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1 Summary 

The main objective of the FRACTAL project is to “create a cognitive edge node enabling a 

fractal Edge that can be qualified to work under different safety-related domains”. 

Furthermore, it is stated in the DoA that “This computing node will be the basic building 

block of intelligent, scalable and non-ergodic IoT”. As such the hardware node is a central 

part of the FRACTAL project around which 28 partners collaborate, investigate and 

industrial partners develop their use cases.  

This deliverable (D3.6) is the third of a series of deliverables that describe the software 

work for the FRACTAL project hardware nodes. These documents will be delivered 

throughout the project with D3.2 (M12), D3.4 (M18), and D3.6 (M20). These three 

deliverables are also paired with the “hardware node and services” deliverables D3.1, D3.3 

and D3.5. 

The FRACTAL project brings together many partners (28) both from industry and 

academia, working on varied and challenging topics as well as eight industrial use cases. 

It was already a challenging task to provide a set of solutions for the hardware node in 

this context and combined with restrictions around COVID and worldwide supply 

disruptions for electronic components, partners in WP3 had to face additional challenges. 

In the project the following options for the hardware nodes were used:  

Figure 1 A schematic drawing of a possible FRACTAL system deployment using three different tiers of 
FRACTAL hardware nodes with different capabilities (drawing from WP5 technical meetings). 
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1. Edge node based around the Xilinx VERSAL ACAP (Adaptable Compute 

Acceleration Platform) 

2. Low-end node (also as mist node) -- based around the open-source RISC-V based 

PULP platform 

Additionally, some specific platforms (e.g., Ariane/CVA-6, NOEL-V) are used to 

demonstrate some specific technology concepts and use cases. 

Note, in D3.2 also terms customizable node and commercial node were used. For 

now, on the Fractal domains are described by terms: cloud, edge node (Versal) and low-

end node (Pulp). In case of cases where other platforms were used, their context will be 

clarified on text. 

The organization of the deliverable is as follows.  

Chapter 2 provides a general introduction to the Fractal framework and the stake holders 

using it. Chapter 3 summarizes WP3 technical relations to other WPs. Chapter 4 looks WP3 

requirements for the Pulp platform point of view. Chapter 5 looks WP3 requirements for 

the Versal platform point of view. Chapter 6 introduces the special WP3 cases that were 

demonstrated by other platforms. Chapter 7 summaries and refers to the Fractal use 

cases. 
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List of WP3 components 

Component 
ID 

(Sub)Component / Development Name Partner Deliv. Section 

WP3-AI 
AI accelerator (hardware and software 
support)       

WP3T32-01 HW accelerator (SIEFRACC) SIEM D3.5  

WP3T32-05 ML inference demo PULPissimo ETHZ D7.3   

WP3T32-07 Age and Gender identifier at the edge UNIVAQ D3.5  

WP3T32-10 VERSAL accelerator building-blocks IKER D3.5   

WP3T34-03 Versal Model deployment layer PLC2 D3.5   

WP3T35-01 SW driver for HW accelerator SIEM D3.6 2.2.6 

WP3T35-02 Accelerator Adaptation to AI library UPV D3.5  

WP3T35-03 LEDEL (Low Energy EDDL) SML D3.6 2.2.2 

WP3T35-04 Deep learning based automatic iris diagnosis MODIS D3.6 2.2.2.1  

WP3T35-05 Idiom Recognition UNIGE D3.6 2.3.2 

WP3-
CPU/OS CPU and OS support  

  
   

WP3T32-02 PULPissimo platform for IoT applications ETHZ D3.5   

WP3T32-02b Ariane for Linux capable RISC-V platform ETHZ D3.5   

WP3T32-03 PULP training ETHZ D3.5   

WP3T32-04 FreeRTOS port to PULP ETHZ D3.6  3.1.2 

WP3T32-08 Real-time aware caches ACP D3.5   

WP3T32-11 Smart Interrupt distribution system ACP D3.5   

WP3T32-12 Security services - TL2AXI adapter ACP D3.5   

WP3T33-03 CVA6 (former Ariane) RISC-V core THA D3.5   

WP3T36-01 Linux for CVA6 (former Ariane) THA D3.6 3.3.2 

WP3T36-02 Load Balancing Module MODIS D3.6 2.3.1.1 

WP3T36-03 Nuttx on PULP OFFC D3.6 3.1 

WP3-Safety Safety and security features for CPU       

WP3T31-01 Edge-oriented monitoring unit BSC D3.5  

WP3T31-02 
Interconnect to support Accelerators 
integration 

UPV 
D3.5  

WP3T31-03 Safety and security hardware support UPV D3.5  

WP3T32-06 Redundant Acceleration Scheme UPV D3.5  

WP3T32-09 Runtime Bandwidth Regulator 
UNIMORE 
UNIVAQ 

D3.5   

WP3T34-01 Driver for the edge-oriented monitoring unit BSC D3.6 2.2.4 

WP3T34-02 Drivers for the SW diverse redundancy library BSC D3.6 2.2.3 

Table 1 The FRACTAL components (according to D2.3) related to WP3. Some components will be described in 
D3.5 (and one in D7.3), for others the section in this deliverable is given 
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1.1 Introduction 

FRACTAL is a system that offers a framework for developing modern distributed 

applications. Distributed applications can be executed in embedded nodes -- near the 

individual processes, centrally at the cloud, or as distributed into both of these domains. 

The supporting Framework should offer seamless connectivity, application integrity and 

the required security and safety. As addition the FRACTAL framework offers also an 

integrated AI tools also to the domains. Additionally, FRACTAL offers application specific 

hardware accelerations to the embedded nodes. 

In the project proposal, we identified four strategic objectives of FRACTAL to reach this 

goal: 

• Objective 1: Design and Implement an Open-Safe-Reliable Platform to Build 

Cognitive Edge Nodes of Variable Complexity. This part is mainly being addressed 

as part of WP3. 

• Objective 2: Guarantee extra-functional properties (dependability, security, 

timeliness and energy-efficiency) of FRACTAL nodes and systems built using 

FRACTAL nodes (i.e., FRACTAL systems), which has determined the tasks of WP4 

• Objective 3: Evaluate and validate the analytics approach by means of AI to help 

the identification of the largest set of working conditions still preserving safe and 

secure operational behaviors, which is the topic of WP5 

• Objective 4: To integrate fractal communication and remote management 

features into FRACTAL nodes, which will be covered by WP6. 

Looking outside, FRACTAL can be seen from various points of view. Most important are 

the end-user view and the application owner views. 

1.2 Application owner view 

Applications are developed according to the developer’s business logic. Initially the 

business owner will assume that on the market the application will offer an added value 

to the end customer(s). To benefit from this added value, business owners need strategies 

to enter the market and secondly keep and improve this position. 

1.2.1 Support for business logic 

Framework should offer freedom to implement various application scenarios according to 

their business opportunity. While the business case (market) develops the application 

developments should be easy to deploy. 

Main purpose of FRACTAL framework is to minimize this work, without limiting too much 

the application developer freedom. 

Fractal Use Cases described at D3.3, chapter 5. 
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1.2.2 Support for development and testing 

Framework should offer tools for actual development, testing and verification. Mainly these 

tools are “standard” development tools, but the Framework itself should have specific tools 

to identify (and prevent) unwanted behavior of application specific components. 

While in some extreme cases embedded electronics are custom developed, in most cases 

the framework should offer seamless hardware acceleration. 

Yet another important aspect of distributed applications is application integrity. All parts 

of the application must be consistent with each other. Framework should offer tools for 

safe application deployment and ensure that parts of the distributed application are 

genuine. 

1.2.3 Support for commissioning, deployment and provisioning 

When the end-users are attracted by the business logic, the application is ramped to a 

specific end-user. This may require physical installations on site and/or configurations to 

the cloud. Application logic – by support of the framework – should distribute the 

configurations to end-user specific nodes. 

Some cases there may be needs to collect end-user specific information – e.g., billing of 

further marketing needs – this information transfer must be secure. 

1.3 End-user view 

For the end-user (or the customers of the end-user) the distributed application integrates 

directly to their processes (Fractal Use Cases described at D3.3, chapter 5). Depending on 

the application, availability, operational safety, and information security are typically 

important aspects. 
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2 WP3 and related WPs 

WP3 is focusing on the development of nodes – both the physical HWs and the necessary 

firmware. There are VERSAL based high-end nodes and low-end PULP based nodes. Both 

platforms have toolsets for application software and HW acceleration. 

2.1 WP3 and WP4 

The WP4 looks at the FRACTAL framework from point of safety -- how to manage physical 

defects on mechanics and electronics and the exceptional cases on software. Thus, these 

are highly related both to node hardware and node firmware, WP4 is deeply related to 

both WP3 nodes. Some exceptional cases are not necessarily possible to demonstrate on 

these platforms, so special platforms may be used. 

