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2 Summary (SIEG) 

This deliverable aims to report the outcomes of T4.3 on safety services. The result of 
the implementations carried out in the task is presented according to the components 
developed, which reflect the objectives of the task. 

Namely, T4.3 aims to develop safety service at different hierarchies such as the node 
level and systems level.  The structure of this deliverable is divided into different 
sections and each section describes the implementation, and evaluation of 
components. Time-Triggered Extension Layer for VERSAL Network-on-Chip, Adaptive 
Time-Triggered Network-on-Chip, with fault tolerance techniques for NoC are 
described in section 5 (SIEG); as for safety services at the system level, the work 
was focused on suitable fault tolerance techniques, specifically software diverse 
redundancy library, described in section 6 (BSC). The task also investigated 
performance monitoring services in section 7 (BSC). Section 8, 9 (ETHZ, UPV), 
describes the safety services for PULP systems and FPGA-based fault injection, in 
section 10 (UPV), Safety analysis of the NOEL-V Platform redundant acceleration 
scheme has been explored. In section 11,12 safety concepts based on ISO26262 and 
IEC 62061 with various use cases have been explored (AVL, VIF, BEEW). 
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3 Introduction (SIEG) 

The goal of the WP4 is to develop safety, security, and low-power services for 
individual FRACTAL nodes. In this document, we will shed light upon safety services 
for FRACTAL systems extending the preliminary implementation reported in the 
previous deliverable D4.1. The development, and implementation, will include both 
the node level and the system level in accordance with the Fractal system 
architecture depicted in Figure 1. To this aim, we will provide safety services for 
multi-core chips that use an Adaptive Time-Triggered Network-on-Chip (ATTNoC) to 
interconnect heterogenous types of computing resources such as general-purpose 
processor cores. Moreover, we developed a safety and fault-tolerant services for the 
communication between FRACTAL nodes including a seamless redundancy 
mechanism. Performance monitoring services are implemented and investigated in 
this deliverable. Safety services for PULP systems are developed, in addition, FPGA-
based fault injection techniques are investigated and developed. Two safety concepts 
are considered in this deliverable including ISO 26262, and IEC 62061. 

 

Figure 1 Fractal System Architecture 

The strategic objective of this task is to provide safety services for the FRACTAL 
system. To achieve this goal, first, the task was realized by several building blocks/ 
components which contribute to fulfilling the T4.3 objectives and are reusable and 
could be used by any use case (UC). A brief description of each of these components 
and how they contribute to fulfilling the T4.3 Objectives are reported in Table 1. 
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Table 1 Summary of the components developed in T4.3 

Time-Triggered On-Chip Communication 
Description ATTNoC is an extension of Network-on-Chip, used to interconnect multiple 

processing elements within SoC, equipped with Adaptive time-triggered 
features. Time-Triggered communication provides temporal guarantees 
within NoC and enables the NoC to switch between schedules whenever a 
context event occurs. This work has also focused on improving fault 
tolerance of ATTNoC by using a redundancy mechanism at the 
communication level of NoC that can handle the transient faults that occur 
during transmission of critical messages within NoC. A single error when 
transferring critical messages between two cores can be detected and 
recovered by employing seamless redundancy mechanism features. 

Contribution in achieving 
the T4.3 objectives  

This component provides fault-tolerant services for the communication 
between several processing elements by switching between schedules when 
a context event occurs within the NoC. It also supports time-triggered 
communication to achieve deterministic communication within NoC. This 
component supports message replication/fusion or redundancy 
mechanisms in FRACTAL systems. 

Software diverse redundancy 
Description With the aim of achieving diverse redundancy, needed to support the 

highest criticality level across multiple domains, we develop a library that 
schedules redundant threads of tasks, and preserves enough staggering 
across redundant threads, so that unprotected hardware resources are used 
with physical and timing redundancy. 

Contribution in achieving 
the T4.3 objectives 

This component provides fault detection, and fault containment based on 
replication. Random hardware faults are considered, including those leading 
to common cause failures (i.e., a single fault affecting redundant threads 
could lead both to identical errors).   

Multicore interference control/ monitoring service - Hardware 
Description The component provides monitoring services built upon a Performance 

Monitoring Unit (PMU) for the verification of timing concerns (e.g., 
interference channels and shared resource clogging).  This service builds 
upon configuring WP3T31-01 to measure a specific set of events, typically 
related to the core where the time-critical task is intended to run. Then, the 
unit is reset and enabled right before the critical task whose behaviour 
needs monitoring is about to run. When the task execution finishes, event 
counters are read and system level decisions on the user application side 
could be taken based on the amount of shared resource accesses performed 
and timing interference experienced.  Typically, such service is planned to 
be linked to tasks executing periodically (e.g., every 100ms) with the aim 
of detecting abnormal timing behaviour during operation, and/or for 
optimization purposes during system design by, for instance, rescheduling 
conflicting tasks producing high mutual contention.  

Contribution in achieving 
the T4.3 objectives 

The component provides safety features when using shared hardware 
components. This component provides fault detection, and fault 
containment. Both random hardware faults and systematic faults will be 
considered in faulty assumptions. It is planned to support safety critical AI 
applications. It is a form of safety monitor and provides also support to 
achieve segregation.  

Safety services for PULP  
Description The aim of this component is to enhance the PULP systems to support safety 

services. In particular, the work has focused on improving fault-tolerant 
features through redundancy, ECC protection for memories, and watchdog 
timers. A single error on a RISC-V core can be detected and recovered by 
employing redundancy features, eg, having three cores that compute the 
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same program in parallel and comparing the output of the three cores. In 
the case of a single error on one RISC-V core, the redundancy allows to 
detect the error and recover the corrected status of the faulty core. 

Contribution in achieving 
the T4.3 objectives 

The component satisfies the objective of the task through: Increasing 
safety and fault-tolerant features on PULP platform for IoT applications. 

FPGA Based fault injection 
Description A tool to perform fault-injection in modern FPGA devices. In particular, the 

tool has been adapted to inject faults in the VCU118, but fault-injections in 
any device of the Ultrascale+ and Virtex7 families is also possible. The 
fault-injection process has been adapted to allow fault-injection in the 
NOEL-V platform allowing performing the robustness characterization of 
this SoC. 

Contribution in achieving 
the T4.3 objectives 

The component helps validating the fault-tolerant capabilities of a built-in 
safety mechanism such as redundant execution schemes. Thus, the tool 
helps analyzing the robustness of a particular designs and derive fault 
metrics at early stages of the product development (i.e before physical 
implementation). 

Redundant Acceleration Scheme Safety Analysis – Analysis/ Safety Concept 
Description Analysis of the robustness provided by an AI acceleration scheme when 

implementing different solutions like algorithmic and implementation 
diversity and for different levels of modularity. The goal if the Identification 
of protection gaps in the SoC and software layers.   

Contribution in achieving 
the T4.3 objectives 

The component helps assess the safety and the robustness of the platform 
when using non-memory protected accelerators.    

Safety Analysis (ISO 26262) 
Description The ISO 26262 “Road vehicles – Functional safety” represents the 

automotive specialization of IEC 61508 and provide a framework for 
achieving Functional Safety for electrical and/or electronic(E/E) systems in 
road vehicles.   A functional safety concept based on the ISO 26262 is 
applied for the developed functions of UC7. Requirements derived from the 
safety concept are integrated to the UC architecture.  

Contribution in achieving 
the T4.3 objectives 

The component demonstrates how to derive safety requirements for an 
application in the automotive sector.  

Safety Analysis (IEC 61508) 
Description Safety concept by performing a risk analysis within the scope of the concept 

phase of IEC 61508 by application of DIN EN ISO 3691-4 (item definition, 
risk assessment and functional safety concept) on the system, in context 
of VAL_UC8. The application of fractal components in the shuttle system 
dissolves many limitations in the hardware and software levels and requires 
a new risk analysis with the new possibilities. 

Contribution in achieving 
the T4.3 objectives 

The safety concept for the shuttle system provides a possible application of 
the new abilities in respect to the standard DIN EN ISO 3691-4 in an 
automated environment. 
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3.1 Structure of the deliverable 

 

Figure 2 Document Organization 
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4 High Level Picture (SIEG) 

 

Figure 3 FRACTAL Big Picture 

The big picture of the project, illustrated in Figure 3, is a holistic representation of 
the FRACTAL solution. It provides an answer to the use case requirements, which are 
the functional and non-functional needs captured by FRACTAL use cases at the 
beginning of the project. Starting from these requirements, a set of features could 
be established to give a technical notion to the requirements.  

The components, which are developed in the WP4 and could be made of software or 
hardware, participate in fulfilling some of the FRACTAL features. In the following 
subsections, we report how each of our components is integrated in the big picture  
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4.1 Time-Triggered On-Chip Communication  
The Hardware edge of the big picture could be represented as it is shown in Figure 
4. Thus, the Time-Triggered On-Chip Communication could be regarded as part of 
the time-predictability aware interconnect and can be embedded into any platform 
needing a safe-on-chip communication and deterministic communication. 

 

Figure 4 Time-Triggered On-Chip Communication location in the big picture 

4.2 Software diverse redundancy library 
The software diverse redundancy library is a safety service at the edge level, which 
builds on some hardware specific drivers to collect some performance monitoring 
counters and send some signals to cores, but does not use any specific hardware 
module developed ad-hoc for this service. 

Time predictability 
aware Interconnect 
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Figure 5 Software diverse redundancy library in the big picture 

4.3 Performance monitoring services  
The performance monitoring services provide timing monitoring capabilities to end 
user applications to measure multicore interference and collect other statistics on the 
on-chip traffic generated by cores. Such safety service interacts with an ad-hoc 
hardware component monitoring relevant on-chip events, as well as with the 
interface for such hardware component. 
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Figure 6 Performance monitoring services in the big picture 

4.4 Safety services for PULP systems 
FRACTAL targets reliable cognitive end nodes. This component aims at enhancing 
PULP-based systems with safety features. In particular, fault-tolerant features are 
added through redundancy, ECC protection for memories, and watchdog timers. 

 

 

Figure 7 Safety services for PULP systems in the big picture 
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4.5 FPGA based fault Injection  
FPGA-based fault injection tool serves for verification and robustness assessment of 
FPGA prototypes. It comprises two main components: an on-chip FFI controller and 
a host-side FFI application. The former is in charge of manipulating the configuration 
memory of target FPGA to emulate the appearance of selected faults. The latter is in 
charge of generating the fault load for the FFI controller, as well as supplying the 
tests (workload) and checking the responses from the Design Under Test (DUT) in 
order to analyze the effects of injected faults on the DUT.  

 

Figure 8 FPGA based fault Injection in the big picture 

4.6 Safety analysis of the NOEL-V Platform redundant 
acceleration scheme 

The redundant acceleration scheme comprises an array of replicated CNN 
(convolutional neural network) accelerators, connected to the SoC via the AXI 
network, and monitoring component (implemented in software or hardware) 
responsible for synchronizing the operation of replicas, checking the correctness of 
results, and taking corrective actions if needed. The reliability/safety analysis of this 
scheme is partially supported by FPGA-based fault injection experiments.   
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Figure 9 Safety analysis of the NOEL-V Platform redundant acceleration scheme in the big picture 

4.7 Safety concept based on ISO26262 
The safety concept is implemented by redundant execution of the safety-relevant 
functions (collision avoidance function and path tracking function) of the SPIDER. 

 

Figure 10 Safety concept based on ISO26262 in the big picture 
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5 Time-Triggered On-Chip Communication for Multi-
core Architecture (SIEG) 

5.1 Time-Triggered Extension Layer for Versal NoC 
This section describes the time-triggered extension layer used in the VERSAL NoC to 
establish the temporal partitioning over the Chip. By default, the VERSAL NoC does 
not support Time-Triggered Traffic. Time-Triggered traffic has been proven to be one 
of the methods used in safety-critical systems, since it provides deterministic 
communication, and low jitter, and reduces the risk of message’s collision during 
transmission of messages between multiple processing elements [SIEG-TTEL1]. A 
Time-Triggered Extension Layer (TTEL) is introduced in the VERSAL NoC, which 
allows the VERSAL NoC to inject messages to the NoC, according to predefined time 
from the schedule, that is computer offline. 

The TTEL components is located in the PL of the VERSAL, between Processing 
elements (Hard core, soft core, Gateway (GW), etc.) and the NoC Master Unit (NMU) 
of the VERSAL NoC as depicted in Figure 11. 

 

Figure 11 TTEL on VERSAL NoC 

5.1.1 Description of Versal NoC 

The Xilinx Versal programmable NoC is an AXI based interconnect, used for 
exchanging data between IP (cores, DDR, AI Engine, Custom IP). This device-wide 
infrastructure is a high-speed, integrated data path with dedicated switching. The 
VERSAL NoC has a series of interconnected horizontal (HNoC) and vertical (VNoC) 
paths as depicted in Figure 12, and supported by a set of customizable, hardware 
implemented components that can be configured in different ways to meet design 
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timing, speed, and logic utilization requirements. The HNoC and VNoC are dedicated, 
high-bandwidth paths connecting integrated blocks between the processor system 
and the programmable logic (PL) without consuming large amounts of programmable 
logic. The NoC components comprise NoC master units (NMU), NoC slave units (NSU), 
NoC Packet Switches (NPS), and NoC Inter-Die-Bridge (NIDB). The NMU is the traffic 
ingress point; the NSU is the traffic egress point. All IPs have some number of these 
master and slave connections. The NIDB connects two Super Logic Regions (SLRs) 
together, providing high bandwidth between dies. The NPS is the crossbar switch, 
used to fully form the network. 

 

Figure 12 Block Diagram of VERSAL NoC [SIEG-TTEL2] 

5.1.2 Description of Time-Triggered Extension Layer 

Time-Triggered Extension Layer (TTEL) is a temporal and spatial partitioning layer 
that is constructed on top of NoC. The TT extension layer allows the underlying NoC 
to support several types of communication (e.g., time-triggered, rate-constrained, 
and best-effort) as well as mixed-criticality applications. 
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Figure 13 Time-Triggered Extension Layer for VERSAL NoC [SIEG-TTEL3] 

Figure 13, illustrates the extension layer’s building components. In addition, to 
the extension layer on the core and NoC sides, core and NoC wrappers offer the 
hardware interface, i.e., AXI Full interface. Other building blocks of the TTEL are 
the core interface, RMI (Reconfiguration and Monitoring Interface) and EBU (Egress 
Bridging Unit). The functionalities of each block will be described below: 

 
Core and NoC AXI Wrapper: The purpose of the core AXI wrapper is to provide 
the required communication service between the core and the TTEL. Similarly, the 
NoC AXI wrapper supports communication between the TTEL and 
the Versal NoC. 

 
Core Interface: Core Interface is one of the main components of the TTEL. Versal 
NoC and Core’s communication is handled through Core Interface. The core is 
composed of Ports; the primary element of the Core Interface which can deliver 
and receive data. Each port contains a memory that can be used to store data 
temporarily. The ports on the core interface are separated into input and output 
ports. Input ports and output ports share the same structure. Both input and output 
ports are in charge of reading and writing messages. 
The concurrent implementation of time-triggered and event-triggered messages 
is possible with the fully functional Core Interface. However, this approach focuses 
only on time-triggered message exchange and ignores the transmission of event- 
triggered messages and other functions for which the Core Interface was designed. 

