerization frameworks and the 

serverless functions are provided by two mobile network operators and two cloud 

providers, respectively. Both workflows end on actuators. In the depicted example, 

the applications share some of their sensors with each other. 

 

Figure 3. Two example IoT applications in the computing continuum. 
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Managing these resources in the computing continuum is often referred to as 

orchestration. In more detail, the term orchestration is used to refer to functions such 

as the automated management (i.e., configuring and coordination) of complex 

services, dynamic resource allocation, efficient and optimized resources utilization, 

control of functions, or real-time service delivery (Guerzoni, ym., 2017) (Taleb, 

2017). However, related work often scopes orchestration to certain aspects of the 

continuum, such as networks and connections, application services, or tasks and 

workflows. Network orchestration refers to the configuration and management of 

communication networks. In contrast, service orchestration refers to the 

management and configuration of the life cycle of application components 

encapsulated as services. With EaaR, we can holistically define orchestration as the 

management of resources in the computing continuum. As presented in Figure 4, it 

can be divided into a number of functions such as lifecycle management or 

monitoring, as well as overarching attributes such as security or privacy. 

Orchestration aims to reach certain objectives set by a number of possible 

stakeholders such as end users and infrastructure providers. 

 

Figure 4. Continuum orchestration taxonomy. 

4.3 AI methods  

The computing continuum poses a number of challenges in realizing the vision of 

autonomous, intelligent AI agents: communication is intermittent and fluctuating, 

computation resources are distributed, heterogeneous and opportunistic, and data is 
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distributed, siloed and non-IID. Furthermore, there can be a massive number of 

resources, applications, and their users, especially in the machine-to-machine (M2M) 

domain, and these users may have partially conflicting objectives. Finally, the 

applications may generate data that is highly sensitive, and must not be leaked 

outside devices or nearby edge servers.  

These challenges set requirements for the AI approaches deployed in the computing 

continuum, as depicted in Figure 5. These approaches must be decentralized or 

distributed, as the resources are; further, weak coupling (Mämmelä & Riekki, New 

network architectures will be weakly coupled, 2022) and autonomy allow the 

approaches to survive alone if connections are severed. Non-IID data requires 

localized or personalized intelligence, while the numerous stakeholders and tenants 

present in the continuum demand approaches that support balancing multiple 

objectives. Finally, the approaches must be privacy-preserving especially in case the 

applications generate sensitive data. 

 

Figure 5. Challenges inherent in the computing continuum, and subsequent 
characteristics required of the AI approaches. 

4.3.1 Distributed learning techniques 

Orchestration in the computing continuum can be modelled as a hierarchical network 

of intelligent, autonomous agents that manage the resources of the platform in a 

decentralized manner. These agents need ML models to make predictions about 

processes and future states, which supports the agents’ decision-making processes. 

Based on data, the agents must learn different dynamics in their environment to 

improve their performance and to adapt to the uncertain, evolving environment.  

Each agent has access to the data they have collected, but this data may not have 

enough volume or diversity to train accurate models. In addition, an edge agent may 

not have enough resources for the training and inference of complex models. Hence, 
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it is inevitable that agents must somehow collaborate with other nearby agents in 

the training and inference of ML models 

Training ML models on edge requires distributed learning architectures and 

algorithms. Federated learning (FL) has quickly become the de facto training 

paradigm for distributed model training in edge environment. FL, first introduced by 

Google (McMahan;Moore;Ramage;Hampson;& Aguera y Arcas, 2017), aims to train 

a global ML model in a distributed manner. The global model is most typically an ANN 

model, but it can also be some other parameterized model. Original version of FL, 

often called vanilla FL, trains a global model in a centralized manner on decentralized 

data. Each agent participating in the training has their own training data that they 

use to train a local model. Then, the local parameter updates are sent periodically to 

a central server that aggregates the updates and sends the resulting global model 

back to agents. 

4.3.2 Decision-making 

Learning is a part of proactive behavior. It allows the agent to evaluate its actions in 

the environment and derive and explore new actions with the aim to reach its 

objectives. To be able to learn, agents store individual knowledge of their (sometimes 

partially) observable environment and themselves. This knowledge is referred to as 

models. Based on the agent’s experience, the agent builds and adapts these models, 

that is, learns. 

In the highly dynamic computing continuum, decision-making strategies1 learned by 

the agents must be stable, but adaptive enough to conform to changes. Agents have 

to learn strategies based on their own local experience and interactions with 

neighbouring agents in order to make optimal decisions. 

However, Fractal features can only exist through the design of intelligent behaviours 

for nodes. To illustrate, adaptability requires sophisticated methods allowing a node 

to know how to adapt its behaviour to a set of situations. Context awareness might 

require techniques allowing nodes to merge data from their environment to build a 

representation of their situation. However, these behaviours are still difficult to 

develop: firstly because of the limitations of AI algorithms and methods, but also 

because of their computational cost which can prevent them from being implemented 

on edge devices. 