2.1.1 Supporting FRACTAL developments on safety 

Today safety is mainly based on process and system assessments. As such, it is not a plain 

software feature, but more like process and documentation issue. 

2.1.2 Supporting FRACTAL developments on security 

Two approaches are differentiated in the developments covering security related features.   

2.1.2.1  Linux based systems 

Linux offers good tools for security. With HW support those can be strengthened to meet 

the requirements derived from specific use cases.  

Additionally, for the VERSAL node (Linux based system as well), those use case 

applications that require device-level security could implement boot image encryption and 

authentication, functionalities that are natively supported by VERSAL. 

2.1.2.2  RTOS based systems 

By nature, RTOS based systems have little native security features. With dedicated HW 

support those can be strengthened to meet the requirements, but in most cases security 

features are application specific implementations. 

2.1.3 Supporting FRACTAL developments on low power 

Two approaches are differentiated in the developments related to low consumption 

features.   

2.1.3.1  Linux based systems 

Linux offers good tools for low power operations. For further needs the RTOS can be 

utilized. RTOS runs in additional processor or preferably one of the system cores. When 

low power requires Linux to switch itself off, it yields the responsibility to the RTOS. RTOS 

keeps processing events and, when defined conditions are met, it wakes up the Linux. 
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Additionally, for the VERSAL node (Linux based system as well), as shown in ¡Error! No 

se encuentra el origen de la referencia. a centralized Platform Management Controller 

(PMC) that handles device management control functions is available. A flexible 

management control could be done through this PMC. This platform management handles 

several scenarios and allows the user to execute power management decisions through its 

framework (equivalent to what it is done in Linux, which provides basic power 

management capabilities like CPU frequency scaling). 

However, some limitations apply. Because of the heterogeneous multi-core architecture of 

VERSAL, individual processors can’t make autonomous decisions about power states of 

individual components or subsystems. Instead, a collaborative approach is taken, where 

a power management API delegates all power management control to the platform 

management controller. This PMC is the key component in coordinating the power 

management requests received from the other processing units, and the coordination and 

execution from other processing units through the power management API. This 

framework manages resources such as power domains, power islands, clocks, resets, pins 

and their relationship to CPU cores, memory, and peripheral devices. 

Therefore, the natively provided power management API would be used for VERSAL node, 

since this platform management framework abstracts the complexity associated to 

administrate the power-management of a multiprocessor heterogeneous system. 

2.1.3.2  RTOS based systems 

By nature, RTOS based systems offer good tools low-power operations. 

The RTOS level low-power features are typically extended with specific support by the 

underlying HW (processor). 

Another additional layer of low power is typically obtained by application architecture. 

Event-based application structure is by nature easier for low-power than applications that 

are coded based on infinity loops, however this is not in scope of framework. 

2.2 WP3 and WP5 

WP5 focuses on integrating AI to the Fractal framework. While AI is in the scope of whole 

project, the WP3 has some special concerns related to implementation in the low resource 

environment. 

2.2.1 Supporting FRACTAL developments on AI 

Several alternative methods are studied for deploying AI/ML models on FRACTAL nodes. 

First, a model may be pre-built, that is, trained by a third-party actor, downloaded from a 

public repository, and uploaded to the node. Second, a model may be learned from data 

available to a node, possibly augmented with annotations which indicate the expected 

model output for each data point. Third, a few nodes may co-operate to train a model, 

e.g., with a federated learning approach. 
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In each case, the model may need updating due to model drift, that is, the accuracy of 

the model output slowly degrading. In such cases, new training data must be collected 

(and possibly annotated), and the model updated to reflect the data. Further, the model 

update cycle must be managed such that model quality is monitored and update launched 

when necessary. Tools and methods conducting model lifecycle management are 

commonly referred to as MLOps. 

Inference-time, when the model is turning input data into model output, federated 

approaches may improve the quality of the outputs in some use cases. For example, if a 

number of nodes each employ an independently trained (i.e., with different data) but 

otherwise identical models, the models may be used as an ensemble, with the same input 

data fed to all of them, and the results combined into one. 

WP5 is studying all above approaches in close co-operation with WP3, focusing on 

theoretical study of distributed learning and inference, the FRACTAL cloud platform, the 

architecture and orchestration of the FRACTAL network, as well as the AI methods required 

to fulfill the requirements of the use cases. 

2.2.1.1 Raw imaging preprocessing requirements for IRIS disease detection 

(WP3T35-04) 

To properly execute the classification algorithms for the monitoring and detection of 

diabetic retinopathy, three preprocessing techniques that proved to be the most effective 

in this field, had been chosen: 

1. Cropping: a technique for bringing images to a square shape. 

2. Resize: for bringing images with the same resolution. 

3. CLAHE: advanced histogram equalization technique to improve the contrast of raw 

images. 

Even though these techniques are well-known ones in literature, lately they are well 

implemented separately in a cloud environment within which, in a broad sense, there are 

no resources constraints. Our new approach is to use them all together in sequence in 

order to deploy the pre-processing service in a commercial environment, with resources 

limitations, to address specific research topics and to support the Fractal ecosystem. 

These techniques are computationally expensive; therefore, it is necessary to study the 

limits, e.g., the minimum requirements, within which it is possible to run the preprocessing 

service avoiding the use of an oversized or undersized microprocessor board. 

An evaluation of the average execution times was carried out to be able to evaluate the 

implemented Iris Recognition algorithm and be able to define the minimum hardware 

requirements to be able to run it correctly. This analysis was carried out on a Zynq 

UltraScale + MPSoC ZCU102 board using the entire IDRiD dataset (516 images). 

The Zynq UltraScale + MPSoC ZCU102 board has the following features: 

- Quad-core Arm Cortex-A53 processor 



 

Project FRACTAL: Cognitive Fractal and Secure Edge Based on Unique 
Open-Safe-Reliable-Low Power Hardware Platform Node 

 Title Software node and services architecture 

Del. Code D3.6 

 

V0.16  Copyright © FRACTAL Project Consortium 13 of 61 

 

- CPU frequency up to 1.5GHz 

- 4GB RAM Memory 

To perform the evaluation, we made use of the IDRiD dataset. The IDRiD dataset (Indian 

Diabetic Retinopathy Image Dataset) contains fundus images that were captured by a 

retinal specialist containing 516 images. The size of each image is about 800 KB. 

The preprocessing phase of an image consists, as mentioned before, of the operation of 

Crop, Resize, and Clahe. 

We found that the average execution times, evaluated on 4 Cores of the Cortex A53 

processor, for the Crop, Resize, and Clahe operations are shown in the following table: 

  

Figure 2 Average execution time of Crop, Resize and Clahe algorithms on Zynq with 4-core running 

The Crop operation required 0,550808249 s, the Resize operation required 0,429059386 

s, and finally, the Clahe operation required 104,5466895 s. Therefore, the total average 

time for preprocessing phase is 105,5271729 s (1m 45s). 

In detail, it was created a boxplot to display the summary of the set of data values having 

properties like a lower whisker, lower quartile, median, upper quartile, and upper whisker. 

  

Figure 3 Boxplot for Crop Algorithm with 4-core running 
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Figure 4 Boxplot for Resize Algorithm with 4-core running 

 

Figure 5 Boxplot for CLAHE Algorithm with 4-core running 

LABEL 
LOWER 

WHISKER [s] 
LOWER 

QUARTILE [s] MEDIAN [s] 
UPPER 

QUARTILE [s] 
UPPER 

WHISKER [s] 

Box Crop 0.427664 0.428654 0.429077 0.429022 0.430383 

Box Resize 0.537745 0.545758 0.547378 0.547167 0.635081 

Box CLAHE 12.438491 16.811439 50.663041 41.275369 483.239338 

Table 2 Statistical insights for algorithms running with 4-core. 

The subsequent study has been conducted calculating the average execution times, with 

only 1 Core of the Cortex A53 running, for the Crop, Resize, and Clahe.  
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Figure 6 Average execution time of Crop, Resize and Clahe algorithms on Zynq with 1-core running 

The Crop operation required 0,55360711 s, the Resize operation required 0,429484704 s, 

and finally, the Clahe operation required 108,0786817 s. Therefore, the total average time 

for preprocessing phase is 109,0623796 s (1m 49s).  

 

Figure 7 Boxplot for Crop Algorithm with 1-core running 

 

Figure 8 Boxplot for Resize algorithm with 1-core running 
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Figure 9 Boxplot for CLAHE algorithm with 1-core running 

LABEL 
LOWER 

WHISKER [s] 
LOWER 

QUARTILE [s] MEDIAN [s] 
UPPER 

QUARTILE [s] 
UPPER 

WHISKER [s] 

Box Crop 0.428366 0.429135 0.429511 0.429462 0.430748 

Box Resize 0.540493 0.548339 0.550389 0.550140 0.638475 

Box CLAHE 16.173421 20.232431 54.147033 44.750463 486.486875 

Table 3 Statistical insights for algorithms running on 1-core processor. 