 
Egress Bridging Unit (EBU): Scheduler and schedule-memory are the two main 
parts of EBU. To realize time-triggered communication, the Scheduler extracts the 
scheduling message from memory and compares it with the current time from the 
GTB (Global Time Base). The message dequeue is caused by the trigger signal, 
which is generated and forwarded to the core interface. 
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Reconfiguration and Monitoring Interface (RMI): The Resource Management 
Interface (RMI) is another multipurpose component. RMI in TTEL can be utilised as 
a channel between resource management and the internal parts. Based on 
instructions from resource management, the RMI can reconfigure the TTEL, and 
can assist by gathering and sending monitoring data. Through the communication 
ports, the RMI and resource manager communicate with one another on top of the 
communication services. Additionally, it communicates with the TT schedule 
memory Unit. Its only purpose is to configure time-triggered schedule information 
in memory. 

5.1.3 Experiment setup for Time-Triggered VERSAL NoC 

In order to evaluate the performance of the TT-VERSAL NoC. Various experimental 
setups were created. The performance of VERSAL NoC with TTEL and without TTEL 
is considered in this experiment. The following tables illustrate the different 
experimental setups. 

Table 2 Experiment setup without TTEL, ISOCHRONOUS (100MB/s) 

Without TTEL 
Exp No Message Size NoC QoS 
  
1 

2 Isochronous 100MB/s 
4 Isochronous 100MB/s 
8 Isochronous 100MB/s 
16 Isochronous 100MB/s 

 

Table 3 Experiment setup with TTEL, ISOCHRONOUS (100 MB/s) 

 With TTEL 
Exp No Message Size NoC QoS 
  
2 

2 Isochronous 100MB/s 
4 Isochronous 100MB/s 
8 Isochronous 100MB/s 
16 Isochronous 100MB/s 

 

Table 4 Experiment setup without TTEL, BEST EFFORT (100MB/s) 

Without TTEL 
Exp No Message Size NoC QoS 
  
3 

2 Best Effort 100MB/s 
4 Best Effort 100MB/s 
8 Best Effort 100MB/s 
16 Best Effort 100MB/s 
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Table 5 Experiment setup with TTEL (BEST EFFORT 100 MB/s) 

TTEL 
Exp No Message Size NoC QoS 
  
4 

2 Best Effort 100MB/s 
4 Best Effort 100MB/s 
8 Best Effort 100MB/s 
16 Best Effort 100MB/s 

 

Table 6 Experiment setup without TTEL (ISOCHRONOUS 50 MB/s) 

Without TTEL 
Exp No Message Size NoC QoS 
  
5 

2 Isochronous 50MB/s 
4 Isochronous 50MB/s 
8 Isochronous 50MB/s 
16 Isochronous 50MB/s 

 

Table 7 Experiment setup with TTEL (ISOCHRONOUS 50 MB/s) 

 TTEL 
Exp No Message Size NoC QoS 
  
6 

2 Isochronous 50MB/s 
4 Isochronous 50MB/s 
8 Isochronous 50MB/s  
16 Isochronous 50MB/s 

 

Table 8 Experiment setup without TTEL (BEST EFFORT 50 MB/s) 

Without TTEL 
Exp No Message Size NoC QoS 
  
7 

2 Best Effort 50MB/s 
4 Best Effort 50MB/s 
8 Best Effort 50MB/s 
16 Best Effort 50MB/s 

 

Table 9 Experiment setup with TTEL (BEST EFFORT 50 MB/s) 

TTEL 
Exp No Message Size NoC QoS 
  
8 

2 Best Effort 50MB/s 
4 Best Effort 50MB/s 
8 Best Effort 50MB/s 
16 Best Effort 50MB/s 

 

The above tables indicate the different sets of experiments carried out on versal NoC. 
The experiment was done for various message sizes (Burst Length), Traffic class and 
read-write Bandwidth. For each traffic class and read-write bandwidth, the NoC was 
simulated with TTEL and without TTEL. 
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Two processors (core 1 and core 2 as depicted in Figure 14 (With TTEL) are used to 
send the data to the DDR which is connected to the NoC, and Figure 15 (Without 
TTEL). Both cores send the data to the VERSAL NoC at the same time, to evaluate 
the delay when two messages are accessing resources in the VERSAL NoC. A 
comparison of jitter is done in these experiments with TTEL added in the VERSAL NoC 
and without TTEL in the VERSAL NoC. 

 

Figure 14 Block Diagram of VERSAL NoC with TTEL 

 

Figure 15 Block Diagram of VERSAL NoC without TTEL 
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Figure 16 Experiment 1 

 

 

Figure 17 Experiment 2 

 

 

Figure 18 Experiment 3 

 

Figure 19 Experiment 4 
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Figure 20 Experiment 5 

 

 

Figure 21 Experiment 6 

 

 

Figure 22 Experiment 7 

 

Figure 23 Experiment 8 

 

From the performance analysis done by plotting the graph of Jitter for different cores 
with TTEL and without TTEL, one could clearly say that the design with TTEL 
outperformed the design without TTEL. The value of jitter appears to increase with 
the increase in the burst length for both cases. However, the values of jitter were 
high for the design without TTEL in all cases. The maximum latency for the message 
to reach the NoC in the case of design with TTEL remained the same and was 
independent of burst length. However, it was not the case with the designs without 
TTEL, where the maximum latency increased with the burst length. 
Thus, going through the graphs and tables, one could clearly say that TTEL 
improves the functionality of the hardened NoC. 

[SIEG-TTEL1] Obermaisser, R., Ahmadian, H., Maleki, A., Bebawy, Y., Lenz, A., & Sorkhpour, B. 
(2019). Adaptive time-triggered multi-core architecture. Designs, 3(1), 7. 
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[SIEG-TTEL2] Xilinx. Versal noc. https://www.xilinx.com/support/documentation/ 
ip_documentation/axi_noc/v1_0/pg313-network-on-chip.pdf.Accessed 2022-29-01. 

[SIEG-TTEL3] Hamidreza Ahmadian and Roman Obermaisser. Time-triggered extension layer 
for on-chip network interfaces in mixed-criticality systems. In 2015 Euromicro 
Conference on Digital System Design, pages 693–699, 2015. 

5.2 Adaptive Time-Triggered NoC  

5.2.1 Component Description 

Adaptive Time-Triggered NoC is an extension of Time-Triggered NoC with adaptability 
features. The TTNoC is used in safety critical systems since it offers significant 
benefits for the safety arguments of dependable systems. However, adaptation is a 
key factor for fault recovery in Cyber-Physical Systems (CPS). This component 
introduces the Adaptive Time-Triggered Network-on-Chip, which supports: 

• Adaptation using multi-schedule graphs while preserving the key properties 
of time-triggered systems including implicit synchronization, temporal 
predictability, and avoidance of resource conflicts. 

• Fault tolerance techniques using Seamless redundancy mechanism. The 
seamless redundancy mechanism in the TTNoC, ensures that transient faults 
occurring during the transmission of critical message between two cores, can 
be masked. 

5.2.2 Architectural Building Blocks of ATTNoC 

The Adaptive TTNoC offers inherent temporal predictability and fault containment for 
processing cores. Figure 24, gives an overview of the Adaptive Time-Triggered 
Network-on-Chip. The architecture has tiles, which are interconnected by a NoC. The 
NoC consists of routers, each of which is connected to other routers and to tile using 
communication links. A tile includes three parts: cores (cf. gray area in Figure 24) 
for the application services, adaptation logic (cf. orange area in Figure 24) for 
switching between schedules, and Network Interface (NI) (cf. blue area in Figure 24) 
for accessing the NoC. 
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Figure 24 Adaptive Time-Triggered Network-on-Chip (NoC) [SIEG-ATTNoC1] 

The cores of a tile can be heterogenous or homogenous with bare-metal application 
software or state machines implemented in hardware. The adaptive logic is 
responsible for the adaptation (switching between schedules) in the ATTNoC. This 
logic has 3 elements including: Multi schedule memory, context monitor, and context 
agreement. 

Context monitor: responsible for observing the behavior of the cores and NI 
connected to the core. An example is a failure in the core, NI or links. 
 
Context agreement: Context agreement unit ensures that all operational tiles 
possess identical context information. 
 
Schedule memory: Memory that stores multiple schedules. This schedule memory 
generates one schedule based on the agree context feed to the module. 
 

The Network Interface: is used as a bridge to connect the core and router. The NI 
is extended with Time-Triggered traffic, that enables the NoC to inject messages 
using time-triggered traffic.  Figure 24 illustrates a block diagram of the implemented 
TTNI (cf. blue area), which includes a core interface (CI), Schedule loader, Scheduler, 
Packetization, Depacketization, Memory store the possible path for source base 
routing, and Router interface.  

Core Interface (CI): facilitates communication between the TTNI and Core. The CI 
is a memory interface that has input and output ports, that stores data from the NoC 
to core, respectively. The core interface has state ports, used for the periodic 
transmission of messages with state semantics. In addition, the core interface can 
achieve concurrency of event-triggered and time-triggered messages. 
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Schedule loader: is an interface used to configure the TTNI with a predefined 
schedule. 
 
Scheduler: is the main block in TTNI, that has the actual schedule, that runs the 
NoC.  
 
Packetization: Receive the messages from the core, and encoded the messages 
before sending them to the router of the NOC.  
  
Depacketization: Receive the messages from the router of the NoC, and decoded 
the messages. 
 
Memory store Path: Since the ATTNoC, used a source base routing, it has a 
memory that stores all possible paths. 

5.2.3 Fault tolerance techniques using Multiple Schedule  

Multiple schedules are used in the ATTNoC, that allow the systems to operate, even 
if in presence of fault in the ATTNoC. The ATTNoC allows for schedule change in 
response to a context event (fault in the NoC). In addition, it also considers 
synchronization, temporal predictability, and avoidance of resource conflicts. 

 

Figure 25 Switching between Schedules 

The Adaptation Unit is a building block inside the TTNI, which is responsible for 
switching schedule when context event occurs. The Adaptation Unit is illustrated in 
Figure 26 This unit manages the time triggered dispatching of adaptation messages 
and adaptation in the TTNI in the following steps: 

 

Figure 26 Adaptive Unit in TTNI 
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Schedule memory selection: The adaptive control unit (ACU) is a state machine, 
known as a schedule loader, and uses two schedule memories known as 
ScheduleMem1, and ScheduleMem2 located in the scheduler as depicted in Figure 
26. The system’s first schedule is saved in the first schedule memory computed off-
line and loaded when it boots up. Then, the ACU stores the new schedule in a 
second memory when a global context event occurs. Finally, after three clock cycles 
of write schedule operation, the dispatcher selects the proper schedule. The ACU 
loads the next adapted schedule to the first schedule memory and repeats the 
process on the occurrence of another context event. The ACU controls the selection 
of the correct schedule memory through the multiplexer. 

Triggering step: The dispatcher initiates injection for the corresponding ports in the 
core interface based on the new schedule loaded in the active schedule memory. 

Figure 27 represents a state machine used for the Adaptive Control Unit.  

 

Figure 27 State Machine for Adaptive Control Unit 

From Figure 27, the ACU has 4 states: the Initial, WaitEvent, WriteScheduleMem1, 
and WriteScheduleMem2 state.   
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Initial State: Schedule memory 1, receives the initial schedule.  

Wait Event State: After five clock cycles, the initial state transitions to the 
WaitEvent State. Transition to the next state, WriteScheduleMem1 and 
WriteScheduleMem2, involves a context event and the active memory used. The ACU 
transits to the WriteScheduleMem1 if ScheduleMem2 is used and 
WriteScheduleMem2 if ScheduleMem1 is active.  

WriteScheduleMem1 State: In this state, the ACU writes the schedule to 
ScheduleMem1. 

WriteScheduleMem2 State: In this state the ACU writes the schedule to 
ScheduleMem2.   

Each schedule loaded in the schedule memory is made up of a circular linked list. 
Each link list is associated with a period of the periodic system, with unique entries. 
Each port has one ID in each entry of the circular linked list. An example of one TTNI 
communication schedule is shown in Figure 28.  

 

Figure 28 Example of Circular Linked List Schedule 

Each of the linked list schedule entries has the following fields : 

Next : Points to the next entry of the circular linked list. 

Instant : Denotes the phase of message injections located at a given port. 

PortId : Describes the ID of the port whose messge is injected into the NoC. 

5.2.4 Fault tolerance techniques using Seamless redundancy 

The seamless redundancy mechanism is a fault tolerance used in the ATTNoC. The 
seamless redundancy mechanism is integrated in the TTNI, and allows the ATTNoC, 
to exchange messages between two cores using seamless path. The seamless 
redundancy mechanism is designed to tolerate a transient fault in the ATTNoC. The 
ATTNoC has the capabilities to switch schedule when permanent fault occurs in the 
ATTNoC. However, for transient fault, switching schedule is not a good option, since 
the fault occurs only within a few clocks cycle and then recover. The figure below 
illustrates the seamless redundancy mechanism in ATTNoC. 
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Figure 29 Seamless Redundancy in TTNoC 

 

The ATTNoC has two types of NI to support mixed-criticality/safety-critical systems: 
Safety-Critical TTNIs (SCTTNIs) and Non-Safety Critical TTNIs (NSCTTNIs) or TTNIs.  

SCTTNIs are connected to two different routers and can operate in two modes. The 
seamless redundancy mode and non-seamless redundancy mode. When the network 
interfaces need to send critical messages, the seamless redundancy mode is 
engaged. However, when sending non-critical messages, the non-seamless 
redundancy modes are initiated. In non-critical messages, only one path is selected 
instead of two paths.  

NSCTTNIs is known as TTNIs, which is connected to one router and support only a 
non-seamless redundancy mode. The architecture of TTNIs is depicted in  Figure 
24(cf. blue area in Figure 24). 

The SCTTNIs (depicted in Figure 30) is an extension of TTNIs, that has two 
packetization and two depacketization, respectively. Both packetization and 
depacketization are connected to two different routers to transfer duplicate messages 
into two seamless paths. On the other hand, the redundancy controller is used to 
control the operation of redundancy mode. The redundancy controller duplicated the 
messages from the core interface whenever seamless redundancy modes is required, 
otherwise, it activates one of the packetization blocks. The redundancy controller 
operates according to a schedule. Redundancy controller is responsible for message’s 
selection when both depacketization receive data from source NI. It selects only one 
message based on the information from the scheduler. 
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Figure 30 SCNIs Architecture 

5.2.4.1 Testing and evaluation 

The Fractal Node's intended redundancy mechanism was simulated to evaluate its 
behaviour. The simulation was carried out using the Vivado Design Suite-Hlx Edition-
2020.1. In addition, the Versal ACAP VCK 190 Evaluation Board was used to model 
the design.  