In order to implement the Fractal features, we need intelligence on the edge through 

the adaptation of AI techniques to devices that have strong physical constraints such 

as a low computational power. But we also need intelligence for the edge (Figure 6) 

to provide new cognitive capabilities for intelligence resource orchestration. 

 
1 Note: words ‘policy’ and ‘strategy’ are used interchangeably.  
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Figure 6. AI on edge vs. AI for edge. 
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5 Theoretical studies 

In this section, we report Fractal scientific reports under research question RQ2: What 

kind of methodology and intelligent capabilities are required 1) AI for edge and 2) AI 

on edge. For this deliverable, we have identified the most relevant publications and 

summarize the inputs from these results. Implementation of the suggested visions 

and algorithms is an iterative process connected to the development of HW and 

system architecture. The project is in its midway, and implementation work and 

analysis of different functionalities of Fractal framework is still ongoing.  

5.1 AI for edge 

Intelligent application workflows on edge set requirements for the edge platform with 

regard to performance, reliability and privacy. Furthermore, one of the objectives for 

the Fractal node is to guarantee a set of non-functional properties (dependability, 

security, timeliness and energy-efficiency). To fulfill such application requirements 

and node properties, intelligence is needed for the management of the edge platform. 

Hence, developing AI for edge is required, that is, developing AI techniques for the 

optimization of edge to make it function in a more intelligent and autonomous 

manner. This section introduces the theoretical studies that have been conducted in 

T5.1 to answer the RQ2: What kind of methodology and intelligent capabilities are 

required 1) AI for edge. 

5.1.1 Vision 

J. Riekki and A. Mämmelä, "Research and Education Towards Smart and Sustainable 

World," in IEEE Access, vol. 9, pp. 53156-53177, 2021, doi: 

10.1109/ACCESS.2021.3069902.  

Riekki and Mämmelä propose a high-level vision for directing research and education 

in the field of information and communications technology. They define their Smart 

and Sustainable World vision as follows: "Prosperity for the people and the planet is 

achieved with intelligent systems that sense their environment, make proactive 

decisions on actions advancing their goals, and perform the actions on the 

environment. Sustainable development is emphasized in decision-making, and 

system performance is optimized to save basic resources. Humans observe the 

autonomous operation through user interfaces and, when needed, revise the 

operation or control the systems manually." 

Their vision leads to complex systems of systems, where a large number of 

interconnected devices provide a distributed platform for numerous co-existing 

intelligent systems that share the platform’s limited resources. This vision 

encompasses the Fractal system, and a central condition for realizing the vision is 

the intelligent use of the limited resources. Their ultimate argument is that managing 

the complexity requires studying system-level research problems, which in its turn 

requires a research paradigm that combines the conventional reductive view with a 

holistic systems view. 
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The idea of reductive view is to start from a conceptual analysis, reduce research 

problems to simpler problems, then perform experiments, after which the results can 

be generalized to a theory by induction, abduction, or formation of a hypothesis. 

Finally, results for the original problem can be derived from the theory by deduction. 

However, deduction is possible only in mathematically tractable problems, i.e., when 

the system is a linear system that follows the superposition principle. A complex 

system, such as the Fractal system, is characterized by nonlinear relationships 

between the system parts, which leads to emergence (the behavior at a higher 

hierarchy level of the system is not predictable from the properties at lower levels). 

This calls for systems thinking, which is more general than reductive thinking. 

Systems thinking is a form of generalized inference that is needed to replace 

deduction in mathematically intractable problems. Furthermore, such problems can 

be studied by simulations and experiments with system prototypes to provide insight 

into higher hierarchy level properties. 

Such an approach where bottom-up reductive experimental research is followed by 

top-down systems research is required to meet the strict performance requirements 

in resource-constrained, large-scale systems of systems. Hence, this is the research 

paradigm that underlies the studies on Fractal AI. 

Henna Kokkonen, Lauri Lovén, Naser Hossein Motlagh, Juha Partala, Alfonso 

González-Gil, Ester Sola, Iñigo Angulo, Madhusanka Liyanage, Teemu Leppänen, Tri 

Nguyen, Panos Kostakos, Mehdi Bennis, Sasu Tarkoma, Schahram Dustdar, Susanna 

Pirttikangas, Jukka Riekki (2022): Autonomy and Intelligence in the Computing 

Continuum: Challenges, Enablers, and Future Directions for Orchestration, doi: 

10.48550/arXiv.2205.01423.  

Kokkonen et al. propose a more concrete vision for edge orchestration: by developing 

intelligent solutions for edge orchestration, the edge environment will eventually 

evolve into a coherent device-edge-cloud computing continuum that is able to 

function in an autonomous, decentralized and decoupled manner, while optimizing 

and balancing multiple objectives with regard to, e.g., efficiency, reliability and 

security. The computing continuum will be able to orchestrate its limited 

computational, network, energy and memory resources in a globally optimized 

manner while being aware of and ready to adapt to the dynamic environment. 