Another step studying the minimum hardware required was on the variation of the RAM 

memory and the number of the Cores of the Cortex A53 processor made available for the 

image preprocessing operation. The following table shows the results of the evaluation 

with the variation of RAM and with 4 Cores of the Cortex A-53 processor.  

  

Table 4 Minimum RAM memory required if 4-core running 

It is noteworthy how we obtained different results increasing RAM memory and number of 

images to be processed. In particular: 

- For only one image to be processed 700MB of RAM is enough. 
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- For two or more images to be processed sequentially it needs 1GB RAM. 

The following table shows the results of the evaluation with the variation of RAM and with 

4 Cores of the Cortex A-53 processor. 

 

Table 5 Minimum RAM memory required if 1-core running 

It is possible to notice how we obtained different results as it increases RAM memory and 

the number of images to be processed. In particular: 

- For only one image to be processed 500MB of RAM is enough. 

- For two or more images to be processed sequentially it needs 600MB RAM. 

From this evaluation, it comes out that the minimum requirements for preprocessing a 

large image dataset with Crop, Resize and CLAHE algorithms are listed in the following 

table:  

Number of cores required RAM memory  

1 Core 

Cortex A-53 processor (or similar) 

1GB 

 

In order to provide full operability and access to these features to any application, we 

arranged the algorithms in a docker service. It can be executed from any application 

with the following command: 

• docker run modis_irisrecognition_app 

The logic underneath is pretty simple, taking an image as input, processing 

sequentially this raw image with Crop, Resize and Clahe algorithm and produce a 

preprocessed image as output. 

2.2.2 LEDEL to develop and execute AI-based models in a FRACTAL node 

The aim of this work is to port EDDL to be used in a RISCV architecture, so machine 

learning algorithms can be executed in such hardware.  

There has been attempts to extend the RISC-V Instruction Set Architecture with the goal 

of accelerating the inference process of CNN. In this attempts a new processor, extending 

an already existing processor with the new set of instructions, was built into an FPGA, 
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where its performance was tested showing a x2 performance improvement using 

TensorFlow Lite models [https://ieeexplore.ieee.org/abstract/document/9071197]. 

Another work extending the instruction set of RISC-V architecture to allow TensorFlow Lite 

cross-compilation and execution [https://www.researchgate.net/publication 

/339298701_Towards_Deep_Learning_using_TensorFlow_Lite_on_RISC-V]. 

During the RISC-V Summit of 2019, LG presented the LG Neural Engine (LNE), a processor 

with customized ISA extensions of RISC-V to support neural network functions. The LNE 

software framework can support the inference of trained models in Caffe, TensorFlow and 

PyTorch [https://riscv.org/wp-content/uploads/2019/12/12.10-15.50a-Scalable-

Configurable-Neural-Network-Accelerator-Based-on-RISC-V-Core.pdf]. 

Another interesting work a Neural Network framework base on the RISC-V architecture is 

develop, achieving the execution of lightweight models with accuracy results like the same 

models run using Keras [https://link.springer.com/chapter/10.1007/978-3-030-49556-

5_8]. 

2.2.2.1 LEDEL in the FRACTAL project 

In Figure 10 LEDEL development in FRACTAL we can observe the scope of the task in WP3 

in the context of LEDEL in the FRACTAL project, which is the adaptation of the EDDL to 

become LEDEL. Such adaptation consists of compiling the EDDL in a RISC-V platform, 

reassuring all the libraries and dependencies that it needs are also available and fully 

functional in the reduced instruction set architecture. The platform chosen for this aim is 

NOEL-V. This platform is scheduled to be available before the end of the year. 

https://ieeexplore.ieee.org/abstract/document/9071197


 

Project FRACTAL: Cognitive Fractal and Secure Edge Based on Unique 
Open-Safe-Reliable-Low Power Hardware Platform Node 

 Title Software node and services architecture 

Del. Code D3.6 

 

V0.16  Copyright © FRACTAL Project Consortium 19 of 61 

 

 

Figure 10 LEDEL development in FRACTAL 

Thus, in order to check that the LEDEL could be ported to this hardware, we have used an 

emulated environment for the RISC-V architecture based on QEMU software. For this 

purpose, we have used an already created and compiled Linux Debian image named 

“Artifacts” 

https://gitlab.com/api/v4/projects/giomasce%2Fdqib/jobs/artifacts/master/download?job=con

vert_riscv64-virt 

from the project repository 

https://gitlab.com/giomasce/dqib#debian-quick-image-baker-dqib 

Once the image has been installed and running, EDDL has been compiled in this RISC-V 

virtualized environment. All the dependencies work completely fine. And a few simple tests 

have been executed checking their proper behavior. 

One can train a model using the EDDL on a computer without limitation of resources and 

export it using the ONNX format. Afterwards, the model can be imported by the LEDEL in 

a FRACTAL node, and then used to infer from data received in the node. 

As an example, it has been possible to train a simple model for the MNIST digit dataset, 

and then use it for inference. Obviously, as all infrastructure is being emulated, this 

execution process has been quite slow.  Also, it has been possible (i) to train this model 

https://gitlab.com/api/v4/projects/giomasce%2Fdqib/jobs/artifacts/master/download?job=convert_riscv64-virt
https://gitlab.com/api/v4/projects/giomasce%2Fdqib/jobs/artifacts/master/download?job=convert_riscv64-virt
https://gitlab.com/giomasce/dqib%23debian-quick-image-baker-dqib
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using an “outside” computer, (ii) to save it in ONNX format, (iii) to import it in the emulated 

machine and (iv) to infer. 

The use of this pre-baked image of Linux running on RISC-V emulated platform has 

allowed us to check if the portability of the EDDL to this architecture was possible. 

Furthermore, it has given us the advantage of moving forward with T4.1 (LEDEL as a 

service in a FRACTAL node), and now we are able to test the deep learning model for the 

UC7. 

This intermediate solution has been documented and packed using a docker and is 

available in the repository of the FRACTAL project: [https://github.com/project-

fractal/WP3/tree/main/Components/WP3T35-03%20LEDEL].  

2.2.2.2 Presentation and preparation of the emulated NOEL-V platform 

We have used the software named isar-riscv provided by our partner Siemens in 

https://github.com/siemens/isar-riscv/blob/main/README.md. 

The requirements of such software need to be installed and deployed in a Debian Linux 

System. To this aim, a docker container with the Debian GNU/Linux 11 distribution has 

been prepared. In it the isar-riscv solution has been deployed, following the instructions 

from the official repository. 

We have also prepared a manual in a more detailed manner to prepare all the 

infrastructure needed to use the LEDEL, as well as to instruct how one can install and use 

the library to create ML algorithms in the FRACTAL node [https://github.com/project-

fractal/WP3/tree/main/Components/WP3T35-03%20LEDEL]. We basically have followed 

the official documentation with the addition of a couple of extra steps for a better and 

friendlier performance. It should be noted that we can custom upgrade the docker file to 

our taste or necessities. 

Since the EDDL installation is already explained in the official documentation and, also, in 

the user manual, in this document we will focus on how the LEDEL works in a RISCV based 

architecture machine, emulated in this case. Due to the fact that we have reduced space, 

the simplest and safest way to achieve this goal is to download the original code of the 

https://github.com/siemens/isar-riscv/blob/main/README.md
https://github.com/project-fractal/WP3/tree/main/Components/WP3T35-03%20LEDEL
https://github.com/project-fractal/WP3/tree/main/Components/WP3T35-03%20LEDEL
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library and compile it. As said before, all steps are well documented in FRACTAL project 

Github repository.  

Finally, Figure 11 Abstraction of the docker file presented, shows the content of the docker 

container created to mount the LEDEL infrastructure. We have installed the EDDL library 

to write and compile algorithms using it. Later, they can be exported using ONNX and 

transferred to the FRACTAL node. In this case, the QEMU emulation of RISC-V acts as the 

FRACTAL node. After creating the ONNX model, the file created is imported inside the 

RISC-V emulation to be tested and executed correctly using a network loader implemented 

with what is already LEDEL. We will refer to the emulation process as the FRACTAL node 

since it is the exact same process to follow once the FRACTAL node hardware is available. 

The steps followed to achieve this are related in more detail below. Basically, we have 

trained two simple models using two different technologies. The first one is implemented 

using EDDL library. It consists of a simple neural network implementation that trains using 

the MNIST dataset. Code used to illustrate this example can be accessed following the 

link: https://deephealthproject.github.io/eddl/usage/intermediate.html 

After the training, the ONNX file is created with the weights in a .bin file. We can observe 

in Figure 12 Example of training process using LEDEL in RISCV, the results of the training 

process. 

Figure 11 Abstraction of the docker file presented 

https://deephealthproject.github.io/eddl/usage/intermediate.html
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Figure 12 Example of training process using LEDEL in RISCV 

Now, we can import the ONNX file into the LEDEL and use the following code to load the 

trained network Figure 13 Code used to load the ONNX file using the LEDEL. 