The simulation was performed for two different scenarios, redundancy when there 
was no error or failure and redundancy when there was an error or failure in the 
NoC.    

Scenario 1: Redundancy Without Errors or Failures  

The redundancy mechanism in TTNoC is evaluated using a 3x3 mesh topology. The 
TTNoC IP with redundancy was deployed in this case, and the results were recorded. 
Figure 31 and Figure 32, depicts the simulation results.  
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Figure 31 Simulation Result of Scenario 1, NI sender 
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Figure 32 Simulation Result of Scenario 1, NI receiver 
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Figure 31, and Figure 32 showed the waveform of the NI when there is no presence 
of fault within NoC. Figure 31, represents the behavior of the messages in the NI 
sender, and Figure 32 represents the behavior of the received messages in the NI 
receiver. As shown in Figure 31, the NI sender duplicates the messages (Figure 31, 
under “source_FSM”, the flits are duplicated on the NI sender). Figure 32 showed 
that both messages reached the targeted NI (Figure 32, under “Select_Red”, both 
messages reached the NI as seen in both signals “Flit_1, and Flit_2”). In the 
waveform, in Figure 32 under “Select_Red”, both data from Signal “Flit_1, and Flit_2” 
are the same. As shown in the waveform (In Figure 32 under “Select_Red”), the 
signal “error” equal to zero, indicates that both messages are not corrupted, and 
reached the NI. Figure 33, represents the successful original message returned on 
the buffer of the core interfaces of NI.  

 

Figure 33 Messages return to the core Interface 

 Scenario 2: Redundancy with Errors or Failures  

Failure (corrupted coming data) is introduced in one of the routers to evaluate the 
behavior of TTNoC with a seamless redundancy mechanism, as shown in Figure 34.  
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Figure 34 Seamless redundancy in TTNoC with faulty Router 

Figure 35 and Figure 36,  shows the results of the behavioral simulation of TTNoC 
with failures that occur in a router.  
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Figure 35 Simulation result of Scenario 2, NI Sender 
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Figure 36 Simulation result of Scenario 2, NI Receiver 
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The Figure 35 and Figure 36, showed the waveform of the NI. Figure 35, represent 
the behavior of the messages in the NI sender, and the Figure 36, represent the 
behavior of the received messages in the NI receiver. As shown in Figure 35, the NI 
sender duplicate the messages (Figure 35, under “source_FSM”, the flits are 
duplicated on the NI sender). The Figure 36 showed that, the both messages reached 
the targeted NI (Figure 36, under “Select_Red”, the both messages reached the NI 
as seen in the both signal “Flit_1, and Flit_2”). As seen, in the waveform, in the 
Figure 36 under “Select_Red”, the both data from Signal “Flit_1, and Flit_2” are 
different. The reason for this is due to the faulty routers, as depicted in Figure 34. 
However, the “Redundancy controller” select the original messages based on the 
schedule, and here in Figure 36, we can see that, the signal “O/PFlit” which is the 
output signal of the redundancy controller (module responsible to select the both 
messages at the receiver NI) gives the non-corrupted (original) messages. 

[SIEG-ATTNoC1] Obermaisser, R., Ahmadian, H., Maleki, A., Bebawy, Y., Lenz, A., & Sorkhpour, 
B. (2019). Adaptive time-triggered multi-core architecture. Designs, 3(1), 7. 
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6 Software diverse redundancy library (BSC) 

6.1 Component description 
Dual Core LockStep (DCLS) is generally needed by high-integrity applications 
requiring support to make residual the risk of a single fault leading the system to a 
failure. While redundancy is effective against many fault types, redundancy on its 
own is not enough if a fault affects redundant components similarly. For instance, 
two redundant cores executing the same program synchronized could experience a 
fault in their common clock input signal or power supply, which could lead both of 
them to the same erroneous output, which would not be detected employing 
comparison. DCLS imposes staggered execution across redundant cores (e.g., 2-3 
cycles of delay for one of the cores w.r.t. the other). Upon a common fault, both 
cores have a different internal state and experience different errors that can be 
detected through comparison. However, as discussed in our past work [BSC-SDR1], 
such an approach is generally too expensive and inflexible since redundant cores 
cannot be used independently, hence wasting half of the potential performance of 
the platform even if DCLS is not needed. 

Recently, we have proposed a solution based on a software monitor able to enforce 
staggered execution and hence diversity across redundant user processes (see [BSC-

SDR1]). However, such a solution has only been prototyped to prove the feasibility of 
the approach, but a standard interface has not been offered, relieving end-users from 
the burden of having to replicate input data, create redundant processes and compare 
results. 

This section presents software diverse redundancy library component, our library 
implementing diverse redundancy support with software-only means, hence 
compatible with any multicore lacking native DCLS, that relieves end users from the 
burden to manage the process. As shown in this section, such a library is feasible, 
provides a standard interface for end-users, and is successfully deployed on a Linux-
based RISC-V multicore – it was already proven compatible with ARM multicores in 
[BSC-SDR1]. Such a library has already been tested on the RISC-V multicore and, it 
will be offered as an open-source component with a permissive license in 
https://bsccaos.github.io/ along with a number of already public safety-related 
components. 

6.2 Design and implementation 
The concept. WP4T43-03 implements a software monitor able to keep a given 
staggering between two redundant processes. The staggering is measured in the 
number of instructions, and it is a parameter for WP4T43-03. The monitor checks the 
staggering across the head and trail processes at a given frequency – also a WP4T43-
03 parameter – and, if the current staggering is below the corresponding threshold, 
the monitor stops the trail process. If the staggering is above the threshold and the 
trail process is stopped, the monitor activates the trail process so that it can resume 

https://bsccaos.github.io/
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its execution. Access to the instruction counts and stopping/resuming the trail 
process is performed using the WP3T34-02 component. 

The staggering between the head and tail processes must be sufficiently large so 
that, if the head process gets completely stalled and the trail one runs at full speed 
right after the monitor checks that the staggering is enough, the monitor must be in 
time to stop the trail process in the next checking interval. Such staggering is 
completely platform dependent since it is determined by the peak performance of the 
cores in the platform, and the overheads imposed by the operating system to retrieve 
instruction counts from the head and trail cores to the core where the monitor runs, 
as well as to stop the trail process if needed. In general, such threshold needs to be 
determined empirically, but recommendations in [BSC-SDR1] provide guidance on how 
to do it. 

 

Figure 37. Matrix multiplication wrapper 

The interface. To allow the WP4T43-03 to generate redundant processes replicating 
input and output data and comparing results, it needs to receive information in a 
particular format, which requires end-users to create a wrapper for their software to 
be protected. In particular, such wrapper needs to be invoked with a vector with 
pointers to the input data and another with pointers to the output data. This is, for 
instance, illustrated in Figure 37 for the example of matrix multiplication. The 
wrapper, matrix_multiply_wrapper, calls the matrix multiplication function 
(matrix_multiply) unfolding input and output data vectors, as shown in the figure. 

The WP4T43-03 library is used as illustrated in the figure below for the example of 
the matrix multiplication. In particular, the monitor, protect_default, needs 
receiving the following five parameters: 

• A pointer to the application wrapper, matrix_multiply_wrapper in the 
example. 

• The vector with the pointers to the input data to use, argv_input. 
• A vector, input_size, with the size of each input data item in argv_input. 
• The vector with the pointers to the output data to produce, argv_output. 
• A vector, output_size, with the size of each output data item in argv_input. 

Note that if a particular data item is to be used as input/output data, this needs to 
be managed accordingly by the application wrapper. In this case, as in any other 
case, WP4T43-03 will create independent copies of the input and output data for each 
of the redundant wrapper invocations. The wrapper should use pointers as needed to 

void matrix_multiply_wrapper(void * argv_input[], void * argv_output[] ){ 
    int *matA = (int * )argv_input[0]; 
    int *matB = (int * )argv_input[1]; 
    int *matC = (int * )argv_output[0]; 
 
    int rows = *(int *)argv_input[2]; 
    int cols = *(int *)argv_input[3]; 
 
    matrix_mutilply(matA, matB, matC, rows, cols); 
} 
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operate on the copy of the data in the output vector. This typically will imply 
dismissing the data in the input vector and passing the pointer to the output vector 
to the application as both input and output data. 

 

Figure 38. Call to the monitor passing as argument the matrix multiplication wrapper 

6.3 Testing and evaluation 
To showcase WP4T43-03, we have created a demo of this technology in which the 
matrix multiplication described before is executed with diverse redundancy. In 
particular, the matrix multiplication has been set sufficiently large so that it takes 
more than 1 minute to run for the sake of the demo. We have deployed WP4T43-03 
on the RISC-V NOEL-V platform. For demo purposes, we print the actual staggering 
(in number of instructions) every time the monitor is executed in its own core. 
However, since printing on screen is a slow process subject also to some execution 
time variability on top of a regular Linux operating system, we have set the 
staggering threshold to be large enough: 150 million instructions. Note that, in 
general, staggering should be in the order of 100µs or 1ms, as shown in [BSC-SDR1], 
which would require staggering between a few hundreds of thousands or a few 
millions of instructions in most multicores. Nevertheless, WP4T43-03 is agnostic to 
the actual threshold provided and, if set too short, it could be the case that negative 
staggering values were observed, meaning that the trail process caught up with the 
head one so that diversity could be lost. 

Figure 39, shows the staggering observed during some consecutive executions of the 
WP4T43-03 monitor (protect_default function). We observe that, in the third 
interval, the staggering drops down to ~84M instructions. Then, the monitor stalls 
the trail process. For some intervals, the staggering remains below the threshold so 
that trail process remains stalled (staggering not plotted). Eventually, the staggering 
is sufficient (5th line in the figure), and the trail process resumed. In the next interval, 
the staggering falls below the threshold again, and the trail process is stalled. This 
sequence of events repeats several times until, after the last time the trail process is 
resumed in the figure, the staggering starts growing and stabilizing above 200 million 
of instructions. Hence, during that period, no trail process stalling occurs. Overall, 
our example illustrates how WP4T43-03 monitors the progress of both processes 
created and enforces staggering. 

void (*ptr)( void *[], void *[]) = &matrix_multiply_wrapper; 
void * argv_input[] = { (void *)matA, (void *)matB, (void *)&rows, (void 

*)&cols, NULL}; 
void * argv_output[] = { (void *)matC, NULL}; 
int * input_size[] = {(int *)matAbytes, (int *)matBbytes, (int *)&rows-

bytes, (int *)&colsbytes, NULL};} 
int * output_size[] = { (int *)matCbytes, NULL}; 
bool pass_flag = protect_default(ptr, argv_input, input_size, argv_output, 

output_size) ; 
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Figure 39. Example of use of WP4T43-03 

Summary. Enabling diverse redundancy on COTS processors becomes increasingly 
important to meet the safety requirements of high-integrity applications on platforms 
delivering enough performance. While we provided proof of concept of a feasible 
software-only solution recently, it was just prototyped for a handcrafted example. In 
this section, we present a standard interface offered in the form of a user-friendly 
library: the WP4T43-03 component. We plan to offer this library as an open-source 
component in the forthcoming months. 

[BSC-SDR1] S. Alcaide, L. Kosmidis, C. Hernandez and J. Abella, "Software-only based Diverse 
Redundancy for ASIL-D Automotive Applications on Embedded HPC Platforms," 2020 IEEE International 
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), 2020, pp. 1-4, 
doi: 10.1109/DFT50435.2020.9250750. 
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7 Performance monitoring services (BSC) 

7.1 Component description 
Performance monitoring is a key tool to diagnose abnormal timing behavior and 
optimize it. Often, processors provide per-core performance monitoring units (or 
statistics units) able to count a number of events related to the core itself such as 
instructions executed, execution cycles, instruction breakdowns, cache hits and 
misses, stall cycles in different buffers, and the like. Some of those events are useful 
to diagnose timing misbehavior, which in the case of time-critical systems is 
particularly relevant if related to inter-task interference. However, such events often 
provide insufficient information for a precise diagnostic since they neither provide 
detailed information about the access to shared interfaces, nor about the mutual 
interference that different cores can cause on each other.  

This section presents WP4T43-01 component, our service for timing monitoring for 
time-critical tasks running in edge devices. In particular, this service builds on the 
edge-oriented monitoring unit presented in WP3 (WP3T31-01 component) and its 
driver (WP3T34-01 component). WP3T43-01 is a tiny layer whose operation consists 
of configuring WP3T31-01 component, and use it to collect specific statistics relevant 
for timing interference by interfacing such monitoring unit with its driver, WP3T34-
01. 

7.2 Design and implementation 
The concept. This service builds upon configuring WP3T31-01 to measure a specific 
set of events, typically related to the core where the time-critical task is intended to 
run. Then, the unit is reset and enabled right before the critical task whose behavior 
needs monitoring is about to run. When the task execution finishes, event counters 
are read and system level decisions on the user application side could be taken based 
on the amount of shared resource access performed and timing interference 
experienced.  

Typically, such service is planned to be linked to tasks executing periodically (e.g., 
every 100ms) with the aim of detecting abnormal timing behavior during operation, 
and/or for optimization purposes during system design by, for instance, rescheduling 
conflicting tasks producing high mutual contention. Alternative implementations of 
the service based on interrupts are also feasible and offer higher flexibility, but their 
integration in the corresponding use case is more challenging. 
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Figure 40. Code sketch of the time monitoring service 

Figure 40, shows the skeleton of the WP4T43-01 component. As shown, the hardware 
unit (WP3T31-01) is first disabled with the appropriate driver call, 
pmu_counters_disable, which is part of the driver (WP3T34-01). Once the unit is 
disabled, we configure it setting the appropriate events to be counted 
(pmu_registers_events), whose configuration is passed as parameters with the 
struct crossbar_event_table (see an example in Figure 41. Example of statistics 
unit configuration). Then, counters are reset and the unit enabled to start counting. 
At this point, everything is ready to run the time-critical user task to be monitored 
(foo in the figure above). Eventually, when the user task ends its execution, the unit 
is disabled to stop counting further activity, and counters can be either read or, as 
shown in the figure, directly printed. 