The vision relies on a more holistic view on resources and orchestration in the 

computing continuum, which is proposed in the paper and included in the Concepts 

and definitions -section of this deliverable. The architecture of the computing 

continuum is envisioned as a hierarchical multi-agent system consisting of 

autonomous, intelligent, self-interested agents, which is in line with the recursive 

Fractal system architecture. Agents correspond to resources in the computing 

continuum, and each agent has local autonomy with regard to deciding on when and 

how to conduct actions related to orchestration functions. However, to avoid the 

emergence of chaos on a global system level due to the nonlinear interactions of the 

agents, the system adopts loose (weak) coupling: the agents are nearly autonomous, 

but fair resource allocation and agent cooperation are ensured via minimal centralized 
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control. In other words, higher levels in the hierarchy control the lower ones, 

operating at lower resolutions and having wider perspective to the system and the 

environment. The highest levels can be located in the cloud. This centralized control 

can be realized through goals and constraints (specifically on resource usage). 

In order to reach coordinated orchestration decisions in the system, the agents must 

often negotiate with each other. Negotiation techniques are essential for mitigating 

the varying levels of cooperation and local decision-making between the agents and 

subsystems. 

The paper provides an overview of the core challenges with regard to developing AI 

for edge. These challenges are posed by the inherent nature of the computing 

continuum: communication is intermittent and fluctuating, computation resources 

are geographically distributed, heterogeneous and opportunistic, and data is 

distributed, siloed and non-IID, and at times sensitive. Further, there can be a 

massive number of resources, applications, tenants and other stakeholders over a 

number of domains, and these stakeholders may have partially conflicting objectives. 

The challenges set requirements for the orchestration of the computing continuum, 

as also depicted in the Concepts and definitions -section of this deliverable (Figure 

5). Orchestration must be decentralized, as the resources are; further, weak coupling 

and local autonomy allow the approaches to survive alone if connections are severed. 

Non-IID data requires distributed edge intelligence, with localized learning and 

decision-making, while the numerous stakeholders and tenants present in the 

continuum demand approaches that support balancing multiple objectives. Finally, 

security and privacy must be considered for both APIs and execution, as well as data 

and AI models. However, implementing AI methods to answer these requirements is 

very difficult. 

The paper provides a roadmap for AI research by introducing the state of the art in 

AI research fields that will be the key areas of the research for the future computing 

continuum orchestration solutions; this roadmap also applies to Fractal AI. The paper 

presents architectures and methods that currently exist for distributed learning, 

decision-making and negotiation. However, none of the existing approaches alone 

solves all the challenges that must be overcome to reach a truly intelligent 

orchestration. The solutions should emerge through joint efforts in these fields. 

5.1.2 Analysis 

L. Lovén, E. Peltonen, E. Harjula and S. Pirttikangas, "Weathering the Reallocation 

Storm: Large-Scale Analysis of Edge Server Workload," 2021 Joint European 

Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), 

2021, pp. 317-322, doi: 10.1109/EuCNC/6GSummit51104.2021.9482593.  

Lovén et al. analyze and compare four different strategies for workload reallocation 

on edge servers: reallocation to cloud (cloud strategy), reallocation to another edge 

server based on promixity (choose the closest edge server), bottom-up (choose the 

edge server with the lowest workload) or random strategy (choose randomly). They 
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have two main findings. First, a reallocation storm with a large number of superfluous 

reallocations is triggered when a task is reallocated to an edge server the capacity of 

which is exceeded within the duration of the task. Superfluous reallocation refers to 

a reallocation decision that causes another reallocation at the target edge server. 

Second, superfluous reallocations vanish when the edge server capacity is increased 

above a certain threshold. According to their experiments, the proximity strategy 

consistently results in the highest number of superfluous reallocations, and the 

random strategy is the most recommendable for dense edge server deployments. 

Reallocation is one part of edge orchestration. Avoiding superfluous reallocations is 

important, as they increase the network burden and the latency of task processing. 

The study by Lovén et al. shows that it is important to study the conditions behind 

the reallocation storms more carefully and develop novel, intelligent reallocation 

strategies. 

5.1.3 Method 

Lovén L, Lähderanta T, Ruha L, Peltonen E, Launonen I, Sillanpää MJ, Riekki J, 

Pirttikangas S. EDISON: An Edge-Native Method and Architecture for Distributed 

Interpolation. Sensors (Basel). 2021 Mar 24;21(7):2279. doi: 10.3390/s21072279. 

PMID: 33805187; PMCID: PMC8037329.  