 

Project FRACTAL: Cognitive Fractal and Secure Edge Based on Unique 
Open-Safe-Reliable-Low Power Hardware Platform Node 

 Title Software node and services architecture 

Del. Code D3.6 

 

V0.16  Copyright © FRACTAL Project Consortium 23 of 61 

 

 

Figure 13 Code used to load the ONNX file using the LEDEL 
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It will be imported as ONNX into the FRACTAL node, loaded into the LEDEL so we can 

perform the inference part of the machine learning algorithm. We can see the results in 

Figure 14 Inference from ONNX file: 

 

Figure 14 Inference from ONNX file 

The second example shows a similar process, but the only difference is that we have 

implemented the training phase using PyTorch framework, imported the model into an 

ONNX file and then, the network is loaded using a similar program to the one showed 

before, can be seen in Figure 15 PyTorch example execution: 

 

Figure 15 PyTorch example execution 

Apart from these two basic examples, we have also proven that the tools for cross-

compiling for RISC-V architecture. Then, we can load the cross-compiled file into the 

FRACTAL node (in our case, the emulated RISC-V environment inside the docker container 

dedicated to this example). 
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To sum up, we have created three docker containers to illustrate and prove that we can 

build and use the EDDL library to become the LEDEL, being compiled, installed, and used 

in two different emulated environments, artifacts first and isar-riscv later. All the code and 

details carried out as well as a manual for its different uses are available in the FRACTAL 

project dedicated to this component in WP3. 

Once we had all these containers created, they allowed us to perform the validation of the 

LEDEL library, which is documented in D4.2 from WP4, and prepare the tests for UC7. 

Unfortunately, we could not try the LEDEL in real hardware platform NOELV, since the 

chipset was not available to us. 

2.2.3 Drivers for the software diverse redundancy library (WP3T34-02) 

BSC’s software-only diverse redundancy support builds upon a monitor process creating 

redundant instances of the application to be run with diverse redundancy (see Figure). In 

particular, the monitor process spawns the redundant execution of the application in two 

cores, one thread the head one, and the other the trail one. The monitor guarantees that 

the head thread is at least a given number of instructions ahead of the trail thread, where 

such number is platform dependent and must be large enough so that the trail thread 

cannot catch up with the head one between two consecutive checks of the monitor process. 

The monitor checks periodically the progress of the head and trail threads, and if, 

eventually, the trail thread is too few instructions behind the head process, the monitor 

stalls the trail process until the next monitoring check. When, eventually, the staggering 

(in terms of instructions) between the head and the trail is large enough, or if the head 

trail finishes its execution, the monitor allows the trail thread to resume execution. This 

guarantees that the state of the cores where redundant processes run differs at any time, 

and hence, a fault affecting both cores similarly will produce different errors that will be 

detected upon comparison of the outcomes of the head and trail threads 

 

Figure 16 Figure: A schematic of the software-only support for diverse redundancy. 
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BSC software-only diverse redundancy support is deployed on top of the NOEL-V based 

platform and is intended to run as a Linux library. This type of service has been prototyped 

in the past for Arm-based platforms with Ubuntu Linux distributions1. Hence, the challenge 

in FRACTAL is threefold: 

1. Porting this service from Arm to RISC-V using a different infrastructure (i.e., a FPGA 

board interfaced through a host instead of a directly accessible ASIC-based 

platform), and a different Linux distribution (Buildroot instead of Ubuntu). 

2. Generating a standalone library easing the integration in use cases, rather than 

resorting to handcrafted prototyping in ad-hoc experiments as done in previous 

work. 

3. Validate the implementation against a few relevant test cases prior to its integration 

in any of the FRACTAL use cases. 

Those steps span across WP3 and WP4. In particular, the work in WP3 relates to the 

porting of the basic functionalities on which to build the service, whereas work in WP4 is 

restricted to the use of those basic functionalities to deliver the service itself. 

The first step, namely the porting of this feature from Arm to the particular target RISC-V 

platform consists of porting the following functionalities: (a) a call to spawn a new thread 

in a remote core, which will be invoked by the monitor process to create the head and trail 

threads; (b) a call to reset the instruction count of a remote core, where either the head 

or trail thread runs; (c) a call to retrieve the number of instructions executed in a remote 

core, i.e., the cores where the head and trail threads run; and (d) calls to stop and resume 

the execution of the trail thread, which runs in a remote core. Progress so far has led to 

the successful porting of those calls, which show to work properly. Building the service on 

top of those calls is part of WP4. 

The second step is mostly within the scope of WP4 and, in the context of WP3, only requires 

validating that the calls in the first step can be properly encapsulated as part of a library, 

which we have already validated. 

The third step, namely the validation of the overall service, falls within the scope of WP4. 

However, in the scope of WP3 we have the validation of the individual calls, as well as the 

tailoring of the staggering (in terms of instructions) between the head and trail threads to 

guarantee that the trail thread cannot catch up with the head thread. The latter, tailoring, 

has already been performed successfully. The former, namely the validation of the calls, 

has been successfully completed, but further tests are being conducted as part of the 

integration of this component with UC7. 

Related work: ASIL D compliant ST Microelectronics SPC56XL70 and Infineon AURIX 

processor family implement Dual-Core LockStep (DCLS), whereas some Arm Cortex-R5 

 

1 S. Alcaide et al. Software-only based diverse redundancy for ASIL-D automotive applications on embedded 

HPC platforms. In DFT, 2020 
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designs implement Triple-Core Lockstep. However, half of the cores are not visible for the 

user, who cannot use them to run independent (non-critical) applications. 

Some recent work attempts to provide the advantages of DCLS, but allowing cores to be 

used independently whenever needed2. Such work, referred to as SafeDE, while highly 

efficient, imposes hardware changes. A software-only counterpart has been presented 

recently3. However, it has only been hand-crafted for specific programs, thus not being 

usable for other applications, and its target was Arm cores. 

1. Our work provides a library implementing the latter without hardware support, with a 

simple software interface, and able to run on Linux. In particular, component WP3T34-

02 provides the drivers needed for such implementation to access instruction counts 

remotely and stall a core whenever needed. 

2.2.4 Driver for the Edge-Oriented Monitoring Unit (WP3T34-01) 

As it will be shown in D4.4, the edge-oriented monitoring unit (WP3T31-01) is used to 

provide timing monitoring capabilities. The service in D4.4 (WP4T43-01) builds on the 

following main functions that must be provided by the driver: 

• pmu_counters_disable() 

• pmu_register_events() 

• pmu_counters_reset() 

• pmu_counters_enable() 

The driver, which can be found in the following public repository 

(https://gitlab.bsc.es/caos_hw/riscv/linux_driver_safesu/-/tree/main), implements the 

aforementioned functions, as well as other functions needed for the use and configuration 

of the WP3T31-01 component.  

 

Figure 17 Source code of the pmu_counters_enable() function. 

 

2 F. Bas et al. SafeDE: a flexible diversity enforcement hardware module for light-lockstepping. In IOLTS, 2021. 

3 S. Alcaide et al. Software-only based diverse redundancy for ASIL-D automotive applications on embedded 

HPC platforms. In DFT, 2020 

void pmu_counters_enable(void) { 

 

    if(!driver_fd) open_pmu_driver(); 

 

    write_pmu_reg(PMUCFG0, read_pmu_reg(PMUCFG0)|0x00000001); 

 

#ifdef __PMU_LIB_DEBUG__ 

    printf("Enable counters\n"); 

    printf("CFG0 = 0x%08x\n", read_pmu_reg(PMUCFG0)); 

#endif 

 

} 

https://gitlab.bsc.es/caos_hw/riscv/linux_driver_safesu/-/tree/main
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It is not the goal of this section providing the full implementation in the driver. In fact, for 

component WP3T34-02 in previous section, we do not even provide the code explicitly. 

However, in the case of the driver for WP3T31-01, since it is a new hardware component 

instead of a driver building on existing platform features, we provide lower level details. 

For illustration purposes, Figure 17 shows the code of the pmu_counters_enable() 

function, part of the driver. As shown, it mostly builds upon the functions 

write_pmu_reg() and read_pmu_red(), which receive as parameter the register to be 

written/read, and in the case of the former, also the value to be written. Those two 

functions are the basis for most of the functions in the driver, and they provide a simple 

interface to access physical registers of the WP3T31-01 component.  

 

Figure 18 Source code of the read_pmu_reg() and write_pmu_reg() functions. 

The source code of those functions is depicted in Figure 18. As shown, building on the 

open file pointer driver_fd, which points to the memory range where the corresponding 

registers are mapped, those functions shift the pointer to the corresponding register and 

perform the read or write operation requested.  

Overall, as shown, the driver has been developed using simple functions that, ultimately, 

reduce the risk of experiencing bugs and ease validation, as needed in safety-related 

systems. 