 

Figure 41. Example of statistics unit configuration 

pmu_counters_disable(); 
pmu_register_events(crossbar_event_table, EVENT_COUNT); 
pmu_counters_reset(); 
pmu_counters_enable(); 
 
/* END USER FUNCTION INSERTED HERE */ 
foo(); 
 
pmu_counters_disable(); 
pmu_counters_print(crossbar_event_table, EVENT_COUNT); 

const crossbar_event_t crossbar_event_table [] = { 
    {CROSSBAR_OUTPUT_1,     EVENT_0,     
 "\033[0;34m Constant High (Clock cycles) \033[0m"}, 
    {CROSSBAR_OUTPUT_2,     EVENT_6,     
 "\033[0;32m Core 0: Data cache miss \033[0m"}, 
    {CROSSBAR_OUTPUT_3,     EVENT_2,     
 "\033[0;34m Instruction count Core 0 pipeline 0 \033[0m"}, 
    {CROSSBAR_OUTPUT_4,     EVENT_4,    
 "\033[0;34m Core 0: Instruction cache miss \033[0m"}, 
    {CROSSBAR_OUTPUT_5,     EVENT_13,    
 "\033[0;32m Core 1: Data cache miss \033[0m"}, 
    {CROSSBAR_OUTPUT_6,     EVENT_49,    
 "\033[0;33m Contention caused to core 0 due to core 1 AHB accesses \033[0m"}, 
    {CROSSBAR_OUTPUT_7,     EVENT_20,    
 "\033[0;32m Core 2: Data cache miss \033[0m"}, 
    {CROSSBAR_OUTPUT_8,     EVENT_54,    
 "\033[0;33m Contention caused to core 0 due to core 2 AHB accesses \033[0m"}, 
    {CROSSBAR_OUTPUT_9,     EVENT_27,    
 "\033[0;32m Core 3: Data cache miss \033[0m"}, 
    {CROSSBAR_OUTPUT_10,    EVENT_59,    
 "\033[0;33m Contention caused to core 0 due to core 3 AHB accesses \033[0m"}, 
    {CROSSBAR_OUTPUT_11,    EVENT_34,    
 "\033[0;32m Core 4: Data cache miss \033[0m"}, 
    {CROSSBAR_OUTPUT_12,    EVENT_64,    
 "\033[0;33m Contention caused to core 0 due to core 4 AHB accesses \033[0m"}, 
    {CROSSBAR_OUTPUT_13,    EVENT_41,    
 "\033[0;32m Core 5: Data cache miss \033[0m"}, 
    {CROSSBAR_OUTPUT_14,    EVENT_69,    
 "\033[0;33m Contention caused to core 0 due to core 5 AHB accesses \033[0m"} 
    }; 
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Note that the service is a very tiny layer keeping the integration with the user 
application simple and easy, while hiding all complexity into the driver. 

Configuration. For completeness, Figure 41 shows an example of the configuration 
of the WP3T31-01 component (crossbar_event_table struct). The configuration is 
set by indicating how each element of the input crossbar of the unit (first element of 
each triplet) is mapped to a specific event counter (second element of each triplet). 
The third element of the triplet is the textual description of the event set for 
debugging purposes. The number of potential events that can be monitored is large, 
including cache events, bus access events, contention cycles, etc. and they can be 
counter on a per core basis, and on a per core pair basis when they involve two cores 
(e.g., contention caused by core A on core B). 

7.3 Testing and evaluation 
Internal testing has consisted of the execution of a battery of tests with multicore 
workloads whose behavior was known beforehand, e.g., combining the execution of 
sensitive and non-sensitive to interference tasks to measure their behavior when 
running against tasks creating null, medium and high interference. Apart from the 
combinations of different benchmarks, we had to repeat each experiment multiple 
times to collect results about different events since the number of possible events is 
much larger than the number of counters set able to count them. Overall, several 
hundred experiments were run.  

In all cases, results for the counters matched expectations. While those batteries of 
tests are huge, in Figure 42, we show an example of the outcome of 2 tests for 
illustrative purposes. We first show the values of the counters just after reseting 
them, after the first experiment without any type of interference, and after the 
second experiment with moderate interference. 
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Figure 42. Example trace of validation tests for the timing monitoring service 

* Before enabling counters: 
PMU_COUNTER[ 0] =          0     Constant High (Clock cycles) 
PMU_COUNTER[ 1] =          0     Core 0: Data cache miss 
PMU_COUNTER[ 2] =          0     Instruction count Core 0 pipeline 0 
PMU_COUNTER[ 3] =          0     Core 0: Instruction cache miss 
PMU_COUNTER[ 4] =          0     Core 1: Data cache miss 
PMU_COUNTER[ 5] =          0     Contention caused to core 0 due to core 1 AHB accesses 
PMU_COUNTER[ 6] =          0     Core 2: Data cache miss 
PMU_COUNTER[ 7] =          0     Contention caused to core 0 due to core 2 AHB accesses 
PMU_COUNTER[ 8] =          0     Core 3: Data cache miss 
PMU_COUNTER[ 9] =          0     Contention caused to core 0 due to core 3 AHB accesses 
PMU_COUNTER[10] =          0     Core 4: Data cache miss 
PMU_COUNTER[11] =          0     Contention caused to core 0 due to core 4 AHB accesses 
PMU_COUNTER[12] =          0     Core 5: Data cache miss 
PMU_COUNTER[13] =          0     Contention caused to core 0 due to core 5 AHB accesses 
========== 
Experiment "(no ub)" 
PMU_COUNTER[ 0] =      49558     Constant High (Clock cycles) 
PMU_COUNTER[ 1] =         96     Core 0: Data cache miss 
PMU_COUNTER[ 2] =       7058     Instruction count Core 0 pipeline 0 
PMU_COUNTER[ 3] =        224     Core 0: Instruction cache miss 
PMU_COUNTER[ 4] =        135     Core 1: Data cache miss 
PMU_COUNTER[ 5] =          0     Contention caused to core 0 due to core 1 AHB accesses 
PMU_COUNTER[ 6] =        161     Core 2: Data cache miss 
PMU_COUNTER[ 7] =          0     Contention caused to core 0 due to core 2 AHB accesses 
PMU_COUNTER[ 8] =         79     Core 3: Data cache miss 
PMU_COUNTER[ 9] =          0     Contention caused to core 0 due to core 3 AHB accesses 
PMU_COUNTER[10] =        147     Core 4: Data cache miss 
PMU_COUNTER[11] =          0     Contention caused to core 0 due to core 4 AHB accesses 
PMU_COUNTER[12] =        147     Core 5: Data cache miss 
PMU_COUNTER[13] =          0     Contention caused to core 0 due to core 5 AHB accesses 
-- End of current test 
========== 
Experiment "ub_ld_l1hit" 
PMU_COUNTER[ 0] =      80218     Constant High (Clock cycles) 
PMU_COUNTER[ 1] =        273     Core 0: Data cache miss 
PMU_COUNTER[ 2] =      14158     Instruction count Core 0 pipeline 0 
PMU_COUNTER[ 3] =        457     Core 0: Instruction cache miss 
PMU_COUNTER[ 4] =        223     Core 1: Data cache miss 
PMU_COUNTER[ 5] =          0     Contention caused to core 0 due to core 1 AHB accesses 
PMU_COUNTER[ 6] =        238     Core 2: Data cache miss 
PMU_COUNTER[ 7] =          0     Contention caused to core 0 due to core 2 AHB accesses 
PMU_COUNTER[ 8] =        240     Core 3: Data cache miss 
PMU_COUNTER[ 9] =          0     Contention caused to core 0 due to core 3 AHB accesses 
PMU_COUNTER[10] =        219     Core 4: Data cache miss 
PMU_COUNTER[11] =          0     Contention caused to core 0 due to core 4 AHB accesses 
PMU_COUNTER[12] =        219     Core 5: Data cache miss 
PMU_COUNTER[13] =          0     Contention caused to core 0 due to core 5 AHB accesses 
-- End of current test 
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8 Safety services for PULP systems (ETH) 

8.1 Component description 
PULP-based systems offer powerful and efficient systems as the basis for IoT end 
nodes. To ensure safe operation, a variety of reliability features have been integrated 
into the existing platform, ensuring its correct operation, even in hazardous and 
critical environments. These features are outlined below and include Error-Correcting 
Codes to protect memory within the SoC, and a Watchdog. Furthermore, reliable 
processing within the RISC-V cores can be ensured with a Triple-core lock-step 
implementation, capable of correcting any faults in a single core, if needed. 

8.2 Design and implementation 
ECC Memory. To reliably protect against errors in the memory, due to radiation or 
hardware faults, Error-Correcting Codes (ECC) are implemented for all SRAMs within 
the SoC.  

To efficiently encode and decode data in hardware, Hsiao [ETHZ-PULP1] codes are 
used. These require minimal overhead both in area and timing to allow single error 
correction and double error detection (SECDED) within the protected section. As the 
protected section, a full 32-bit word is used, requiring 7 additional bits to protect the 
data, resulting in a bit width of 39 for the memory words, both in the larger SoC 
memory, as well as the fast, tightly-coupled memory.  

As the PULP architecture allows for sub-word access to memory, the ECC encoder 
needs to be augmented to support partial writes, correctly modifying the correction 
bits. The hardware encoder at the memory bank loads the stored word and 
recomputes the correction bits based on all bits within the word, as shown in Figure 
43. While this requires an extra cycle, this is implemented to delay the subsequent 
access to the memory bank, reducing the overhead. 

 

Figure 43 Byte store with ECC 

Furthermore, to avoid latent errors in the system, a hardware scrubber is also 
implemented, continually scanning the memory bank and correcting any correctable 
errors found. 
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ODRG. To ensure correct execution in the presence of errors, a PULP-based system 
is augmented with On-Demand Redundancy Grouping (ODRG) [ETHZ-PULP2].  

While multicore systems usually use cores in parallel to process different data more 
quickly, they can also be used to process identical data, subsequently comparing 
their results to detect potential computation errors. ODRG adds architectural 
modifications to allow three cores to work in parallel on the same data. It uses a 
majority voter to detect differences in their results and recover from potential errors. 
Figure 44 shows an ODRG architecture where three cores are grouped into a single 
ODRG unit. Such a unit provides two different operation modes: (i) redundant mode 
and (ii) performance mode. The ODRG unit is available open-source at 
https://github.com/pulp-platform/redundancy_cells. 

 

Figure 44 On-Demand Redundancy Grouping : two different operation mode available (i) Redundant 
mode , (ii) Performance mode 

The redundant mode trades performance for reliability features. In such a 
configuration, the three cores contained in the ODRG group receive the same inputs. 
Their outputs are then compared bit by bit using a majority voter to detect and 
correct potential errors. As mismatches indicate different internal states of the cores, 
once an error is detected, the ODRG unit triggers a re-synchronization sequence 
managed by an FSM. The FSM sends an interrupt to all the cores. It saves the internal 
state of the core, copying all internal registers, including relevant CSRs and the entire 
register file, excluding the stack pointer which is saved inside the ODRG unit. During 
this phase, the majority voter is active, allowing correcting internal errors within a 
core. Afterward, the corrected internal states are reloaded, and execution restarts.  

The performance mode allows the three cores to operate independently, enabling 
higher performance as each core can process different data. 

Watchdog. To recover from any uncaught errors, a watchdog was designed for PULP, 
complying with the RISC-V draft specification for watchdogs [ETHZ-PULP3]. The base 
specification for a two-stage watchdog was implemented, with additional features, 
namely a prescaler for configurable timeout duration, multiple clock inputs to avoid 
unreliable clocks, and external warnings to speed up timeout when other elements 
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detect an error. This memory-mapped watchdog is integrated into PULP and warns 
the fabric controller using an interrupt. 

8.3 Testing and evaluation 
ECC Memory. The ECC memory encoder was implemented in the PULP system and 
tested in simulation. Using a variety of memory intensive compute benchmarks, it 
was found that the overhead in execution time due to additional cycles for sub-word 
accesses remained below 1%, even for an 8-bit matrix-matrix multiplication. 
Analyzing a representative compute benchmark (Coremark), it is found that around 
90% of store operations are word stores, which do not suffer any penalty. 

Furthermore, the ECC memory and scrubber were verified to correct errors in 
simulations with fault injection. 

Synthesizing the design showed limited impact in timing for the memory within the 
PULP cluster, with a 22% overhead in area for the individual memory banks due to 
the additional stored bits. 

ODRG. The ODRG-protected PULP cluster was verified in simulation using fault 
injection to show corrective behavior. Once an error occurred, re-synchronization 
required around 700 cycles. Switching modes from soft-error tolerant to performance 
showed a speedup of up to 2.96x in tasks such as matrix-matrix multiplication, 
requiring around 40’000 cycles to switch.  

Synthesizing the PULP cluster with ODRG implemented, limited impact in timing was 
observed, with a 1% increase in overall area for the protection unit. 

[ETHZ-PULP1] M. Y. Hsiao, “A Class of Optimal Minimum Odd-weight-column SEC-DED Codes,” IBM 
Journal of Research and Development, vol. 14, no. 4, pp. 395–401, Jul. 1970, doi: 
10.1147/rd.144.0395. 

[ETHZ-PULP2] M. Rogenmoser, N. Wistoff, P. Vogel, F. Gürkaynak, and L. Benini, “On-Demand 
Redundancy Grouping: Selectable Soft-Error Tolerance for a Multicore Cluster,” arXiv, arXiv:2205.12580, 
May 2022. doi: 10.48550/arXiv.2205.12580. 
 
[ETHZ-PULP3]  https://github.com/riscv-non-isa/riscv-watchdog 
 

https://doi.org/10.48550/arXiv.2205.12580
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9 FPGA-based Fault Injection (UPV) 

9.1 Component description 
FPGA-based fault injection (FFI) is a technique for dependability assessment and 
verification of FPGA designs. It consists in analyzing the behaviour of FPGA prototype 
under the deliberate introduction of faults into that prototype. In the framework of 
FRACTAL project FFI experiments are carried out by means of the DAVOS-FFI tool. 
This tool forms a part of DAVOS, an open-source fault injection toolkit (developed by 
the UPV) that is publicly available at [UPV-FFI1]. In particular, DAVOS-FFI tool 
supports following dependability-driven processes: 

- Robustness assessment of FPGA prototypes against permanent and transient 
hardware faults; 

- Verification of fault-tolerance mechanisms and safety-related components; 
- Identification of vulnerabilities and fault propagation paths; 
- Dependability benchmarking of IP cores. 

 
DAVOS FFI tool emulates faults in FPGA prototype by manipulating the content of its 
configuration memory at runtime, this method is known as dynamic partial 
reconfiguration (DPR). The main advantage of this approach is low intrusiveness, 
i.e.the FPGA design under test (DUT) is kept unchanged, as it doesn’t require any 
design modification/instrumentation, which is important for obtaining credible and 
representative experimental results.    
The supported fault models include bit-flips in user memories (registers, Block RAMs, 
and LUT RAMs), as well as bit-flips in configuration memory (CM). Bit-flips in user 
memories have transient nature, since after corrupting the stored data or control 
bits, they can be recovered by the normal circuit operation. Whereas the bit-flips in 
CM affect the structure of the circuit itself (logic and routing), manifesting at the 
netlist level as the permanent (in the absence of CM scrubbing) stuck, short, open 
and bridging. During an FFI experiment faults are randomly sampled from the fault 
space after the methodology in [UPV-FFI2]. 
The outcomes of each individual injection run are described in terms of failure modes, 
which describe all the different ways the DUT may react to the injected fault. Failure 
modes are determined by tracing the DUT outputs (processing results), its internal 
state, and auxiliary flags (error detection or alarm signal), and by comparing them 
to the fault-free trace. The generic failure modes determined after this approach are 
listed in Table 10. At the end of FFI experiment (after the injection of all sampled 
faults) several robustness metrics are calculated. These include the percentage of 
observed failure modes (that are interpreted as the probability of a given fault type 
to a cause a certain DUT failure), number of critical bits, failure rate, etc.   
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Table 10 Definition of common failure modes observed during FFI experiments. 