Lovén et al. propose methods and an architecture for edge-native spatio-temporal 

data interpolation, called EDISON. They concentrate on interpolation models which 

extend the observations of a sparse sensor network to those areas and points in time 

where no observations are available. EDISON brings data pre-processing techniques 

(namely data interpolation) to the edge, distributing spatio-temporal interpolation 

models, their computations, and the observed data vertically and horizontally 

between device, edge, and cloud layers. On the device layer, mobile and fixed sensors 

collect data, while IoT gateways provide connectivity and local data storage for the 

mobile sensors. The edge layer has edge servers, placed at the fixed sensor locations, 

providing local computational capacity. The cloud provides centralized large-scale 

computational capacity. 

During distributed training in EDISON, the cloud is responsible for partitioning the 

training set into subsets of observations around each edge server, aiming for subsets 

that are maximally independent. The cloud then sends the partitioned training set to 

all edge servers, rasterized to reduce transmission burden. Edge servers then train a 

local, spatio-temporal interpolation model for the observations in the edge server’s 

subset of the training set. During distributed inference, each edge server first finds 

the right edge server for each new mobile observation from IoT gateways that have 

passed by, and then sends the observations to the selected servers. Edge servers 

then apply the local interpolation model with the data collected by the sensors. 

EDISON is designed to particularly address the challenges related to large-scale data 

and mobile, low-capability devices. 

EDISON provides an edge-native way for interpolating the new observations over the 

unobserved timeslots and locations. Proper interpolation improves the subsequent 
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data analysis, which in its turn improves situation awareness and decision-making. 

Furthermore, the architecture of EDISON is also applicable to edge-native predictive 

analysis in general. 

Nguyen, H., Nguyen T., Leppänen, T., Partala, J., Pirttikangas, S. (2022): Situation 

Awareness for Autonomous Vehicles Using Blockchain-based Service Cooperation, 

doi: 10.48550/arXiv.2204.03313.  

Nguyen et al. propose a blockchain-based method for enhancing context-awareness, 

fault tolerance and decision-making in vehicular networks. Their system comprises a 

trusted, collaborative platform where data storage and exchange, as well as service 

access are based on smart contracts between the service providers' edge servers. 

The system has two layers, one comprises the communications between vehicles and 

edge servers, and the other comprises the communications between the edge 

servers. Each edge server manages a region by conducting three main tasks: (1) 

collecting vehicles’ information, (2) interpreting from vehicles’ information, and (3) 

maintaining a blockchain with other edge servers. In other words, the vehicles at a 

specific region share data related to the environment with the edge server, which 

gathers vehicles' information and analyzes it to understand the region’s state. This 

state is broadcasted to other edge servers and formulated as a new block in the 

shared blockchain. Each edge server can then share this new state with the vehicles 

in their region. 

Because the roadside edge servers maintain a unique blockchain by which the data 

is distributed and stored at every part of the network, the system provides a secure 

and fault-tolerant way for vehicles to share contextual information with each other, 

which improves the decision-making capabilities of the vehicles. Further, the 

utilization of smart contracts facilitates the cooperation of different stakeholders on 

edge. 

5.1.4 Synthesis 

Table 3 provides a summary of the studies on AI for edge, stating their category, 

main contribution and connection to RQ2. 

Article Category Essential contribution Connects to 

(Riekki & 

Mämmelä, 

2021) 

Vision Research paradigm for 

Fractal AI 

Required methodology 

(Kokkonen, ym., 

2022) 

Vision Holistic view on 

resources and 

orchestration on device-

edge-cloud continuum, 

vision of intelligent 

orchestration, extensive 

overview of state of the 

Required methodology 

and intelligent 

capabilities, decision-

making, learning and 

data architectures, 

mitigating varying 

levels of cooperation 
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art in distributed 

learning, decision-

making and negotiation 

and local decision-

making, deciding about 

the level of autonomy 

(Lovén;Peltonen

;Harjula;& 

Pirttikangas, 

2021) 

Analysis Comparison of current 

strategies for workload 

reallocation 

Need for intelligent 

capabilities 

(Lovén, ym., 

2021) 

Method Methods and an 

architecture for 

distributing interpolation 

models, their 

computations, and the 

observed data vertically 

and horizontally between 

device, edge, and cloud 

layers 

Novel architecture, 

enhanced decision-

making 

(Nguyen;Nguye

n;Leppänen;Par

tala;& 

Pirttikangas, 

2022) 

 

Method System for secure data 

sharing in vehicular 

networks 

Data architecture, 

interoperability, 

enhanced decision-

making 

Table 3. Summary of AI for edge contributions in Fractal T5.1 

5.2 AI on edge 

The Fractal use cases are in the central role for realizing AI on edge in Fractal project. 

In this section, we list the publications and reports related to the use cases. In other 

words, this section answers the RQ2: What kind of methodology and intelligent 

capabilities are required 2) AI on edge reflecting the scientific publications and 

reports published in the Fractal project. It should be noted that not all the material 

related to the use cases has been published in scientific papers.  