Related work: The relevant related work for this component is already given in D3.5 for 

component WP3T31-01. 

inline static unsigned int read_pmu_reg(unsigned int offs) { 

    unsigned int value; 

    lseek(driver_fd, offs, SEEK_SET); 

    read(driver_fd, &value, 4); 

    return value; 

} 

 

inline static void write_pmu_reg(unsigned int offs, unsigned int value) { 

    lseek(driver_fd, offs, SEEK_SET); 

    write(driver_fd, &value, 4); 

} 
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Figure 19 Software architecture for memory interference study 

2.2.5 Support for the Runtime Bandwidth Regulator (WP3T32-09) 

In order to simplify our analysis process on APU, we compiled a Linux kernel image based 

on PetaLinux. We decided to combine the PetaLinux system with a custom root file system 

based on the Ubuntu 20.04.2 distribution to take advantage of its rich ecosystem of 

software packages. To quantify the interference on host cores, we implemented two micro-

benchmarks, which can carry out sequential and random memory traffic patterns towards 

the DRAM. 

Both benchmarks are tuned to maximize the number of cache misses, to ensure the issued 

requests are in fact serviced from the DRAM (and not intercepted by the cache hierarchy). 

For the sequential access pattern, the memory reads are performed with stride equal to 

the L2 Cache Line Size.  For the random-access pattern, the stride is randomic, but always 

a multiple of the cache line size. Typically, this pattern exhibits a higher average miss 

latency, as the prefetching mechanisms in the DRAM itself (e.g., row buffers) are 

bypassed. 

These two memory access patterns represent the worst case for realistic patterns that can 

occur in a real-life scenario. Our micro-benchmarks are modeled after the lmbench test 

suite  http://lmbench.sourceforge.net/. 

As for the RPU interference study, we used the same benchmarks used for APUs, but 

recompiled for bare metal. Finally, for the SmartDMA component, used in this case as a 

traffic generator, we implemented a simple standalone application, which allows the 

softcore to control the DMA. 

http://lmbench.sourceforge.net/
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2.2.6 Driver for SIEFRACC accelerator (WP3T35-01) 

As part of the Fractal Edge Node a hardware accelerator for execution of AI’s convolutional 

layers is available. The algorithm of the driver that manages the hardware accelerator is 

shown in Figure 20. 

The first step of the algorithm is to call init_RAM() and init_DMA() functions 

sequentially. The DMA has reserved memory locations inside the RAM that are non-

cacheable. These memory locations are used by the application for locating the data that 

are transferred by the DMA from one memory location to another. The first function 

init_RAM() has the responsibility to define new pointers for each of these locations in 

RAM and to assign the virtual address of the pointers to the physical address space. This 

step makes the physical memory location reserved for DMA to be accessible also by the 

application. The second function init_DMA() resets the DMA control registers and puts it 

into a state to be ready for new data transfers. 

The AI application can take images of different size as input and stores them in different 

memory locations. Therefore, the locate_image() function is called to define a pointer 

that points to the memory location of the image and defines another variable for the size 

of the image. These two variables are used as input arguments for the following 

image_transfer() function. The job of this function is to relocate the image from 

cacheable memory location in RAM to the previously defined non-cacheable memory 

location reserved for DMA and the predetermined weights used for convolution operation 

from application memory space to the DMA reserved location. 

Once the above functions are executed, the driver enters a loop that transfers partially the 

image and the weights to the hardware accelerator, triggers and controls the hardware 

accelerator and as the last step it returns the results from the hardware accelerator to the 

system memory. The loop consist of DMA_write(), activate_HWACC(), and 

DMA_read() functions. The first function configures the DMA to transfer part of the image 

from system memory to the local memory of the hardware accelerator. Next, the function 

performs the same operation to transfer the weights from system memory to the local 

memory of the accelerator. When both transfers are finished, the activate_HWACC() is 

called to start the accelerator to perform the convolution operation on the part of the 

image that was previously transferred. While the accelerator performs the convolution, 

the activate_HWACC() function enters an infinite loop and periodically checks the status 

register of the accelerator. When the convolution operation is done, the accelerator writes 

the results into its local memory and changes the state of its status register. This triggers 

a condition in a loop that enables the loop to exit iterations and step to the next function. 

The last function DMA_read() transfers the results from local memory of the hardware 

accelerator to the system memory. The loop iterates continuously until the whole picture 

has gone through the convolution process. Within the loop a set of variables is defined to 

keep track of the actual size of the image that is left to be transferred. In addition, a 

pointer to the location of the rest of the image that needs to transfer is continuously 

updated, as well as pointers to the weights and the location of the resulting image in the 

system memory.  
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Related work: This component is strongly related to component WP3T32-01 - HW 

accelerator (SIEFRACC). Both can only used in combination. 

 

 

Figure 20 Algorithm for SIEFRACC hardware accelerator driver 

2.3 WP3 and WP5 

2.3.1 Supporting FRACTAL developments on cognitive awareness 

There may be some software services for providing cognitive awareness to FRACTAL 

nodes. Those components may include libraries, drivers or software blocks to interface the 

hardware accelerators implemented in the nodes, which may be connected over different 

interfaces to the main processing unit (e.g., AXI/APB, shared memory). 
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With reference to the accelerator for age and gender recognition under development to be 

part of FRACTAL nodes, the application will be composed by the model and a Flask python 

server to provide REST API to external services and machines. All the software services 

will be packed inside a single docker image ready to acquire images and return predicted 

values. The only requirement to run the services will consist in the availability of the docker 

daemon in the operating system, together with the required hardware resources to load 

the model in main memory and to perform the inference. 

2.3.1.1 The Load Balancer service as support for cognitive awareness (WP3T36-

02) 

The Load Balancer (LB) literature typically copes with techniques to divert internet traffic 

to not-overloaded nodes to avoid traffic congestions in distributed ecosystems. This 

concept applies an OSI level 3, but this is not suitable if we would address specific 

application-level topics. 

In these cases, the more usable service of load balancing is the simplest, and then we are 

going to use the notion of Load Balancer to provide (or better “to get”) the identity of node 

less computationally busy (loaded) within a specific network. Within this scope, the load 

balancing will be general enough to be used as a dockerized service, in order to expose it 

to any high-level applications. Its use will be very simple: making a simple request and 

receiving a node identifier to which the node itself may send computational tasks. In this 

way, the load balancer becomes a utility service for all applications, simply changing the 

specific "formula" on which the calculus is made.  

The LB then become a software service packed in a docker container able to identify the 

less busy node in the network able to perform a specific and predetermined task: for this 

implementation it is specifically used for the a&g recognition task. This ability falls into the 

cognitive-awareness capabilities in order to gain quick access to the a&g results when a 

specific node is over-loaded, and for collaborative purposes. 

Having said that, the LB component represents therefore a new and innovative way to 

think and implement the concept of “load balancing”. 

The load balancing component works as described in the following diagram: 
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Figure 21 Sequence diagram for using LB service 

The control flow can be summarized as follows: 

1. Configuration of the node (ID, IP, PORT) 

2. Configuration of the REST API (IP, PORT) 

3. Configuration of the MQTT Client (publish/subscribe on Topic) 

4. Evaluate the CPU and Memory parameters 

5. Send the useful information, through REST API, to perform the load balancing 

After initializing and configuring an MQTT client-server and API REST, client workload 

evaluation metrics have been defined and stored in “node resource table”. That metrics 

will be used to define whether a client is not very busy, busy, or very busy. They were 

formatted in a JSON dictionary and later published on the MQTT Topic. 

The computational load is evaluated using the average weight of the values that were 

collected before: 

Where: 

- CPU: CPU usage, defines a percentage of CPU usage  

- MEM: Memory usage, defines the use of memory, compared to the total memory 

- APR: Active process, defines the number of active processes. 

- p{CPU, MEM, APR} = {CPU, MEM, APR} parameter 

- w{CPU, MEM, APR} = weight of {CPU, MEM, APR} parameter 

In load balancing procedure the node with the lowers computational load will be chosen, 

therefore with the lowest “average load” parameter.  

The Load Balancer component interfaces with the other applications using the following 

interfaces: 

Interface Type Description 
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LB/id_node REST API  entry point to find the 

node that will perform the 

computation. 

  

LB/reading MQTT topic It publishes the node 

resources and receive the 

resources of the other 

nodes. 

  

2.3.2 Idiom Recognition 

The Idiom Recognition (IR) module is used to perform automatic language recognition based on 

speech processing. The module outputs the language of the current speaker by capturing and 

analyzing an input audio stream. 