Processing results 
(outputs) 

Internal State 
(registers) 

Alarm signal 
(error detection) 

 Failure Mode 

✓ ✓ — Masked 
✓ X — Latent error 
X * ✓ Signaled 

Failure 
X * — Silent Data Corruption 
✓ ✓  ✓  False Alarm 
— * — Hang / Crash 

Notation:  ✓ (valid),   X (invalid),   — (absent),   * (any/wildcard) 
 
To improve the efficiency of FFI experiments, FFI tool targets only the so-called 
“essential bits”, i.e. a subset of CM cells that are actually used in a given bitstream 
to configure the logic and routing of the circuit in FPGA. In turn, a subset of essential 
bits that (when flipped) cause a DUT failure, are referred to as critical bits. The 
number of critical bits in an FPGA design can be estimated by FFI experiment, and 
consequently can be used to estimate the failure rate of and FPGA prototype in FIT 
units.  
 

 
Figure 45 Injection modes of the DAVOS-FI tool: area-based (left) and scope/ hierarchy-based (right) 

To perform more selective (fine-grained) FFI experiments, DAVOS-FFI tool allows to 
filter the targeted essential bits by the area, and/or by the design scope, as it is 
illustrated in Figure 45. The area-based injection mode (shown in the left plot of 
Figure 45) targets essential bits located within a rectangular area on the FPGA 
floorplan (pblock); it is configured in terms of the Tile coordinates (Bottom-Left and 
Top-Right corners). The netlist-based injection mode (shown in the right plot of 
Figure 45) targets those essential bits that correspond to the selected DUT 
component (part of the design tree). 

9.2 Design and implementation 
DAVOS-FFI tool comprises two main components: an on-chip FFI controller at the 
board side, and an FFI application at the host side, as it is depicted in Figure 46. 
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The FFI controller is in charge of manipulating the content of the configuration 
memory through the internal configuration access port (ICAP), in order to inject and 
remove faults on the request of the host application. This FFI controller is located in 
the same FPGA chip as the design under test (DUT). This allows direct access to the 
CM of the target FPGA and minimizes the fault injection latency (time overhead). The 
controller itself is implemented on the basis of Xilinx’s Microblaze IP (a small-footprint 
soft-core processor), which runs a custom board-side FFI application.  
 
The FFI controller is isolated in a separate region (Pblock) on the FPGA floorplan, in 
order to prevent unexpected interferences with the DUT, as well as to avoid any side-
effects of injected faults on the FFI controller itself. The integration of FFI controller 
and its floor-planning are automated in the SELENE platform by means of TCL 
scripting (as a part of the SELENE makefiles).  
 
After initializing the FFI controller, the board-side application enters the control loop 
in which it awaits and executes the incoming FFI commands. These commands are 
loaded to the dedicated memory buffer by the host application (through the debug-
jtag link of the Xilinx XSCT service). Currently there are four commands recognizable 
by the board application: (a) flip the value of a given CM bit at a given clock cycle, 
(b) set a given CM bit (or CM word) to the specified value, (c) recover a given CM bit 
to its initial value, (d) trigger hard reset signal of the DUT. After executing each 
command, the board application sends a status message to the host (through the 
memory buffer), to confirm the successful injection/recovery, or to signal any error 
of an FFI controller.   
 

 
Figure 46 Architecture of the DAVOS-FFI tool 

The host side includes the main FFI application and two support services: the injector 
service and a testbench service. 
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The injector service implements a communication bridge between the board-side FFI 
controller and a host application. It translates the inject/recover commands received 
(through the socket) from the main FFI application into the commands recognized by 
the FFI controller, submits them via JTAG link, and forwards back the status 
messages from the FFI controller. It is also in charge of loading the bitstream to the 
FPGA, initializing the FFI application at the board side, and uploading the fault list to 
the board side. The injector service is implemented in the form of TCL script for the 
Xilinx command-line tool (XSCT).  
 
The testbench service is in charge of determining the effects of injected faults on the 
DUT behavior. After receiving the test command from the main FFI application this 
service runs the selected workload on the DUT, traces its processing results and its 
internal state (when detection of latent errors is activated), determines the failure 
mode by comparing these traces to the reference, and returns the resulting failure 
mode in the status message to the main FFI application. The testbench service for 
the SELENE platform is implemented in the form of a TCL script for the GRMON tool. 

 

 
Figure 47 The workflow of DAVOS-FFI tool  

The main host-side application is the core of the DAVOS FFI tool. Its workflow 
(depicted in Figure 47) includes: 

- Parsing the design netlist, bitstream (essential bits), and floorplan, and 
mapping them within an internal DUT model (depicted in Figure 48); 

- Locating relevant essential bits attending to the configured filters (floorplan 
area and hierarchical DUT scope), and generating the fault list; 

- Initializing the support services (injector service and testbench service) and 
establishing a connection to them via sockets; 

- Controlling the execution of individual FFI runs:  
• Selecting the next fault configuration from the fault list, and issuing 

the “inject Fault-ID” command to the injector service, 
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• Issuing the test command to the testbench service in order to 
determine the effect of injected fault (failure mode); 

• Removal of injected fault (recover command to the injector service); 
• Resetting the DUT to its initial state through the testbench service; 
• Logging the failure mode of each injection run to the database. 

 

Figure 48 Fragment of FPGA design model used in DAVOS for the mapping of essential bits 

9.3 Testing and evaluation 
To illustrate the operation of DAVOS-FFI tool two simple FFI experiments have been 
carried out, both targeting core-0 of the SELENE GPP in two different injection modes: 

- Scope-based mode: injecting 5000 bit-flips into the LUTs of the core-0; 
- Area-based mode: injecting 5000 bit-flips into the essential bits (TYPE-0 

frames covering both logic and routing) of the core-0;  
The configuration XML files of the DAVOS-FFI tool for these two experiments are 
illustrated in Figure 49(a) and Figure 49(b) respectively. 
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Figure 49 Configuration of DAVOS-FFI tool for (a) scope-based injection targeting LUTs of core-a, and for 

(b) area-based injection targeting essential bits of core-0 

The DUT is executing an integer matrix multiplication kernel (running on the core-0), 
followed by a hash sum calculation for the resulting matrix. The testbench script 
adapted for the selected workload is available in the DAVOS repository 
(DAVOS/testconfig/host_grmon.do). This script is linked to the DAVOS configuration 
in the dut_script XML attribute (“-c” argument of the GRMON tool).  
After configuring the FFI tool (customizing the testbench script and SeleneMC.xml), 
the FFI experiment is started by invoking the following command from the DAVOS 
installation folder: 

DAVOS/> python FFI_Tool.py testconfig/SeleneMC.xml 

The first fault injection experiment (scope-based, targeting LUTs) has taken roughly 
1.5 hours per 5000 injection runs, as it can be seen from the fragment of an FFI trace 
in Figure 50. The second experiment (area-based, targeting essential bits) has taken 
roughly 2.5 hours per 5000 injection runs. The higher run time in the second 
experiment is explained by the higher number of ‘hang’ outcomes, which require 
complete DUT recovery (taking up to 50 seconds when it involves reloading of FPGA 
bitstream). Whereas injection runs with a ‘Masked’ outcome are much faster, taking 
0.3 seconds on average. 

 
Figure 50 Fragment of FFI trace at the end of first experiment (targeting LUTs) 

The detailed FFI results are exported into a csv file, and saved into the DAVOS SQLite 
database. Figure 51 illustrates the resulting distribution of failure modes for both 
experiments. As it can be seen from the results, the SELENE GPP is more sensitive 
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to the bit-flips in the Type-0 CM bits (essential bits) than to the bit-flips in LUTs. This 
is explained by the fact that essential bits include configuration of routing resources 
(among others), and the routing faults (short/open/bridging) are usually more critical 
than LUT faults.   

 
Figure 51 Estimated percentage of failures (SDC and Hangs) resulting from bit-flips in configuration bits 

of core-0 (LUT in exp-1, and essential bits in exp-2) 

 
 

 
Figure 52 Querying and visualizing FFI results by means of DAVOS web interface 



 

Project FRACTAL 

Title Fractal Safety Services   

Del. Code D4.4   

 

  

 Copyright © FRACTAL Project Consortium 57  

 

Finally, the results from the DAVOS database can be queried and visualized by means 
of the DAVOS web interface, as it is depicted in Figure 52. Its top-left widget is used 
for querying FFI results attending to a set of filters (fault model, targeted logic, etc.). 
The top-middle widget illustrates the overall percentage of each failure mode (for the 
entire sample). The Top-Right widget illustrates the contribution of each design sub-
module into these percentages, for instance it can be seen that execute (E) and 
memory access (M) stages of the pipeline are those DUT components that contribute 
the most to the observed SDC failures. The interactive widget below illustrates the 
sensitivity of each module in the design tree, highlighting the weak/critical points of 
the design. Finally, the table on the bottom of the page lists the details of each 
individual injection run: injection point, injection time, fault model, failure mode, fault 
to failure latency. 
 
[UPV-FFI1] Universitat Politècnica de València (2022). DAVOS - a fault Injection toolkit for dependability 
assessment, verification, optimization and selection of hardware designs  
[Online] https://gitlab.com/selene-riscv-platform/DAVOS/ 
 
[UPV-FFI2] Tuzov I, de Andrés D, Ruiz JC. Accurate robustness assessment of HDL models through 
iterative statistical fault injection. In 2018 14th European Dependable Computing Conference (EDCC) 2018 
Sep 10 (pp. 1-8). IEEE. 
 

https://gitlab.com/selene-riscv-platform/DAVOS/
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10 Safety Analysis of the NOEL-V Platform redundant 
acceleration scheme (UPV) 

10.1 Component description 
The redundant acceleration scheme (component WP3T32-06 described in D3.5) 
provides reliable/fail-safe HW acceleration of convolutional neural networks (CNN). 
This redundancy scheme (depicted in Figure 53) includes N replicated accelerators, 
an HW/SW voter, and a control/monitoring process running on the NOELV CPU. The 
processing is performed in steps. At the beginning of each step the accelerators 
remain in the idle state, waiting for the availability of input data. The CPU (monitor) 
loads the next portion of data into the data buffer of each accelerator, adjusts the 
processing parameters (stored in the memory-mapped control registers), and 
activates the start flag of each accelerator. While the computation is ongoing, the 
monitor checks the completion of each accelerator by polling their ready flags. Once 
the computation is completed, the processing results are read out from each 
accelerators’ data buffer. The correctness of processing results is checked by majority 
voting in software or in hardware. Finally, the voting results are interpreted by the 
monitor for the diagnosis of errors and for performing any required corrective actions. 

 

Figure 53 Acceleration subsystem with N-modular redundancy and majority voting 

10.2 Design and implementation 
One of the main metrics considered by functional safety certification standards 
(IEC61508, ISO26262) is the probability of dangerous failure (DF). DF is a failure 
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mode in which the safety instrumented system is unable to provide a correct service 
and cannot reach the safe state. The definition of DF in the case of the redundant 
accelerator’s subsystem is determined by the particular application scenario. For 
instance, accelerators may be used for computer vision in autonomous driving (e.g., 
detection of obstacles on the road), in which case any failure of accelerators 
subsystem may be treated as dangerous. 

At the same time, standards also distinguish between detected and undetected DF. 
Detected DF are diagnosed and alerted by the system, so that the user or higher-
level system are aware of system degradation. Undetected DF escape the diagnostics, 
thus being the most hazardous failures. In such a way, the features of redundant 
accelerators scheme can be described from the viewpoint of (i) the ability of the 
system to provide correct service in presence of faults in its components/replicas 
(fault tolerance), and (ii) the percentage of failures that are detected and alerted 
(diagnostic coverage). At the same time, these features can also be described with 
respect to the different fault models, as follows.  

10.2.1 Transient faults of varied multiplicity affecting single replica.  

T1. Transient faults affect the system during a short period of time, being usually 
abstracted by such fault models as bit-flips in registers, or pulses in combinational 
logic. Transient faults can be corrected (recovered) by a normal circuit behaviour, or 
propagated through the system, causing different kinds of failures. 

In the non-replicated acceleration model (Table 11) this may cause (a) an undetected 
failure, such as silent data corruption (SDC), being it the most critical (unsafe) failure 
mode, or (b) a hang of acceleration subsystem, which is treated as detectable failure 
(using a common watchdog timer).  

In the double modular redundancy with 2oo2 voting model (Table 12) failure of any 
one of the replicas is detected, providing an alarm signal from the acceleration 
subsystem as a safety measure. On the failure detection, the failing replica is 
recovered (reset), while the erroneous result may be skipped, or recomputed if 
needed by the application.  

In the triple modular redundancy with 2oo3 voting model (TMR,Table 13) a failure of 
any one of the replicas is detected and corrected by majority voting. The TMR scheme 
is suitable for hard real-time applications, since it imposes little to no time overheads 
for error correction, albeit at the cost of high area overhead. On the detection of 
replica failure, the acceleration subsystem itself can be switched to the degraded 
mode (double modular redundancy) until the failing replica is recovered (reset). 

10.2.2 Multiple transient faults affecting multiple replicas. 
The double modular redundancy scheme allows error detection in both replicas, 
unless the erroneous result produced by them is exactly the same. This latter 
situation (same erroneous result) may occur in the case of common-cause faults 
affecting similarly both replicas. This unsafe failure mode can be avoided by 
diversification of replicas. In our case this diverse redundancy can be achieved by 
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implementing accelerators with different convolution types, as current CNN 
accelerators support tree types of convolutions: direct convolution, Winograd's 
algorithm, and DepthWise Separable convolution. Alternatively, can be employed a 
time-staggering mechanism, that allows different fault manifestation across replicas 
even without hardware-level diversification.  
 

A triple modular redundancy mode (TMR), similarly to the dual redundancy, allows 
detection of errors in multiple replicas, as long as their erroneous results are 
different. A failure of multiple replicas degrades the TMR scheme to a state in which 
the real-time correction of results (by majority voting) is not possible. The recovery 
from this degraded state thus requires to reset all failing replicas and recompute the 
erroneous result (if required by the application).  

Table 11 Diagnosis and recovery actions in the case of single replica 

Processing Result Diagnosis (Failure Mode) Recovery Action 

✓ Correct (masked) — 
X Silent Failure  

(Silent Data Corruption) 
— 

— Hang (Timeout) Reset and recompute 
Notation: ✓ (correct), X (incorrect), — (timeout) 
 
 

Table 12 Diagnosis and recovery actions in the case of two replicas 

Processing Result Voter 
agreement 

Diagnosis  
(Failure Mode) 

Recovery Action 
Rep1 Rep2 
✓ ✓ ✓ Correct (masked) — 
* X X Signaled failure Reset and recompute X * X 
* — X Hang (timeout) Reset and recompute — * X 

  
 

Table 13 Diagnosis recovery actions in the case of three replicas (TMR) 

Processing Result Voter 
agreement 

Diagnosis  
(Failure Mode) 

Recovery Action 
Rep1 Rep2 Rep3 
✓ ✓ ✓ ✓ Correct (masked) — 
✓ ✓ X/— ✓ Correct,  

degraded mode (replica fail 
/ timeout) 

Reset replica 
and continue ✓ X/— ✓ ✓ 

X/— ✓ ✓ ✓ 
✓ X/— X/— X Signaled failure 

(multiple replicas failure / 
timeout) 

Reset and 
recompute X/— ✓ X/— X 

X/— X/— ✓ X 
 
 

10.2.3 Permanent faults affecting one or several replicas 

Similarly, to the transient faults, the permanent ones are detectable by both dual and 
triple modular redundancy (TMR) schemes. A permanent fault affecting a single 
replica is also correctable by a TMR scheme. However, automatic recovery of a 
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system from a degraded mode would require an additional hot-spare (reserved) 
component that can be activated instead of the degraded replica. In spite of even 
higher hardware overheads, this hot spare scheme may be reasonable in some 
applications with limited manual maintenance (e.g., satellites). 
 