This section also briefly lists HW related papers of Fractal even though they are not 

directly in the focus of Task 5.1. The publications are clustered to emphasize the 

sustainability properties of the solutions: safety, energy-efficiency and fault-

tolerance. The related research questions are: How can we increase energy-

efficiency, safety, security and fault-tolerance of the Fractal system? How does 

energy-efficient chip design help us in the overall sustainability of the Fractal system? 

Linking to other deliverables can be found in Section 6 of this document. 

The overall project description was published in 2020 at Euromicro Conference (Lojo, 

ym., 2020).  
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 A. Lojo et al., "The ECSEL FRACTAL Project: A Cognitive Fractal and Secure edge 

based on a unique Open-Safe-Reliable-Low Power Hardware Platform," 2020 23rd 

Euromicro Conference on Digital System Design (DSD), 2020, pp. 393-400, doi: 

10.1109/DSD51259.2020.00069.  

Lojo et al. presented the FRACTAL project and its expected benefits, in other words, 

the project’s contribution to the current literature as well as industrial perspectives. 

This paper was published in the beginning of the project and it set the ambition 

level for the FRACTAL node to be able to provide cognitive skills through an internal 

and external architecture that allows to forecast its internal performance and the 

state of the surrounding world. The paper proposes two platforms applicable to 

serve as FRACTAL nodes, one commercial and one open RISC-V based. The main 

areas of FRACTAL ambitions are shown in Figure 7 (from (Lojo, ym., 2020)). 

 

Figure 7.  The main areas of FRACTAL ambitions. 

The main functionalities of AI on edge are developed and tested through use cases. 

In this deliverable, we list the use cases and any related scientific publications.  

Use case AI requirements are the functional and non-functional needs as they have 

been captured in the project. They are listed in the following table. 

 

Use case UC1: Improving the quality of engineering and maintenance work 

through drones  
 

Method Algorithm capable of distinguishing between active and non-active 

cracks of a wide range of pathologies registered in concrete 

structures. Semantic segmentation.  

Platform UAV for data collection, Fractal node for processing 

Related 

theoretical 

studies 

Ignacio Garrido Botella, David Sanz Muñoz. “A Cognitive Node to 

assist in the Inspection and Maintenance of Structures”, internal 

report by INDRA, 2022. 

The designed crack detection model is based on a CNN with U-Net 

architecture. In addition, to improve the image segmentation 
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model, a dataset has been created with real images taken on site 

with a UAV, and some image augmentation techniques have been 

implemented as well (change of brightness, overlap the images 

with textures). Further, the output is refined with techniques such 

as opening, closing, and a double threshold algorithm, so it is easier 

to measure the length of a crack/families of cracks. 

 

Use case UC2: Improving the quality of automotive air control  
 

Method Algorithm for implementing an intelligent control system that will 

reduce emissions. Reinforcement learning and regression 

modelling.  

Platform Not known yet. 

Related 

theoretical 

studies 

No related scientific publications published, yet. 

 

Use case UC3: Smart meters for everyone  

Related 

theoretical 

studies 

No AI focus.  

 

Use case UC4: Low-latency Object Detection as a generic building block for 

perception in the edge for Industry 4.0 applications  

Method HW acceleration for edge computing. Object detection with 

TinyYOLOv3. 

Platform ARIANE 

Related 

theoretical 

studies 

No related scientific publications published, yet. 

 

Use case UC5: Increasing the safety of an autonomous train through AI 

techniques  

Method Incorporating AI and high-performance computational capabilities. 

for increased dependability and safety. Autonomous train 

functionalities: stopping precision, odometer view, rolling stock 

coupling operation, person and obstacle detection using 

YoloV3/YoloV4. 

Platform Versal 

Related 

theoretical 

studies 

No related scientific publications published, yet. 

 

Use case UC6: Elaborate data collected using heterogeneous technologies 

(intelligent totem)  

Method Building an AI-based smart mobile totem, for advertisement and 

customer support inside shopping malls. Image recognition, speech 

recognition using neural Networks, CNN, LLM, YoloV4. 

Platform Versal 
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Related 

theoretical 

studies 

Di Mascio, T., Fantozzi, P., Laura, L., Rughetti, V. (2022). Age and 

Gender (Face) Recognition: A Brief Survey. In:, et al. 

Methodologies and Intelligent Systems for Technology Enhanced 

Learning, 11th International Conference. MIS4TEL 2021. Lecture 

Notes in Networks and Systems, vol 326. Springer, Cham. 

https://doi.org/10.1007/978-3-030-86618-1_11 (Di 

Marccio;Fantozzi;Laura;& Rughetti, 2021) 

This paper presents a comparative overview of the state-of-the-art 

approaches which estimate age and gender from human faces, 

some of them proposing novel network architectures or the addition 

of new components to already known models. 