The main objective of the IR module is to enable the Intelligent Totem with language recognition in 

order to automatically provide customized content to users in their spoken language. Currently 

supported hot-words and corresponding languages are: 

• italiano | benvenuto [ ITALIAN ] 

• english | welcome [ ENGLISH ] 

• deutsch | willkommen [ GERMAN ] 

• français | bienvenue [ FRENCH ] 

• español | bienvenidos [ SPANISH ] 

 

Figure 22 The IR module process: from input to output 

The IR module can either perform real-time recording or take as input an already stored audio speech 

file to process. Machine learning based Speech-to-Text (STT) solutions are then used to obtain the 

transcript of the audio file and a keyword search algorithm is employed to detect specific hot-words 

inside the speech sentence. Database search and matching is finally employed to identify the language 

corresponding to the recognized hot-word. Information about the detected language is used by the 

Intelligent Totem to provide contents to the user in his/her native language. The specific working 

stages are reported in Figure Y. 



 

Project FRACTAL: Cognitive Fractal and Secure Edge Based on Unique 
Open-Safe-Reliable-Low Power Hardware Platform Node 

 Title Software node and services architecture 

Del. Code D3.6 

 

V0.16  Copyright © FRACTAL Project Consortium 35 of 61 

 

 

Figure 23 IR module working stages 

The IR module needs a speech sample to process and output the corresponding language. The specific 

approach leverages existing speech processing and STT libraries to obtain the transcript out of the 

recorded audio speech file. In particular, the Vosk speech recognition API is used to identify words 

inside the audio sample and ad-hoc language models are employed to obtain the speech transcript. 

Vosk compatible language models are lightweight and pre-trained with thousands of hours of speech 

data. Once the transcript has been extracted, the recognized words are processed by a keyword 

detection algorithm to identify potential hot-words related to the supported languages. Pre-defined 

hot-words are stored in a database, which is hence queried for hot-word matching. The IR module 

output (i.e., the recognized language) is then sent to the Runtime Manager for interaction with other 

Intelligent Totem modules. In case of congestion, a recording of the audio speech sample is sent to 

the Runtime Manger for load balancing purposes. 

A diagram showing data flow is reported in Figure Z. 

 

Figure 24 IR module data flow diagram 

The IR module exploits transparent interactions with the user, employing data collected from user 

actions. In particular, the user is invited to speak by the Intelligent Totem, and the provided speech is 

recorded in order to be processed by the IR module. The outcome of data pre-processing, such as the 

audio transcript, are available to be presented to the user. The final output of the IR module is the 

recognized user spoken language, which is then used by the Intelligent Totem to provide customized 

contents. Hence, the AI results are available to the user in terms of language output and, in case the 

system is not able to recognize the idiom, the user is informed and invited to speak again. 

In the IR module the interaction with the user is minimal. As described above, the output of the 

building block is the recognized user language. Therefore, the result is easily understandable by the 
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user, who is able to visualize the transcript of its speech to assess if the IR module provided a correct 

processing and decision. 

2.4 WP3 and WP6 

WP6 focuses on safe and secure orchestration of the distributed application domain -- how 

to manage the deployment and management of the distributed application and the data. 

Like WP5, also here the WP3 nodes need to offer required interfaces and resources while 

there are limitations on planforms. 

2.4.1 Supporting FRACTAL framework consistency 

WP6 will introduce methods for ensuring the framework consistency. How to ensure that 

all components of the framework are always consistent between each other. And how the 

framework raises and processes exceptions if any inconsistency happens. 

2.4.2 Supporting FRACTAL application consistency 

WP6 will introduce methods for ensuring the applications in the framework are consistent. 

While keeping the complex framework consistent, the evolving application brings another 

layer of potential problems in play. 
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3 Role of different platforms in FRACTAL Use Cases 

The comprehensive discussions with all FRACTAL partners during the preparation of D2.1 

“Platform specification (a)” showed a number of issues with our initial approach regarding 

how FRACTAL software nodes will be demonstrated as part of the use cases. 

Work on Pulp SW nodes focuses on developing a software system for the low-end FRACTAL 

platforms. These will be limited in memory and storage but will benefit from price and 

energy consumption. Readers must understand that these FRACTAL low-end platforms 

enable a huge market segment of devices that cost a few euros and/or run years with a 

set of AAA-batteries. 

As stated, the Commercial Node software components are already provided by Xilinx. 

Therefore, this document gathers the information related to those software components 

that may need some customization or integration effort to be adapted to FRACTAL node 

requirements. 

It is a fact that the Customizable Node (PULP) will have much less resources available 

than the Commercial Node, e.g., onboard processor performance and volatile/non-

volatile memory will be multiple decades smaller. Due to these facts, the high-end 

programming tools, such as Java/Python, are not necessarily available. However, the 

software node will offer POSIX standard APIs and C/C++ standard development tools for 

application development. 

Despite the limitations above, the Customizable Node, if carefully designed, will meet 

application specific performance easily Figure 1. presents the three tiers of the system 

architecture. If a node exists in mist tier, it is a good candidate to be a Pulp-based low-

end node. 

Another limitation on Customizable Nodes is caused by the high level of optimization of 

the node's hardware. Having a complete node software framework for all the platforms is 

out of scope of this project. Some of the use case features may need to be demonstrated 

at multiple (different) HW platforms. 

As the use case is a concrete demonstration for the use case provider, it should not be 

surprising that the main goal of the use case provider is to make sure that the use case 

can run without issues within the FRACTAL project. As a result, some project partners 

expressed rather extensive requirements for their own use cases in order not to be limited 

by the hardware capabilities in the future, and some others expressed interest in using 

systems that they are more familiar with. In practice, this has led to several use case 

providers stating the need for a symmetric multi-core system running a standard Linux 

distribution. 

In all cases, these requirements are perfectly understandable and most of them could be 

implemented using the commercial node of FRACTAL, the Xilinx VERSAL platform. As 

outlined in chapter 4.2, the basic customizable node has been targeted towards simpler 

IoT applications and lacks the power to fulfil several of these requirements. At first sight 
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this creates an apparent imbalance of utilization between the commercial and the 

customizable node. 

FRACTAL partners have discussed various approaches to provide a solution and have 

decided on a number of measures to make sure that the ideas developed as part of 

FRACTAL are validated on common platforms that are available to all project partners. 

From those discussions come the following recommendations. 

• There are several use cases (see Section 4) that are content to use the FRACTAL 

hardware nodes as provided.  

• FRACTAL has identified three tiers of FRACTAL hardware nodes: low (Mist), medium 

(Edge), high (Cloud). Node versions that all share similar interfaces and interact 

with each other Figure 1. shows an illustration of such an organization where 

simpler nodes are acquiring data and delegating more complex tasks to nodes with 

higher complexity. The figure is meant as an example, and different allocations of 

tasks are currently under discussion within WP5/6. In this model, the industrial 

node covers the higher-end version, while the customizable node is seen as the 

lower-end version. As described chapter 4.3, partners have suggested several 

alternatives for the medium-end nodes. 

• Some partners are relying on their prior work and experience to implement some 

of their contributions. Most of these are based on hardware systems that are similar 

and/or compatible with FRACTAL nodes but have some differences. These include 

implementations in earlier models of Xilinx MPSoC platforms than the VERSAL as 

well as other openly available RISC-V systems. Out of practical considerations, 

FRACTAL partners have added these as additional platforms to the initially identified 

hardware nodes. 

It was also recognized that official FRACTAL nodes could be instrumental for research 

aspects involving developments in WP4/5/6 and the experience from these explorative 

works could then be used to evaluate the potential of these developments in use cases 

that consider more traditional solutions. As a concrete example, novel safety solutions 

with hardware support could be explored on a small scale in the customizable node as part 

of WP4. The results of this exploration could then be used to directly estimate the gains 

achievable by this approach in a use case that employed an alternative hardware node. 

The work done throughout the first part of the project allowed partners to realize different 

possibilities and showed that the key point was that all developments from FRACTAL 

technical work packages should be accessible for all FRACTAL partners. While the initially 

identified Hardware Nodes cover a large range of the specification spectrum, partners 

could also make use of additional hardware nodes as long as this work could be 

used/verified/evaluated by all partners. 

3.1 Customizable node (RISC-V based PULP) 

The customizable node in FRACTAL is a RISC-V based PULP platform (particularly the 

PULPissimo microcontroller) which is further described in D3.5. For the sake of 

completeness, Figure 25 depicts PULPissimo as part of the FRACTAL big picture. 
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Figure 25 PULPissimo as part of the FRACTAL big picture 

PULPissimo is a RISC-V based system, with resources adopted to IoT workloads – RAM 

(volatile) up to a few megabytes and flash (non-volatile) some hundreds of megabytes. 

System clock speeds are typically below 1GHhz and often the processor may lack the 

memory protection modules. 

RISC-V is based on proven RISC principles from the 80’s. Recently it has had additional 

benefits, as an open ISA. This enables development of both open and commercial 

applications. This is interesting both for Industry and Academia as it lowers the barriers to 

share developments on the ISA between various partners and benefits the cumulative 

research results. The RISC-V licensing terms make it possible to develop open-source 

hardware. 