10.3 Testing and evaluation 
The aforementioned safety attributes (probability of dangerous failures, and 
diagnostic coverage) can be estimated by means of FPGA-based fault injection 
experiments. The DAVOS FFI tool (described in Section 9 of this document) is used 
for this purpose. The system under study is a double modular redundancy scheme, 
a 2oo2 adaptation of the acceleration subsystem depicted in Figure 53.  

 

Figure 54 Percentage of failure modes of 2oo2 redundancy scheme estimated by FFI experiments 

The workload executed by the accelerators is generated by the NOELV processor on 
the basis of randomized data. The fault load applied to the DUT comprises a sample 
of 5000 single bit-flips in the essential bits of accelerator’s subsystem. The observed 
failure modes (described in Table 12) include (i) masked fault (absence of fault 
manifestation), (ii) signaled failure, i.e., incorrect processing result alerted as a 
mismatch between the two replicas by a 2oo2 voter, (iii) hang/timeout of one or both 
accelerator replicas, and (iv) silent data corruption which is expected to be completely 
covered (mitigated) by the 2oo2 redundancy scheme. 

The resulting percentage of failure modes is depicted in Figure 54. As it can be seen 
from the results, the 2oo2 redundancy scheme successfully detects all failures of its 
replicas: (i) the incorrect processing results from the replicas are reported as signaled 
failures (2.16%), and hangs of the replicas, reported as timeouts (3.71%). In such 
a way, despite the 2oo2 scheme doesn’t perform on-the-fly correction of results, it 
effectively signals all considered failures (100% diagnostic coverage). It is also worth 
noting that the timeout detection is not specific to the redundancy scheme, i.e., if 
assuming the same percentages of timeouts and failures for the simplex accelerator 
(1oo1) then the diagnostic coverage still would amount to roughly 63% (percentage 
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of timeouts within the total set of failures). It should be noted, however, that the 
latter estimation is based on speculative assumption, and should be verified by 
further FFI experiments.  

Under the conservative assumption that both detected failures and hangs are 
dangerous failures (DF), the DF failure rate can be estimated by the following 
equation: 

𝜆𝜆𝐷𝐷𝐷𝐷 = 𝜆𝜆𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 × 𝑁𝑁𝑒𝑒𝑒𝑒 × �𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎�, where: 

𝜆𝜆𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 – constant failure rate (upset rate of FPGA configuration memory cells) at 
the sea-level taken from the device reliability report for a given FPGA. For the 
used FPGA part (Xilinx Virtex Ultrascale+) it equals 5 FIT per megabit of 
configuration memory [UPV-ACC1]; 

𝑁𝑁𝑒𝑒𝑒𝑒 – the number of essential bits (in Megabits) used by the DUT in a given 
implementation; this parameter can be retrieved from the FFI report generated 
by the DAVOS FFI tool, as it reports the number of essential bits in the 
components targeted in FFI experiment. For the considered DUT it reports 49.5 
Mb of essential bits per one accelerator replica, thus resulting in a rough 
estimation of 99 Mb for the entire redundant acceleration subsystem; 

𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑 and  𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎 are the probability of an upset to lead to the detected failure, 
and to the hang/timeout of acceleration subsystem respectively. 

In such a way, the DF rate for the considered acceleration subsystem can be 
estimated as 29.05 FIT, which can be translated into the probability of dangerous 
failure per hour of 2.9×10-8. With respect to the IEC51508, for a continuously used 
high-demand system this number corresponds to the safety integrity level SIL-2 
[UPV-ACC2]. 

[UPV-ACC1] Xilinx Inc. Device Reliability Report. UG116 (v10.16), June 29, 2022 

[UPV-ACC2] Smith, D. J., & Simpson, K. G. (2010). Safety critical systems handbook: a straight forward 
guide to functional safety, IEC 61508 (2010 Edition) and related standards, including process IEC 61511 
and machinery IEC 62061 and ISO 13849. Elsevier. 
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11 Safety concept based on ISO26262 (VIF,AVL) 

11.1 Introduction to vehicle safety and the relevant ISO 
standard 

The advent of electronics and software development in the automotive industry has 
led to transforming motorized vehicle from pure mechatronics system to full 
embedded control system units, using latest advanced technologies for an optimal 
control of the vehicle. 

One of these technologies is the usage of artificial intelligence, for the control of 
vehicle components. Considering that the control of a vehicle requires the usage of 
many sensors and actuators for each component depending on external condition 
and driver commands; the complexity of vehicle controls has exponentially increased 
in the past years. 

A data-driven control strategy is a solution to reduce development costs (e.g., in 
terms of eliminating the need for manual calibration) and increase control accuracy 
of a vehicle (e.g., due to self-adaptation). 

However, unlike a rule-based control strategy, a data-driven control strategy is the 
outcome of a machine learning process and as such may be a non-deterministic 
function. 

To ensure the safety in the vehicle these non-deterministic functions need to be under 
supervision of deterministic safety function which are defined in the safety concept. 

 During the concept phase, the hazard analysis and risk assessment (based on the 
item definition) is generated. 
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Figure 55 Safety concept 

The main goal of the hazard analysis and risk assessment is to analyze the 
functionalities of the system in its intended context and to identify and classify 
possible hazards. Main outcome here are safety goals – which represent safety 
objectives during the project. 

The main purpose while developing the safety concept is to systematically refine the 
safety argumentation by providing functional requirements, then technical 
requirements, and finally software (resp. hardware) requirements to mitigate the 
risks. 

This assumption is violated when a training set is used in place of a specification since 
such a set is necessarily incomplete, and it is not clear how to create assurance that 
the corresponding hazards are always mitigated. Thus, an ML component violates the 
assumption. Furthermore, the training process is not a verification process since the 
trained model will be “correct by construction” with respect to the training set, up to 
the limits of the model and the learning algorithm. 
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11.2 UC2 

11.2.1Description of the work-flow using the standard 

During the ISO 26262 lifecycle the output of each phase must be verified against the 
requirements in input to the same phase. In addition to this, a validation is requested 
at the end of the design process to ensure that the final implementation of the item, 
integrated in the vehicle, is compliant with the initial safety goals and so the system 
can provide the adequate level of safety. Therefore, each phase of the design process 
needs to be verified against input requirements while the whole item is finally 
validated against the top-level safety requirements without any intermediate step 

As a consequence of this approach, verification and validation activities are tightly 
linked to requirements throughout all the development process. The following section 
shows those links referring to the V model proposed by ISO 26262 

 

Figure 56 Work flow using the standard 

We have then here a deterministic SW component which has to be verified according 
to verification method described in the Norm ISO 26262 

We will here focus on the SW part of the safety concept as in the UC2 of Fractal 
project (Air Path control) we are mainly interested of the Control SW of an Engine 
component. 

Once SW safety requirements are defined, they can be implemented and tested. 

We have then here a deterministic SW component which has to be verified according 
to verification method described in the Norm ISO 26262. 

Following tables extracted from the ISO 26262 Norm are describing which SW 
implementation guideline as well as SW verification method need to be used 
depending on the ASIL Rating of each safety goal. While some of these remain 
applicable to ML components and others could readily be adapted, many remain that 
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are specifically biased toward the assumption that code is implemented using an 
imperative programming language. 

Table 14 Design principles for software unit design and implementation 

 

Table 15 Methods for software unit testing 

 

To cater with AI, we first need to perform an ASIL decomposition. The AI can be 
regarded to be covered by classical QM as there ia an non-AI safety monitor in place. 
Since AI is covered by QM, the safety requirement no longer applys and it is a matter 
of quality. 

Once the SW has been designed, implemented, verified, and validated according to 
the Norm 26262, we can consider that after its integration in the vehicle, the 
component it is supervising, is safe. It means that outputs from a control algorithm 
which could generate a potential safety violation, is recognized and a safety reaction 
is triggered. 

A safety reaction shall be triggered as less as possible, as it impacts the drivability of 
the vehicle. As example, a safety reaction inhibits some control function, which could 
limit the drivability of the vehicle. 
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Therefore, it is mandatory that during the training phase of the neural network, 
boundary conditions which are the output of the Safety concept (in our case, the 
safety monitor), are considered. 

Safety functions must then be incorporated during the learning process of the model. 

The picture below shows the integration of the developed Safety SW within the 
learning procedure without reinforcement learning. 

 

 

Figure 57 Integration of the developed Safety SW within the learning procedure without reinforcement 
learning. 

As you can see output used to control actuator of the vehicle must be limited by 
safety function before the data preprocessing occurs. For example, thermal runaways 
of the battery may constitute a potential hazard. 

The trained AI model learns to know all control limitations due to safety. By 
consequences, the AI model is providing control commands which consider safety 
range. The probability that the ML model is violating safety requirement is then 
reduced. 

The regular Safety SW shall still be executed in the control ECU according to the norm 
ISO-26262.  
The picture below shows how the integration of the developed Safety SW could be 
performed using reinforcement learning 
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Figure 58 Integration of the developed safety SW could be performed using reinforcement learning 

In any case, the Safety SW shall be implemented on the Control Unit to directly 
supervise safety relevant components. 

11.3 Safety concept with UC7 (SPIDER autonomous robot) 

11.3.1Description of the work-flow using the standard 

The general safety activities of the concept phase according ISO 26262 can be seen 
in the following Figure 59. 

 

Figure 59 Overview of safety activities in concept phase of ISO 26262 

11.3.2 Item Definition 

The first objective of the Item Definition is to define and describe the item SPIDER, 
its dependencies on, and interaction with, the environment and other related items. 
The second objective is to support an adequate understanding of the item so that the 
activities in subsequent phases can be performed.  
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The document serves to provide sufficient information about the item to the persons 
who conduct the subsequent subphases like “Initiation of safety lifecycle”, ”Hazard 
analysis and risk assessment” and ”Functional safety concept”. 

A part of the Item definition will be presented in chapter 11.3.4. 

11.3.3 Hazard Analysis and Risk Assessment 

In the first step of the hazard analysis and risk assessment (HARA) the malfunctions 
of the item and their potential hazards on vehicle level are identified and a situations 
analysis is used to formulate a proper set of situations for the possible hazards 
events. 

Finally, the identified situations and identified hazards are combined in an assessment 
matrix to derive the hazards events. These hazards events are classified with the risk 
parameter severity S, exposure E and controllability C. The ASIL for each hazardous 
event of the item is specified. 

As the last step of the hazard analysis and risk assessment is the definition of the 
safety goals for each hazardous event of the electric power train and the association 
of the ASILs. The HARA for the Spider will be presented in more detail in chapter 
11.3.5. 

11.3.4 Description of use-case 7 

Figure 60 shows the item SPIDER (in blue) and its surroundings in which the SPIDER 
shall operate. 
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Figure 60: Overview of system block diagram of SPIDER 

Overview of SPIDER functions: 

Automated omnidirectional movement (aka. Path Tracking Function)  

Four single automated controlled steering servo motors allow a pseudo 
omnidirectional movement of the SPIDER along a predefined global path and four 
single automated controlled electric motors allow to accelerate or decelerate the 
SPIDER to a predefined velocity.  

Collision Prevention/Avoidance (aka. Collision Avoidance Function)  

A collision with any person and any object is prevented by stopping the SPIDER.  

Base safety feature of SPIDER.  

Determination of position  

Based on the data from the localization (by GNSS), SPIDER determinates his own 
position within a tolerance of +/-150 mm.  

Base feature of SPIDER for evaluation of proving ground tests.  

Manual omnidirectional movement  

Operator Panel is used for manual control commands of the operator to the SPIDER.  
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Four single manual controlled steering servos allows a pseudo omnidirectional 
movement of the SPIDER and four single manual controlled electric motors allows to 
accelerate or decelerate the SPIDER. 

SPIDER data recording 

Storage of sensing data and the possibility for download for offline processing  

Base feature of SPIDER for evaluation of proving ground tests. 

The two main functions for the safe operation of the spider are described in more 
detail below.   

Collision Avoidance Function   

The task of the collision avoidance function is to detect obstacles and initiate 
measures to avoid a collision. Four Lidar sensors, which are mounted on the outer 
corners of the robot, enable an all-round view with at least double redundancy at 
about 50 meters. In a preprocessing step the point cloud data from the sensors is 
filtered and fused using the Point Cloud Library (PCL) [SC-UC7-1]. The resulting fused 
point cloud is mapped onto a two-dimensional grid, called cost map, with occupancy 
values for each grid cell. Based on the cost map, an algorithm calculates the distance 
to the closest obstacle in the movement direction, and triggers an emergency brake 
if the obstacle distance is inside a defined danger zone around the robot.  

Path Tracking Function   

The path tracking function (PTF) is intended to follow a predefined global path in a 
precise manner. A global path is an ordered list of waypoints, which shall be touched 
by the robot. A waypoint is defined by the coordinates, target speed and orientation 
of the vehicle. When the PTF is activated by the human operator, the function 
calculates a trajectory to the next waypoint from the current location of the robot. 
From this trajectory the required speed and direction is computed and forwarded to 
the motion control unit of the SPIDER.  

11.3.5 Hazard analysis and risk assessment  

11.3.5.1 Hazard identification 

By conducting a hazard and operability study (HAZOP) the malfunctions of the 
SPIDER and their potential hazards on vehicle level were identified. With the help of 
guide words possible deviations of the function were identified. These deviations are 
the malfunctions of the spider.  

The following table gives an overview of commonly used guide words and common 
interpretations of them.  



 

Project FRACTAL 

Title Fractal Safety Services   

Del. Code D4.4   

 

  

 Copyright © FRACTAL Project Consortium 72  

 

Table 16 HAZOP guide words 

 

As the next step the consequence of these malfunctions on vehicle level and the 
resulting hazards of these malfunctioning behaviour on vehicle level were identified.   

The top level hazard is the potential source of harm caused by malfunctioning 
behaviour of the item and could lead to harm (the physical injury or damage to the 
health of persons).   