(Di Mascio;Peretti;Caruso;& Cassioli , 2022) 

 

Use case UC7: Autonomous robot for implementing safe movements  
 

Method Integrating the Cognitive Edge Node in autonomous robot SPIDER 

and evaluate its applicability for performing computational 

intensive relevant vehicle functions of variable complexity at the 

edge of the network (near the source of the data). The use case 

leverages the LEDEL AI library.  

Platform NOEL-V 

Related 

theoretical 

studies 

No related scientific publications published, yet. 

 

Use case UC8: Improve the performance of autonomous warehouse shuttles 

for moving goods in a warehouse  

Method Leveraging swarm intelligence for autonomous shuttles. Improving 

the throughput, availability and safety of the system.  

Platform KV260, Versal 

Related 

theoretical 

studies 

No related scientific publications published, yet. 

 

5.2.1 Fractal features: Safety 

Fractal publications related to hardware safety aspects are summarized below 

(Alcaide, ym., 2022), (Mazzocchetti, ym., 2022).  

Sergi Alcaide, Guillem Cabo, Francisco Bas, Pedro Benedicte, Fabio Mazzocchetti, 

Francisco J. Cazorla, Jaume Abella, "Unboxing the Sand: on Deploying Safety 

Measures in the Programmable Logic of COTS MPSoCs" ERTS^2 2022 11th European 

Congress on Embedded Real Time Software and Systems Toulouse (France), June 1-

2 2022  

This paper proposes using programmable logic (PL) to provide hardware support for 

implementing safety measures efficiently. Providing sufficient hardware support for 

https://doi.org/10.1007/978-3-030-86618-1_11
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functional safety is a key enabler for using Commercial Off-the-Shelf (COTS) MPSoCs 

in safety-related systems that need high assurance levels. The goal is not to master 

PL from the cores solely, but also allow PL to provide monitoring (e.g., contention, 

diversity, watchdogs) and control (e.g., configuring QoS features) capabilities for the 

purpose of realizing a safety concept atop. The work presented in this paper provides 

specific monitoring, diversity, and controlling strategies to allow PL to take over 

safety-related functionalities. 

Fabio Mazzocchetti, Sergi Alcaide, Francisco Bas, Pedro Benedicte, Guillem Cabo, 

Feng Chang, Francisco Fuentes, Jaume Abella, "SafeSoftDR: a Library to Enable 

Software-Based Diverse Redundancy for Safety-Critical Tasks" FORECAST 2022 - 

Functional Properties and Dependability in Cyber-Physical Systems Workshop (held 

with HiPEAC conference 2022), Budapest (Hungary), June 21 2022 

Abstract not available, yet.  

5.2.2 Fractal features: sustainability, energy-efficiency and low 

power  

Papers representing sustainability (Benz;Bertaccini;Zaruba;Schuiki;& Gürkaynak, 

2021), energy-efficiency and low power aspects of Fractal hardware are 

summarized below (Nambinina;Onwuchekwa;Ahmadian;Goyal;& Obermaisser , 

2021),  (Muoka;Onwuchekwa;& Obermaisser, 2022), (Tuzov, ym., 2021), 

(Rutishauser;Scherer;Fischer;& Benini, 2022), 

(Wistoff;Schneider;Gürkaynak;Heiser;& Benini, 2022), (Lua;Onwuchekwa;& 

Obermaisser, 2022), (Alshaer;Lua;Muoka;Onwuchekwa;& Obermaisser, 2022), 

(Muoka;Umuomo;Onwuchekwa;& Obermaisser, 2022), 

(Rogenmoser;Wistoff;Vogel;Gurgaynak;& Benini, 2022). 

T. Benz, L. Bertaccini, F. Zaruba, F. Schuiki, F. K. Gürkaynak and L. Benini, "A 10-

core SoC with 20 Fine-Grain Power Domains for Energy-Proportional Data-Parallel 

Processing over a Wide Voltage and Temperature Range," ESSCIRC 2021 - IEEE 47th 

European Solid State Circuits Conference (ESSCIRC), 2021, pp. 263-266, doi: 

10.1109/ESSCIRC53450.2021.9567755. 

This paper presents Thestral, a 10-core RISC-V chip for energy-proportional parallel 

computing manufactured in 22 nm FD-SOI technology. Thestral contains a control 

core and a nine-core computer cluster. This paper proposes a fast and fine-grain 

power gating architecture with much finer granularity than the state of the art for 

multi-core computing platforms. 

R. Nambinina, D. Onwuchekwa, H. Ahmadian, D. Goyal and R. Obermaisser, "Time-

Triggered Frequency Scaling in Network-on-Chip for Safety-Relevant Embedded 

Systems," 2021 International Conference on Smart Generation Computing, 

Communication and Networking (SMART GENCON), 2021, pp. 1-7, doi: 

10.1109/SMARTGENCON51891.2021.9645782. 