As a platform optimized for the IoT applications, the PULP platform has a much lower 

power budget in the milliwatts or even microwatts range. This is especially interesting for 

applications where battery powered nodes are expected to operate for years. 

PULPissimo systems have FPGA based implementations, where all digital parts (including 

the processor) exist as FPGA code, allowing the peripheral and HW-accelerators to 
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optimize purely to the application. Potentially parts of the application logic may be 

implemented in hardware and even altered in runtime. An interesting option is the 

implementation of AI engine primitives by HW. 

By converting the FPGA design to the ASIC, the cost of PULP based systems (in high 

volumes) can go down to the cents. 

For software point of view, the advanced operating systems such like Linux are out of 

scope due to the limitations of the underlying platform. On the other hand, plain bare-

metal applications will be too complex to be managed by the Fractal framework. There 

exists numerous RTOS's, but for FRACTAL Pulp nodes the open source Nuttx RTOS has 

been chosen. Main benefit of Nuttx is the POSIX compatibility. This RTOS offers primitives 

such as threads, devices and sockets. Due this the libraries and the applications may 

develop to be fully Linux compatible – some existing Linux libraries and application can be 

just compiled into the Nuttx. Physical communication devices can be integrated into the 

sockets. By utilizing the IP-stack, the local and wide area networks can be seamlessly 

hidden below IP-networking. This again eases the application development and isolates 

the network configuration. Existing authentication and encryption methods can be utilized. 

As result, the application development does not require any RTOS specific code.  

For the development the standard GNU C/C++ development environment is available for 

the application developer. Also, tools such as GDB/JTAG offer test/debug features on 

platform. 

Due to HW limitations – mainly RAM/flash -- tools such as java and python are typically 

not available (some limited versions do exist). 

Due the limited memory resources -- the containers and hypervisors does not make sense 

on Nuttx. By increasing the processor complexity and sizes of memories, these problems 

can be solved, but when moving in that direction, the better solution is to switch to the 

Linux. 

3.1.1 Pulp onboard resources 

3.1.1.1 Key management 

Key security element of safe software deployment and authentication is secure key 

management. To do this in a safe way an additional hardware module is required. 

3.1.1.2 Hardware acceleration 

There are two typical approaches for HW acceleration in Pulp platform. 

RISC-V offers a mechanism to introduce new instructions to the processor. Utilizing this 

mechanism makes the acceleration totally seamless to the application software. Drawback 

is the requirement of a customized compiler. Less general the acceleration is, less practical 

this approach is. 
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Another typical approach is to build a custom peripheral that offers a memory mapped 

register interface to the software. 

One interesting case is the HW acceleration of AI-primitives. 

If the Pulp is running on FPGA platform, software may upload different functions to FPGA, 

thus it can dynamically change the behavior of the HW acceleration. By utilizing this 

mechanism, the parts of application software can be executed on HW – however this is 

outside scope of this document. 

In task WP3T36-03 the Nuttx OS were port to RISC-V processor and to the Pulp platform. 

There was a deprecated RISC-V support on official Nuttx repositories, but it wasn’t 

covering the newer releases. As a result of this task the RISC-V is now on Nuttx mainline 

and maintenance responsibility has been taken to OFFC. 

3.1.2 Safety considerations on Nuttx Pulp – WP4 

Refencing the following publication: 

RISC-V for Real-time MCUs - Software Optimization and Microarchitectural Gap Analysis 
 
https://ieeexplore.ieee.org/document/9474114 
 
Abstract: 
Processors using the RISC-VISA are finding increasing real use in IoT and embedded systems in the MCU 
segment. However, many real-life use cases in this segment have realtime constraints. In this paper we analyze 
the current state of real-time support for RISC-V with respect to the ISA, available hardware and software stack 
focusing on the RV32IMC subset of the ISA. As a reference point, we use the CV32E40P, an open-source 
industrially supported RV32IMFC core and FreeRTOS, a popular open-source real-time operating system, to do 
a baseline characterization. We perform a series of software optimizations on the vanilla RISC-V FreeRTOS port 
where we also explore and make use of ISA and micro-architectural features, improving the context switch time 
by 25% and the interrupt latency by 33% in the average and 20% in the worst-case run on a CV32E40P when 
evaluated on a power control unit firmware and synthetic benchmarks. This improved version serves then in a 
comparison against the ARM Cortex-M series, which in turn allows us to highlight gaps and challenges to be 
tackled in the RISC-VISA as well as in the hardware/software ecosystem to achieve competitive maturity. 
 

3.1.3 AI processing on Nuttx Pulp -- WP5 

On this project the AI scenarios on Pulp node are based preloading models to the Node. 

The learning of model is done elsewhere (i.e Fractal cloud) and machine learned model is 

uploaded to node(s). This is demonstrated by UC3. 

3.1.3.1 Software approach 

In the case of low-end nodes, the lack of high-level tools such as python and Java and the 

limited RAM memory make the plain SW approach challenging. Infesting cases would be 

a hybrid solution where software loads pre trained modules to be executed in HW.  

3.1.3.2 Hardware approach 

A very interesting case would be the HW acceleration of AI-primitives. This would result 

in a case where models can be loaded to software, but the actual processing happens in 

HW.  
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Refencing following (Fractal) publication: 

Ternarized TCN for μJ/Inference GestureRecognition from DVS Event Frames: 

https://ieeexplore.ieee.org/document/9406333 

Abstract: 

Heavily quantized fixed-point arithmetic is becoming a common approach to deploy Convolutional Neural 

Networks (CNNs) on limited-memory low-power IoT end-nodes. However, this trend is narrowed by the lack of 

support for low-bitwidth in the arithmetic units of state-of-the-art embedded Microcontrollers (MCUs). This work 

proposes a multi-precision arithmetic unit fully integrated into a RISC-V processor at the micro-architectural and 

ISA level to boost the efficiency of heavily Quantized Neural Network (QNN) inference on microcontroller-class 

cores. By extending the ISA with nibble (4-bit) and crumb (2-bit) SIMD instructions, we show near-linear speedup 

with respect to higher precision integer computation on the key kernels for QNN computation. Also, we propose 

a custom execution paradigm for SIMD sum-of-dot-product operations, which consists of fusing a dot product 

with a load operation, with an up to 1.64 × peak MAC/cycle improvement compared to a standard execution 

scenario. To further push the efficiency, we integrate the RISC-V extended core in a parallel cluster of 8 

processors, with near-linear improvement with respect to a single core architecture. To evaluate the proposed 

extensions, we fully implement the cluster of processors in GF22FDX technology. QNN convolution kernels on a 

parallel cluster implementing the proposed extension run 6 × and 8 × faster when considering 4- and 2-bit data 

operands, respectively, compared to a baseline processing cluster only supporting 8-bit SIMD instructions. With 

a peak of 2.22 TOPs/s/W, the proposed solution achieves efficiency levels comparable with dedicated DNN 

inference accelerators and up to three orders of magnitude better than state-of-the-art ARM Cortex-M based 

microcontroller systems such as the low-end STM32L4 MCU and the high-end STM32H7 MCU. 

For additional information see: 

https://pulp-platform.org/pulp_sw.html 
https://pulp-platform.github.io/pulp-dsp/tutorial-index/ 

3.1.4 Application orchestration on Nuttx Pulp – WP6 

Fractal application deployment is based on containers. While Nuttx lack resources to run 

containers as such, the problem is solved by having special containers on cloud (or high-

end edge nodes), that connects to specific nodes and upload specific binaries to Pulp 

nodes. While most of this work is done in scope of WP6 here is just described the services 

that node offers. 

This further studied on D6.2. 

https://ieeexplore.ieee.org/document/9406333
https://pulp-platform.org/pulp_sw.html
https://pulp-platform.github.io/pulp-dsp/tutorial-index/
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3.2 Versal node 

The Xilinx VERSAL ACAP is expected to be deployed as part of the VCK190 Evaluation Kit 

board, which provides support for several I/O interfaces and memory devices. For 

completeness, Figure 26 shows the VERSAL platform in the FRACTAL big picture. 

 

Figure 26 The VERSAL platform in the FRACTAL big picture 

The VERSAL architecture (Figure 27) combines different engine types with a wealth of 

connectivity and communication capability and a network on chip (NoC).  

Like the earlier Xilinx Zynq MPSoC products, VERSAL ACAP devices still offer the two main 

components: 

• Processing System (PS) consists of a dual high-performance ARM Cortex A72 

cores that can run Linux or other operating systems. This system is augmented by 

a dual-core ASIL-C certified real-time processing subsystem based on Arm Cortex 

R5F cores. Together these systems address the needs of most modern computing 

needs using a traditional programming interface. 
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• Programmable Logic (PL) allows this system to be augmented by hardware 

accelerators customized to a particular compute function. 