Some result of the HAZOP for the control unit/main functions of the SPIDER is shown 
in Table 17. 
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Table 17 HAZOP for control unit and main functions 

 

Function Guideword Malfunction/Deviation Malfunctioning behaviour 
on vehicle 
level/Consequences

Hazard-potential 
source of harm

Emergency 
stop

No No emergency stop No emergency stop when  
emergency stop required

No emergency stop 
lead to collison with 
objects and persons

More
Less
As well as
Part of
Reverse
Other than Wrong emergency 

stop
Wrong emergency stop 
activation

No emergency stop 
lead to collison with 
objects and persons

Early
Late
Before
After

Sensor data 
storage

No No sensor data 
storage

none None

More
Less
As well as
Part of
Reverse
Other than Wrong sensor data 

storage
none None

Early
Late
Before
After

Manual 
operation

No No manual operation No manual Control of AGV Unintendend 
omnidirectional 
movement lead to 
collison with objects 
and persons

More
Less
As well as
Part of
Reverse
Other than Wrong manual 

operation
Wrong manual Control of 
AGV

Unintendend 
omnidirectional 
movement lead to 
collison with objects 
and persons

Early
Late
Before
After
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Different malfunctions of the SPIDER can lead to the same hazard, which can be seen 
in Table 18: Hazards resulting from an item’s malfunctions, and thus result in 
recurrent hazards. The final list of hazards, that must be considered in the HARA is 
presented in Table 19: Situations for possible hazardous events (the recurrent 
hazards are deleted). 

Table 18: Hazards resulting from an item’s malfunctions 

 

11.3.5.2 Situation analyse 

For every item usage the reasonable combinations of location, road conditions and 
traffic were identified with the focus on worst case scenarios. Table 19 shows a set 
of situations for possible hazardous events. 

Table 19: Situations for possible hazardous events 

 

11.3.5.3 Risk assessment   

The identified situations and the identified hazards were combined finally in an 
assessment matrix to get the hazardous events. 

The hazardous events were classified in accordance with the risk matrix of ISO 26262 
(s) and the ASIL for every item malfunction was defined. 

DM1.1 PARKING LOC3.1 City EC1.0 Normal enviroment WC1.0 No special weather MA1.0 No special Maneuver
DM1.2 VEHICLE CHARGING LOC3.1 City EC1.0 Normal enviroment WC1.0 No special weather MA1.0 No special Maneuver
DM1.3 SERVICE LOC3.1 City EC1.0 Normal enviroment WC1.0 No special weather MA1.0 No special Maneuver
DM2.1 DRIVE (Driver only) LOC3.1 City EC1.0 Normal enviroment WC1.0 No special weather MA1.0 No special Maneuver
DM2.4 DRIVE (Fully Automated) LOC3.1 City EC1.0 Normal enviroment WC1.0 No special weather MA1.0 No special Maneuver
DM2.4 DRIVE (Fully Automated) LOC3.3 High/Motorway EC1.0 Normal enviroment WC1.0 No special weather MA1.0 No special Maneuver
DM2.4 DRIVE (Fully Automated) LOC3.1 City EC1.1 Obstacle at street WC1.0 No special weather MA1.0 No special Maneuver
DM2.4 DRIVE (Fully Automated) LOC3.3 High/Motorway EC1.1 Obstacle at street WC1.0 No special weather MA1.0 No special Maneuver
DM2.4 DRIVE (Fully Automated) LOC3.1 City EC1.0 Normal enviroment WC1.1 Fog MA1.0 No special Maneuver
DM2.4 DRIVE (Fully Automated) LOC3.3 High/Motorway EC1.0 Normal enviroment WC1.1 Fog MA1.0 No special Maneuver
DM2.4 DRIVE (Fully Automated) LOC3.1 City EC1.1 Obstacle at street WC1.1 Fog MA1.0 No special Maneuver
DM2.4 DRIVE (Fully Automated) LOC3.3 High/Motorway EC1.1 Obstacle at street WC1.1 Fog MA1.0 No special Maneuver
DM2.4 DRIVE (Fully Automated) LOC3.1 City EC1.0 Normal enviroment WC1.2 Snowing MA1.0 No special Maneuver
DM2.4 DRIVE (Fully Automated) LOC3.3 High/Motorway EC1.0 Normal enviroment WC1.2 Snowing MA1.0 No special Maneuver
DM2.4 DRIVE (Fully Automated) LOC3.1 City EC1.1 Obstacle at street WC1.2 Snowing MA1.0 No special Maneuver
DM2.4 DRIVE (Fully Automated) LOC3.3 High/Motorway EC1.1 Obstacle at street WC1.2 Snowing MA1.0 No special Maneuver
DM2.4 DRIVE (Fully Automated) LOC3.1 City EC1.0 Normal enviroment WC1.4 Rain MA1.0 No special Maneuver
DM2.4 DRIVE (Fully Automated) LOC3.3 High/Motorway EC1.0 Normal enviroment WC1.4 Rain MA1.0 No special Maneuver
DM2.4 DRIVE (Fully Automated) LOC3.1 City EC1.1 Obstacle at street WC1.4 Rain MA1.0 No special Maneuver
DM2.4 DRIVE (Fully Automated) LOC3.3 High/Motorway EC1.1 Obstacle at street WC1.4 Rain MA1.0 No special Maneuver
DM2.4 DRIVE (Fully Automated) LOC3.1 City EC1.0 Normal enviroment WC1.10Sun MA1.0 No special Maneuver
DM2.4 DRIVE (Fully Automated) LOC3.3 High/Motorway EC1.0 Normal enviroment WC1.10Sun MA1.0 No special Maneuver
DM2.4 DRIVE (Fully Automated) LOC3.1 City EC1.1 Obstacle at street WC1.10Sun MA1.0 No special Maneuver
DM2.4 DRIVE (Fully Automated) LOC3.3 High/Motorway EC1.1 Obstacle at street WC1.10Sun MA1.0 No special Maneuver
DM1.2 VEHICLE CHARGING LOC3.1 City EC1.0 Normal enviroment WC1.14Low temp. (-20°C<temMA1.0 No special Maneuver
DM2.1 DRIVE (Driver only) LOC3.1 City EC1.0 Normal enviroment WC1.0 No special weather MA1.1 Braking to Standstill
DM2.4 DRIVE (Fully Automated) LOC3.1 City EC1.0 Normal enviroment WC1.0 No special weather MA1.1 Braking to Standstill
DM2.4 DRIVE (Fully Automated) LOC3.3 High/Motorway EC1.0 Normal enviroment WC1.0 No special weather MA1.1 Braking to Standstill
DM2.4 DRIVE (Fully Automated) LOC3.1 City EC1.1 Obstacle at street WC1.0 No special weather MA1.1 Braking to Standstill
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Table 20: Risk matix for ASIL determination 

 

11.3.5.4 Safety goal definition 

Based on the classification, the Safety Goals (SG) and their associated ASILs are 
identified. Safety goals are top-level safety requirements for the item. They lead to 
the functional safety requirements needed to avoid an unreasonable risk for each 
hazardous event. Safety goals are not expressed in terms of technological solutions, 
but in terms of functional objectives.  

The safety goal is defined based on the hazard event. The safety goal shall describe 
how the hazard could be prevented for the driving situation of the hazard event.  

If one single SG has two different ASILs (or class QM) the most restrictive one is 
assigned to that SG for further analysis purposes. The derived SGs for the SPIDER 
are presented in the Table 21. 

11.3.6 Result for functional safety concept 

In this use case the focus is on two safety critical functions of the SPIDER, the collision 
avoidance function, and the path tracking function (see chapter 11.3.4).  

The collision avoidance function must fulfil 

• SG010 “Prevent no or wrong emergency stop activation when emergency stop 
is required in any driving situation” ASIL C,  

• SG022 “Prevent false negative object detection in any driving situation” 
ASIL C.  

The path tracking function (PTF) must fulfil 

• SG013 “Prevent wrong path following of SPIDER in any driving function” 
ASIL C.  

 

To demonstrate how to use the results from the safety concept we derived the 
following functional safety requirements for the collision avoidance function to fulfil 
SG010 and SG022.  
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For SG010:  

• FSR0071 Receive EmergencyStop activation: The EmergencyStopActivation 
through the RemoteControl  shall be received  

• FSR0072 Activate emergency stop: If EmergencyStop requested, the 
emergency stop shall be activated  

For SG022:  

• FSR0008 EmergencyStop: If the SPIDER is in the <EmergencyStop> the  

o target velocity on every wheel shall be 0 rotations per minute  

o The emergency brake shall be activated.  

The resulting requirements are convoyed to WP8 as additional use-case related 
requirements. From those use-case requirements KPIs will be derived to assure the 
compliance to the safety goals. 

Table 21: Safety Goals 

ASIL Safety Goal_ID Safety Goal (Top 
Level) 

Safe State Fault tolerant 
Time 

ASIL C SG001 Prevent 
unintended 
asymmetrical 
braking torque for 
the four wheels in 
all driving 
situation 

Safe/ emergency 
mode of SPIDER 

FTT <= 200 ms 
(1.9 sec 
deceleration time) 

ASIL C SG002 Prevent 
unintended 
asymmetrical 
acceleration 
torque for the four 
wheels in all 
driving situation 

Safe/ emergency 
mode of SPIDER 

FTT <= 200 ms 
(1.9 sec 
deceleration time) 

ASIL C SG003 Prevent 
unintended 
asymmetrical 
steering torque for 
the four wheels in 
all driving 
situation 

Safe/ emergency 
mode of SPIDER 

FTT <= 200 ms 
(1.9 sec 
deceleration time) 

ASIL C SG004 Prevent deep 
discharging of 
battery cells in 
any driving 
situation 

Safe/ emergency 
mode of SPIDER 

FTT <= 200 ms 
(1.9 sec 
deceleration time) 

ASIL C SG005 Prevent higher 
acceleration of 
SPIDER than 
required in any 
driving situation  

Safe/ emergency 
mode of SPIDER 

FTT <= 200 ms 
(1.9 sec 
deceleration time) 
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ASIL C SG006 Prevent no or 
incomplete power 
supply for 
SPIDER- Systems 
(PV & LV) and 
computation 

Safe/ emergency 
mode of SPIDER 

FTT <= 200 ms 
(1.9 sec 
deceleration time) 

ASIL C SG007 Prevent 
contradicting 
steering in any 
driving situation 

Safe/ emergency 
mode of SPIDER 

FTT <= 200 ms 
(1.9 sec 
deceleration time) 

ASIL C SG008 Prevent no or 
lower deceleration 
instead of 
required 
deceleration in 
any driving 
situation 

Safe/ emergency 
mode of SPIDER 

FTT <= 200 ms 
(1.9 sec 
deceleration time) 

ASIL C SG009 Prevent no or 
wrong or 
incomplete 
automated (no 
lateral or 
longitudinal) 
control of SPIDER 
if automated 
control is required 
in any driving 
situation 

Safe/ emergency 
mode of SPIDER 

FTT <= 200 ms 
(1.9 sec 
deceleration time) 

ASIL C SG010 Prevent no or 
wrong emergency 
stop activation 
when emergency 
stop is required in 
any driving 
situation 

Safe/ emergency 
mode of SPIDER 

FTT <= 200 ms 
(1.9 sec 
deceleration time) 

ASIL C SG011 Prevent no or 
wrong manual 
control of SPIDER 
if manual control 
is required in any 
driving situation 

Safe/ emergency 
mode of SPIDER 

FTT <= 200 ms 
(1.9 sec 
deceleration time) 

ASIL C SG012 Prevent no 
steering or 
stronger or 
weaker steering 
than required of 
the SPIDER when 
steering is 
required in any 
driving situation 

Safe/ emergency 
mode of SPIDER 

FTT <= 200 ms 
(1.9 sec 
deceleration time) 

ASIL C SG013 Prevent wrong 
path (following of 
SPIDER in any 
driving situation) 

Safe/ emergency 
mode of SPIDER 

FTT <= 200 ms 
(1.9 sec 
deceleration time) 

ASIL C SG014 Prevent 
overheating of 
battery cells in 

Safe/ emergency 
mode of SPIDER 

FTT <= 200 ms 
(1.9 sec 
deceleration time) 
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any driving 
situation 

ASIL B SG015 Prevent deep 
discharging of 
battery cells in 
any parking 
situation. 

Deactivation of 
battery system 

FTT <= 1s 

ASIL A SG016 Prevent no or 
wrong manual 
control of SPIDER 
if manual control 
is required in any 
service situation 

Safe/ emergency 
mode of SPIDER 

FTT <= 200 ms 
(1.9 sec 
deceleration time) 

ASIL A SG017 Prevent no 
steering or 
stronger or 
weaker steering 
than required of 
the SPIDER when 
steering is 
required in any 
service situation 

Safe/ emergency 
mode of SPIDER 

FTT <= 200 ms 
(1.9 sec 
deceleration time) 

ASIL A SG018 Prevent 
contradicting 
steering in any 
service situation 

Safe/ emergency 
mode of SPIDER 

FTT <= 200 ms 
(1.9 sec 
deceleration time) 

ASIL B SG019 Prevent deep 
discharging of 
battery cells in 
any charging 
situation 

Deactivation of 
battery system 

FTT <= 1s 

ASIL B SG020 Prevent 
overheating of 
battery cells in 
any charging 
situation 

Deactivation of 
battery system 

FTT <= 1s 

ASIL C SG021 Prevent unwanted 
in verse 
acceleration of 
SPIDER in any 
driving situation 

Safe/ emergency 
mode of SPIDER 

FTT <= 200 ms 
(1.9 sec 
deceleration time) 

ASIL C SG022 Prevent false 
negative object 
detection in any 
driving situation 

Safe/ emergency 
mode of SPIDER 

FTT <= 200 ms 
(1.9 sec 
deceleration time) 

ASIL C SG023 Prevent wrong 
acceleration of 
SPIDER in any 
driving situation  

Safe/ emergency 
mode of SPIDER 

FTT <= 200 ms 
(1.9 sec 
deceleration time) 

ASIL C SG024 Prevent wrong 
deceleration of 
SPIDER in any 
driving situation 

Safe/ emergency 
mode of SPIDER 

FTT <= 200 ms 
(1.9 sec 
deceleration time) 

ASIL C SG025 Prevent wrong 
emergency 
management of 
SPIDER in any 

Safe/ emergency 
mode of SPIDER 

FTT <= 200 ms 
(1.9 sec 
deceleration time) 
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driving situation 
to avoid 
overheating of 
battery cells  

ASIL C SG026 Prevent wrong 
activation of 
operation mode in 
any driving 
situation 

Safe/ emergency 
mode of SPIDER 

FTT <= 200 ms 
(1.9 sec 
deceleration time) 

 

[SC-UC7-1] Rusu, Radu Bogdan, and Steve Cousins. "3d is here: Point cloud library (pcl)." 2011 IEEE 
international conference on robotics and automation. IEEE, 2011 
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12 Safety concept based on IEC 62061 (BEEA) 

12.1 Introduction for industrial applications of the 
standard IEC 61508 and corresponding additional 
standards 

The IEC standard 61508 is a general standard applicable to all industries for 
functional safety. Many standards are derived from this ISO standard, on the base of 
which functional safe systems are created in a wide range of industries, like shown 
in Figure 61.  