This paper presents models and algorithms for low power techniques in Networks on 

Chip based on dynamic frequency scaling for safety-relevant real-time systems. The 
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novel technique is based on time-triggered frequency scaling to enable power and 

energy efficiency while preserving safety and real-time guarantees. 

Muoka P, Onwuchekwa D, Obermaisser R. Adaptive Scheduling for Time-Triggered 

Network-on-Chip-Based Multi-Core Architecture Using Genetic Algorithm. Electronics. 

2022; 11(1):49. https://doi.org/10.3390/electronics11010049 

In this work, an algorithm for path reconvergence in a multi-schedule graph, enabled 

by a reconvergence horizon, is presented to manage the state-space explosion 

problem resulting from an increase in the number of scenarios required for 

adaptation. 

Tuzov, Ilya & Andreu, Pablo & Medina, Laura & Picornell Sanjuan, Tomás & Robles, 

Antonio & Lopez, Pedro & Flich, José & Hernández, Carles. (2021). Improving the 

Robustness of Redundant Execution with Register File Randomization. 1-9. 

10.1109/ICCAD51958.2021.9643466.  

This paper shows that Staggered Redundant Execution does not effectively protect 

the system against a wide range of faults and thus, new mechanisms to increase the 

diversity of homogeneous cores are needed. This paper proposes Register File 

Randomization (RFR), a low-cost diversity mechanism that significantly increases the 

robustness of homogeneous multicores in front of common-cause faults (CCFs) and 

register file wear out. 

G. Rutishauser, M. Scherer, T. Fischer, L. Benini, "Ternarized TCN for μJ/Inference 

Gesture Recognition from DVS Event Frames.", Design, Automation and Test in 

Europe Conference (DATE 2022), online, March 14–23, 2022 

This paper proposes an event frame-based approach to the classification of DVS video 

data. Ternary video frames are assembled from the event stream and processed with 

a fully ternarized Temporal Convolutional Network which can be mapped to CUTIE, a 

highly energy-efficient Ternary Neural Network accelerator. 

N. Wilstoff, M. Schneider, F. K. Gürkaynak, G. Heiser, L. Benini, "Systematic 

Prevention of On-Core Timing Channels by Full Temporal Partitioning", 

https://arxiv.org/abs/2202.12029 

This work leverages the open and extensible RISC-V instruction set architecture (ISA) 

to introduce the temporal fence instruction fence.t, which provides the required 

mechanisms by clearing vulnerable microarchitectural state and guaranteeing a 

history-independent context-switch latency. This paper proposes and discusses three 

different implementations of fence.t and implements them on an experimental 

version of the seL4 microkernel and CVA6, an open-source, in-order, application 

class, 64-bit RISC-V core. 

https://doi.org/10.3390/electronics11010049
https://arxiv.org/abs/2202.12029


 

Project FRACTAL 

Title Theoretical study of Fractal AI   

Del. Code D5.3   

 

  

 Copyright © FRACTAL Project Consortium 26 of 36 

 

6 Links to other deliverables and implementation 

In the previous sections, a thorough analysis of the Fractal AI theoretical framework 

has been conducted by reviewing all the scientific publications related to (1) Fractal 

AI, and (2) the hardware Fractal Platform. As a result, a complete set of tools that 

enable the development of robust and functional technology stacks based on the 

Fractal paradigm has been provided. Throughout the project, partners providing the 

use cases have been utilizing and including the Fractal framework in their own 

technological stacks. They are implementing the Fractal platforms and AI tools to 

solve their respective use cases, thus bringing the academic research to an actual 

implementation. All this work to bring the theoretical aspects of the project from the 

purely academic to the engineering realm has been compiled and is reflected in a 

variety of deliverables and technical reports.  

In this section, the link between the academic publications and the actual 

implementations, which are reflected on the various deliverables of the project, is 

described. Work package related deliverables describe the actual validation of the 

research in more detail and is not a focus in this deliverable. 

A description of the deliverables which provide the implementation details from the 

academic publications is given below. 

6.1.1 T5.2 Fractal AI Platform 

D5.2 Intermediate platform for Federated AI 

This deliverable describes the development of the runtime platform where the AI 

algorithms are deployed, tested, and run. The FRACTAL AI Platform is an independent 

Edge-oriented platform which eventually would require Cloud support for heavy 

resource-demanding tasks like video-processing, heavy ML model training or large 

data storage (historical data, for example). In D5.2, a technical and functional 

description of the Cloud architecture components is provided, taking the FRACTAL 

Use Case requirements as a starting point. AI algorithms and processes coming from 

the scientific publications can be directly implemented in the Fractal Cloud Platform 

through the data pre-processing and storage capabilities, performing model training, 

model quantization and validation. The resulting models can then be deployed in the 

Edge Fractal platform. 

D5.4 Platform and building blocks for Fractal AI, toolkits, and custom and 

pre-trained models for AI-based Algorithms developed in the other tasks  

This deliverable complements D5.2, by describing the implementation done in D5.2 

from a technical perspective, providing detailed explanations about how the Fractal 

Cloud Components are installed and utilized. As a result, all the Cloud components, 

which are required to have a fully-functional Cloud-Edge architecture, are integrated 

together and are then ready to be used in the use cases. Four Test Cases are 

proposed in this document, detailing the functioning through four experiments that 
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demonstrate the capabilities of the Fractal Cloud Platform, ranging from data 

capturing to the final model deployment at the Edge.   

6.1.2 T5.3 Applied Fractal AI 

D5.1 Specification of AI methods for use case applications 

D5.1 is one of the most important deliverables when considering the implementation 

of the theoretical Fractal system. It provides the first approach to defining the AI 

methods and tools that will be available in the Fractal environment. It consists of a 

wide collection of AI tools and methods to be used by the use cases for the 

development of their applications. This collection will then be integrated together to 

become a robust framework where end-to-end AI processes can be built and 

executed.  

First, an overview of the main AI methods characterizing the Fractal system is given. 

It addresses the difference between learning and inference, centralized and 

decentralized learning, and other key aspects of the Fractal functioning like context 

awareness and model preparation for Edge deployments. 

Then, the functional and non-functional requirements of the use cases are detailed. 

These state the necessity of a variety of tools to cover each of the requirements. 

Finally, D5.1 provides a complete collection of AI methods and AI tools that allow the 

development and implementation of all the algorithms and strategies previously 

investigated. This collection includes the algorithms needed to tackle each of the use 

cases, video analyzing processes, neural networks, training strategies, as well as 

model training and deployment libraries and data science libraries. As a result, the 

Fractal environment has at its disposal a plethora of tools to bring all the theoretical 

research into engineering, allowing the creation of models and its proper handling. 

D5.6 Mechanisms for AI transparency interactions 

Initially, the objective of this deliverable was to detail the interaction mechanisms 

between humans and AI, and to discuss how these mechanisms can be controlled 

and regulated so that the response of the ML models to human responses is legally 

and ethically correct.  

After the completion of D5.1, it was decided by the T5.3 partners that even though 

the collected list of tools and frameworks was complete, the project was still in an 

early development phase and new tools or necessities could emerge during the 

course of the project that would remain uncovered. For this reason, it was decided 

to address these emerging tools and requirements in D5.6, which will also include 

thorough technical descriptions of the use cases. These descriptions cover the model 

design, working, optimization, and the architectural deployment of the data collection 

and processing tools, as well as the models themselves.  
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6.1.3 T6.1 Edge node design and implementation 

D6.1 FRACTAL processing node design and implementation 

In this deliverable, the practical implementation details of all the necessary tools to 

build a Fractal Platform are detailed. D6.1 takes as starting point D2.1 which gathers 

all the functional and non-functional requirements of the use cases, and describes all 

the steps to implement them technically on a physical platform, by targeting the 

three reference architectures: Low-end node (PULP), mid-node (NOEL-V or RISC-V) 

and high-end node (VERSAL). The importance of D6.1 resides in the fact that it 

presents the actual construction of the Fractal Platform in physical systems, covering 

all the reference platforms and utilizing the AI tools selected in D5.1. Hence, it allows 

the knowledge obtained from Fractal AI research to be used in practical 

implementations. 

It also provides instructions to create virtual machines to emulate the reference 

architectures for developing purposes, which can help to validate the developed items 

before taking them into the actual physical hardware. 
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7 Conclusions 

According to WP2, the most interesting Fractal features in relation to AI on the edge 

and AI for the edge are decentralization, context-awareness and adaptability. 

Decentralization refers to the distribution of the system operation, which can be 

achieved with, e.g., a multiagent paradigm. Also, by having weakly coupled Fractal 

system components, we can bring more adaptability into the nodes' behavior. 

Decentralized behaviors require distributed mechanisms to operate, such as 

distributed learning which allows agents to learn, infer and adapt to uncertain and 

evolving environments. Context-awareness is a feature referring to the ability of the 

node to perceive and leverage available information in the environment of the node. 

This feature can be viewed from the perspective of the use cases, as well as through 

the system operation. It can be any information that characterizes the situation of 

the node such as the time, the available data from neighboring nodes, etc. 

Adaptability represents the capacity of a node to change its behavior depending on 

its objective, its knowledge or even its context. This deliverable lists and synthetizes 

the Fractal scientific publications that handle different methods and architectures for 

allowing the system to make intelligent decisions about the management of the 

distributed resources of the system. Further, the Fractal publications that focus on 

the AI methods needed for the use cases are listed and summarized in this 

deliverable. We also list the papers that can shed insight into the practical 

implementation aspects of efficient and sustainable Fractal nodes. Finally, the 

deliverable’s links to other deliverables and implementation paths are given. In the 

project, the integration of different components towards FRACTAL system is ongoing.  
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