The complexity of modern machines is increasing and with it the requirements of safe 
functions for human protection. To satisfy these requirements, fail-safe PLCs are 
growing in popularity, also in embedded systems. The logic programming can be 
more complex and still providing the necessary overview in comparison to common 
electromechanical parts, like safety relays. A further reason could be flexibility, as 
corrections of the logic remain only in the software part in most cases.  

E.g. chapter 11 deals with standard ISO 26262, the application in the automotive 
industry, chapter 12 apply the standard IEC 62061 as an application example in use 
case 8 – swarm intelligence in a shuttle system. The goal is the implementation of a 

Figure 61 Examples of functional safety standards derived from IEC 61508 

IEC 
61508

...

ISO 26262
Automotive

IEC 62061
Machinery

EN 50128
Railway 

Applications

IEC 61511
Process 
Industry

IEC 61131-6
Programmable 

controllers
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functional safety service in a fractal edge node and the connection to an existing fail-
safe PLC. The procedure will be clarified and the preliminary result explained in 
section 12.2.4. 

12.2 Safety concept of UC8 (Shuttle system with swarm 
intelligence) 

In state-of-the-art applications the safety services of a closed system like the shuttle 
system are connected between each component. That means, to gain access to the 
system, safe wireless communication and safety control units in every component of 
the system are required to prevent unsafe operation states and avoid threats towards 
persons entering the system. The new concept concentrates on the implementation 
of fractal components to separate the safety functions between the access control 
and the shuttle.  

12.2.1Description of the workflow using the standard 

 

 
Figure 62 Relationship of IEC 62061 to other relevant standards 
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The safety concept for UC8 has followed the typical design process and starts with 
the risk assessment like shown in Fehler! Verweisquelle konnte nicht gefunden 
werden. [BEEA-UC1]. Necessary packages are highlighted in red boxes. During the 
risk assessment, the safety functions are defined, and their requirements are 
determined. As UC8 wants to implement a low complex safety function, the leading 
standard to determine the requirements are ISO 13849-1 and -2 with respect to 
electrical safety aspects from IEC 60204-1. To summarize, the risk assessment 
provides the required safety functions and the required performance levels for each 
determined function. After determining all safety functions, the first safety concept 
for the system will be designed under consideration of the output from the risk 
assessment. The verification/ certification of new developed safety-related functions 
requires always a nationally recognized testing laboratory e.g., the TuV Rheinland in 
Germany and is mandatory for standardization in the product development. As a 
European manufacturer of machinery, each product must be CE marked and the risk 
assessment, as well as the safety concept are inherent parts of it. 

12.2.2 Risk assessment 

Beginning with the risk assessment, design principles for safety of machinery is 
applied in UC8 from the harmonized standard DIN EN ISO 12100, which is based on 
the ISO 12100 and is available in German translation. For this approach a table with 
all possible hazards based on the safety requirements of the standard DIN EN ISO 
3691-4 is applied and examined. The standard DIN EN ISO 3691-4 (as a type C 
standard) is about safety requirements and verification of driverless industrial trucks 
and their systems. AGV’s such as the shuttles also fall under this standard. Risks in 
the assessment follows always the same procedure, that means iterative steps for 
each hazard will be done, until the reduction of the risk is low enough or require a 
complete redesign of the product. To measure the risk potential, there are four 
parameters (similar to a FMEA) used, degree of possible harm (Table 22), likelihood 
of occurrence (Table 23), frequency of exposure (Table 24) and number of persons 
at risk (Table 24).  

 

Table 22 Degree of Possible Harm 

DPH   Degree of Possible Harm 
0,1 S1 Scratch or bruise 
0,5 S1 Laceration or mild ill-effect 
2 S1 Break of minor bone or minor illness (temporary) 
4 S2 Break of major bone or major illness (temporary) 
6 S2 Loss of one limb, eye, hearing (permanent) 

10 S3 Loss of two limbs or eyes (permanent) 

15 S3 Fatality 
 

Multiplied together, this gives the potential risk (Table 25) of a hazard, which are 
followed by measures to reduce the estimated risk. E.g., values bigger than 25 
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requires a technical solution, values bigger than 50 should be considered for a 
redesign if the constructive and technical solutions don’t provide a strong reduction 
of the danger.  

Table 23 Breakdown by likelihood of occurence 

LO   Likelihood of Occurrence  
0,033 P1 Almost impossible Only in extreme circumstances 
1 P1 Highly unlikely Though conceivable 
1,5 P1 Unlikely But could occur 
2 P1 Possible But unusual 

5 P2 Even chance Could happen 
8 P2 Probable Not surprising 
10 P2 Likely To be expected 

15 P2 Certain No doubt 
 

After every measure, the new risk potential will be calculated, if the new potential is 
still too high, the next step of measure must be iterated.  

There are three types of measures, the first one is called constructive measure and 
contains measures, which can change the risk by mechanical design, specification of 
the product or physical properties/ limitations of single parts in the product.  

The technical measure is used, when the risk potential is too high after application of 
the first measure. It contains electrical, electronic and programmable electronic 
control systems and is associated with the performance level. 

In the last step of measures, the informative measures are applied, were safety signs 
and instruction manuals may can finalize the hazard to an acceptable risk index, if 
the risk is already below 25.  

Table 24 Breakdown by frequency of exposure and number of persons at risk 

FE    Frequency of Exposure NP Number of persons at risk 

0,5 F1 Annually 1 1-2 persons 

1 F1 Monthly 2 3-7 persons 

1,5 F1 Weekly 4 8-15 persons 

2,5 F2 Daily 8 16-50 persons 

4 F2 Hourly 12 50+ persons 

5 F2 Constantly   

 

Depending on the risk index, new measures must be taken into the assessment, if 
the risk potential is still too high after these three steps of measures. A redesign must 
be considered for values over 50, when measures aren’t feasible in the current 
realization.  

 



 

Project FRACTAL 

Title Fractal Safety Services   

Del. Code D4.4   

 

  

 Copyright © FRACTAL Project Consortium 84  

 

Table 25 Breakdown by risk potential value 

R* R-Index Risk 

0-5 1 very low 

5-25 2 low 

25-50 3 middle 

50-500 4 high 

Over 500 5 not acceptable 
 

As the list of hazards is very long, in this chapter only the resulting safety functions 
will be presented. In the test setup of UC8 will be two safety functions realized, to 
split the state-of-the-art solution. Both safety functions will be tested during the 
research project. The presented tables were translated from the German language. 

12.2.2.1 Safety function 1 – Lift access 

 

As the lifts are on both sides in the test setup, like shown in Figure 63, access to the 
rack still requires deactivating at least one of them. There are multiple hazards, which 
has to be covered by this safety function. As shown in Table 26, all three measures 
were carried out, to accomplish a safe operation with the hoist system of the lifts. 

 
 
 
 
 
 
 

Figure 63 UC8 test setup - schematic top view 
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Table 26 Iterative procedure of a hazard by kinetic energy for the lifts 

risk assessment 

protection target, 
protective action, 

residual risk 

risk assessment, after 
implementation of the 

protektive target 

risk assess-
ment for 

electric con-
trol 

Perfor- 
mance  
level 

Lo FE DPH NP R   Lo FE DPH NP R S F P PLr PL 
                                

10 1,5 6 1 90 

Constructive 
measures: 
A fence around the 
lift equipment shall 
protect from severe 
injuries. 

5 1,5 6 1 45    FALSE  

5 1,5 6 1 45 

Technical measure: 
Access monitoring by 
means of access 
door/ door switch 
will put the lift in a 
safe condition. Any 
movement of the lift 
motor is restricted. 
The access door will 
not be released until 
the release process 
is complete. 

1 1,5 6 1 9 S2 F1 P2 d   

1 1,5 6 1 9 

Informative meas-
ure: 
Only trained staff is 
allowed to enter the 
system. 
Warning notices be-
fore each access. 
Access concept is 
described in the op-
erator manual. 

1 1,5 6 1 9       FALSE   

 

The safety function must fulfill PL “d” and additional informative measures are still 
mandatory. In detail, the first hazard where this function occurs is about the 
acceleration/ deceleration (kinetic energy) with the possible consequences of being 
run over or an impact on the human body. Mechanical measures could be e.g., a 
fence as a solution to restrict direct access to the machine. As we still need access 
for maintenance purposes, a controlled environment must be created by safety 
components and defined access points. This includes an access process, which 
requires a safe door lock and the corresponding request by key or pushbutton.  

12.2.2.2 Safety function 2 – person detection in the AGVs 

The second safety function will be realized in the shuttle equipment. As the standard 
requires person detection for the AGVs, the assessment targets the reduction of the 
required performance level from “d” to “c” by applying constructive measures. Table 
27, shows the evaluation of the kinetic energy from the shuttle. In the first step of 
measures, the approach for the shuttle is a light-weighted construction with physical 
limitations in travel speed and motor torque to prevent in the base design sever 
hazards to the human body. In the second step, the technical measure is 
accomplished by the person detection and an emergency stop circuit in case the 
shuttle is nearby for manual operations by the operator. The behavior of the AGV is 
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defined in the standard for person detection and will be briefly listed in the safety 
concept of chapter 12.2.4. 

Table 27 Iterative procedure of a hazard by kinetic energy for the shuttle 

risk assessment 

protection target, 
protective action, 

residual risk 

risk assessment, after 
implementation of the 

protektive target 

risk assess-
ment for 

electric con-
trol 

Perfor- 
mance  
level 

Lo FE DPH NP R   Lo FE DPH NP R S F P PLr PL 
                                
                

8 1,5 4 1 48 

Constructive meas-
ure: 
Travel speed max. 
0.8 m/s (target 
speed 0.6 m/s) 
Container dimen-
sions are limited to 
max. 600x400x320 
mm  
Container weight 
limited to max. 35 
kg 
Motor power de-
signed for 0.6 m/s 
with a maximum to-
tal weight of 70 kg 
Slip behavior of the 
drive system in case 
of mechanical re-
sistance 
AGV can only travel 
along the rack in 
guided rails 
Mechanical end in 
both directions on 
the rails 

2 1,5 4 1 12       FALSE   

2 1,5 4 1 12 

Technical measures: 
The person detec-
tion system is de-
signed to prevent 
injuries caused by a 
collision. 
In addition, emer-
gency stop switches 
are fitted on both 
sides to switch off 
the power section of 
the AGV via a safety 
circuit. 

2 1,5 2 1 6 S2 F1 P1 c   

2 1,5 2 1 6 

Informative 
measures: 
Only trained staff is 
allowed to enter the 
system. 
Warning notices be-
fore each access. 
Operation of AGVs is 
described in the op-
erator's manual. 

1,5 1,5 2 1 4,5       FALSE   
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12.2.3 Hardware architecture 

 

 

The resulting hardware architecture based on the risk assessment is shown for the 
shuttle in Figure 64. The AGV shuttle block consists of all important components in 
green blocks linked together with the corresponding interfaces, especially the CAN 
Bus for internal communication. For the connectivity with other nodes, wireless 
communication e.g., Wi-Fi is planned. On both sides of the chassis cameras will be 
mounted for person detection and the IPC replaced by the Kria platform from Xilinx, 
where the fractal components will be deployed and the necessary control services. 

Analogously to the shuttle architecture, Figure 65 illustrates the architecture of the 
lift with the corresponding interfaces. The only change in the setup prior to the fractal 

Figure 64 Final shuttle architecture 
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project is the upgrade from the IPC to the Versal platform and the changed safety 
concept. 

 

 

12.2.4 Safety concept UC8 

The safety concept for UC8 will be presented in this subchapter. The approach is to 
explain the concept and to show the traceability to the developed fractal components 
related to the safety services, either the Kria platform or the Versal platform.  

Figure 65 Final lift architecture 
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12.2.4.1 Traceability fractal components 

The planned fractal components related to the safety concept are shown in Figure 
66, Component WP4T43-13 – Safety Analysis is the base for the safety concept and 
is shown in a separate block without direct connections as a reference. For on- and 
off-chip communication are network on chip solutions planned, WP4T43-04 – ATTNoC 
will be implemented in the shuttle edge nodes and WP4T43-11 – TT-Extension Layer 
for Versal in the lift edge node. The physical connection between the edge nodes is 
accomplished wireless for the shuttle edge nodes and wired for the lift edge node. 

 

Safety related telegrams shall be used to extend the system reaction regarding 
specific events, like the access request from maintenance staff or the detection of 
human bodies in range. 

12.2.4.2 Description 

The access to the system is limited to one defined point, the location is near the 
control cabinet like shown in Figure 63. A safety door lock for the system access will 
be used, which is connected to a safety relay in the control cabinet. This safety relay 
handles also the emergency stop circuit. The first safety function is fulfilled by this 
logic. 

From the shuttle perspective, the object detection more specifically the human body 
detection, gives more flexibility in operating mode. The shuttles are still allowed to 
stay in operational mode as targeted from the risk assessment, even if a request is 
made for system access. To accomplish this safety function, an evaluation service 

Figure 66 Traceability of fractal components related to safety services in UC8 
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will be deployed in an isolated part of the FPGA and generates outputs to the F-PLC 
of the shuttle under the defined rules of behavior. The outputs are used to send 
information about the detected state, either the detected person is in a warning or 
danger zone. The F-PLC is responsible for monitoring important IOs, evaluate them 
and switching off moving parts in an event of error, like the OSSD from the Kria 
platform. 

In the state of closed system, the cameras of the shuttles are turned off to safe power 
during operational tasks. While requesting access to the system, a telegram will be 
generated to turn on the evaluation with the person detection model. During this 
process, the lift will be set in a safe position before the access will be granted by the 
door lock. The shuttle’s behavior will be defined as follows: 

 Person detected in danger zone: 

o Turn off immediately moving parts 

o Send information about detected person with coordinates and status 

 Person detected in warning zone: 

o Reduce target speed to 0.3 m/s 

o Send request to reschedule tasks 

o Send information about detected person with coordinates and status 

 Person out of both zones: 

o Reduce target speed to 0.3 m/s 

o Stay in operational mode 

o Send information about detected person with coordinates and status 

 No person detected: 

o Stay in operational mode 

The telegram “Send information about detected person with coordinates and status” 
is used to reschedule shuttle tasks and therefore avoid collisions with the 
maintenance staff. This approach is aimed to hold the targeted throughput of 
containers in the system, even when interrupts in the system are occurring. 

 

[BEEA-UC1] IEC 62061:2012 Safety of machinery - Functional safety of safety-related control systems 
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13 Conclusions (SIEG) 

In this document, the preliminary implementation for safety services described in the 
previous deliverable D4.1 has been elaborated. Several building blocks and 
components that contribute to meeting the T4.3 objectives have been reported. 
Specifically, they are: 

•  Time-Triggered Network-on-Chip for VERSAL platform and non VERSAL 
Platform, including fault tolerance techniques for the Time-Triggered NoC 

•  Software diverse redundancy library 

•  Performance monitoring services 

• Safety services for PULP-Systems 

• FPGA Based fault injection 

• Safety analysis of the NOEL-V Platform redundant acceleration scheme. 

• Safety concept based on ISO 26262 and safety concept based on IEC 62061.  

In particular, the explanation, design, implementation, and testing of these 
components have been reported. 
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