 

Figure 27 Top level schematic of Xilinx VERSAL ACAP 

On one hand, VERSAL designs are enabled by the Vitis™ tools, libraries, and IP. The Vitis 

IDE lets the developer program, run, and debug the different elements of VERSAL AI 

Engine application, which can include AI Engine kernels and graphs, PL, high-level 

synthesis (HLS) IP, RTL IP, and PS applications. Vitis offers two development approaches: 

• Accelerated Flow. It allows to build a software application using the OpenCL or 

the open-source Xilinx Runtime (XRT) native API to run the hardware kernels on 

accelerator cards, or on a Linux-embedded processor platform. The Vitis tool 

includes the v++ compiler for the hardware kernel on all platforms, the g++ 

compiler for compiling the application to run on an x86 host, and Arm® compiler 

for cross compiling the application to run on the embedded processor of a Xilinx 

device. 
• Embedded Flow. It provides a complete environment for creating software 

applications targeted for the embedded processors. It includes a GNU-based 

compiler toolchain, C/C++ development toolkit (CDT), JTAG debugger, flash 

programmer, middleware libraries, bare-metal BSPs, and drivers for all the Xilinx 

IPs. It also includes a robust IDE for C/C++ bare metal and Linux application 

development and debugging. 

On the other hand, the Peta Linux tools (built on top of the Yocto Project) offer everything 

necessary to customize, build, and deploy embedded Linux solutions on Xilinx processing 

systems. Tailored to accelerate design productivity for SoC devices, the solution works 
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with the Xilinx hardware design tools to facilitate the development of open-source Linux 

systems for VERSAL devices. 

FRACTAL nodes will use the tools provided by Xilinx to build the system as stated in the 

different use cases. This deployment will include OS or system software customization 

(e.g., hypervisor, bootloader, kernel) to match the requirements of FRACTAL nodes, and 

file system creation, including all the software packages and configuration stated in the 

platform description requirements (e.g., Python, JAVA, net-tools, others). It will also 

consider the development of use case specific high-level applications or low-level drivers 

required by custom building-blocks (e.g., security related modules).  

It is important to mention that even though the developments will be very use case 

specific, they will share a common development stack, based on the options and 

considerations stablished by Xilinx ( 

Figure 28 VERSAL Linux development stack 

). 

 

Figure 28 VERSAL Linux development stack 

As VERSAL provides many different implementation possibilities, in the beginning of the 

project the main approach was not only to analyze, understand and determine the 

requirements coming from every use case, but also the proposed roadmap in order to 
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achieve use case objectives. Reference software architecture of a cognitive edge 

computing node with FRACTAL properties will be defined and a common repository of 

generic qualified components will be set up. Particular attention will be paid on providing 

flexible computing nodes, that are reusable by others and that efficiently support the 

software on providing acceleration for the learning part. 

The reference software architecture design for the VERSAL based FRACTAL node will be 

described in the following deliverable (D3.6), so that it reflects the customization and 

integration made on top of the FRACTAL nodes based on the software components 

provided by Xilinx. 

3.2.1 Versal onboard resources 

Native Linux applications that include the Xilinx runtimes for different hardware targets 

can still be built as native applications and run against the support of the runtime of the 

Versal Linux host. This may be beneficial in nodes where the FRACTAL orchestration and 

system interface level is only used to provide data or model and otherwise has low 

interaction with the application itself. Such applications can make use of all features on 

the board as the device provides the complete underlying hardware description. 

The FRACTAL Edge Software stack uses microservices to build up an application. As 

applications in the node need to be exchanged or scheduled from the system level context 

aware scheduling, it is desirable to fetch these from the image store and thus run these 

applications in a containerized version. 

To achieve this, a docker container is devised that is based on an Ubuntu Linux and holds 

the full addition of libraries to satisfy the respective runtime, as an example XRT or VART. 

In such a docker environment the application can run and reach out to the devices through 

the kernel. The scaling of this approach will be further investigated, but it is required to 

control the scope and reach of the application. 

3.2.2 Safety considerations on Versal – WP4 

The Versal reference platform is being set up in two base designs. While one of these is not 

imposing restrictions on actual computation cores, the second version is intended to build the 

certifiable platform along D2.3. 

This safety focused setup is guided by the separation capabilities of the Versal ACAP 

architecture. As already pointed out in Chapter 3 Versal devices offer a hardware abstraction 

of core-related power functionality and allow access to these through the PMC. While the PMC 

exposed features can be used rather freely, this is not reasonable for a proper safety approach.  

To satisfy these safety concerns, the separation of the elements is considered from ground up 

and the services on the FRACTAL node level need to settle to a particular central provider that 

actually then as a proxy call into the PMC. In the safety focused platform all control requests 

for power and scaling the actual low-level accesses are collected on one of the RPUs. This RPU 

will carry out all PMC related transactions on behalf of the node. This platform setup also 

incorporates a secure boot mechanism to ensure the guaranteed boot into the safety 
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environment. The exposure of the service interface to the RPU is carried out within the 

respective WP4 tasks. 

The support for the time triggered scheduling and node-level and system-wide features as from 

WP4, are attributed to the RPU in the designs where these real-time capabilities are required. 

In this setup the Adaptive Time-Triggered Network Interface is controlled by this core to provide 

the scheduling services on top. This RPU can unify the node control transactions with this 

service or push transactions to the respective other RPU if it is available in the design.  

The communication between the heterogenous cores, from the Fractal Edge Software Linux to 

the RPU is carried out using OpenAMP. To cater for such a setup, the RPU projects are deploying 

FreeRTOS. 

3.2.3 AI processing on Versal -- WP5 

The Versal based platform, specifically with the VCK190 and the VCKC1902 device offers 

specific ML acceleration means by deploying the AI Engines. These are supported by the DPU 

IP hardware structure in the reference platform design. 

In the Versal platform BSP for Linux the supporting device tree elements for all particular 

features of the device are made available and the respective Vitis AI runtime (VART) libraries 

are installed. The effective pre-trained model deployment is carried out through a proprietary 

Xilinx toolchain, Vitis AI, that is capable of processing ML models from a variety of toolchains, 

like Tensorflow and PyTorch, but also reading from ONNX models. 

The analysis and translation of such models yields a combination of hardware configuration 

information and embedded code artifacts for multiple computation engines. The translated 

models themselves are exchangeable and may be retrieved from the model repository on 

demand. The translation itself can also be carried out as a service in the FRACTAL cloud. 

A translated model is deployed through the VART runtime in a Linux application. Such an 

application is typically triggered through the orchestration level of the Fractal Edge software 

and can be added to a specific application container. 

3.2.4 Application orchestration on Versal – WP6 

The FRACTAL reference design based on Versal ACAP is set up to include the basic application 

support along the WP6 proposal. Current basic Petalinux setup has been operating Docker and 

Kubernetes (MicroK8s) and Mosquitto. The full set is planned to use Prometheus and Juju. All 

additional orchestration features are deployed in respective containers. 

3.3 Other nodes 

On Fractal the Versal and the Pulp platforms were selected to use as node HW-platforms. 

However, to demonstrate some specific developments partners have chosen to use some 

other platforms. 

During this study performed in the first part of the project, several use cases stated the 

need for more traditional RISC-V based systems (capable of running single-core or SMP 
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Linux) which resulted in some additional hardware nodes being added. The software 

capabilities of these additional RISC-V nodes will be covered in this section. 

3.3.1 NOEL-V 

 

Figure 29 NOEL-V as part of the FRACTAL big picture 

The NOEL-V based SoC builds upon the GPL platform provided by the H2020 SELENE 

project (https://www.selene-project.eu/). The SELENE SoC has been synthesized in a Xilinx 

Virtex UltraScale VCU118 FPGA and the original NOEL-V SoC is also available for the 

KCU115, although it can be ported to other boards. For completeness, Figure 9 shows the 

NOEL-V based SoC as part of the FRACTAL big picture. 

The NOEL-V SoC supports memory management units, and implements Translation 

Lookaside Buffers (TLBs), both for data and instructions, locally in each core. The SoC also 

https://www.selene-project.eu/
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provides support for cache coherence. Those features allow booting SMP Linux and RTEMS 

operating systems among others and allow sharing data across cores. 

The Linux image, on which current developments are performed, has been built with 

buildroot (2021.02LTS), and the required sources are provided by Cobham Gaisler at 
https://www.gaisler.com/index.php/downloads/sw-noelv-downloads. 

The platform implements the RV64I RISC-V ISA along with the G, C and H extensions. 

Standard software tools for compiling, debugging, and the like are supported since the 

platform adheres to the RISC-V standard. 

3.3.2 ARIANE/CVA6 

Ariane/CVA6 supports Linux, both 32-bit on CV32A6 and 64-bit on CV64A6. In a first step 

of the FRACTAL project, Linux has been ported to CV32A6 with recent versions of the 

various components (BBL, Buildroot 2021.5.rc1, Linux kernel 5.10.7).  

CV64A6 has supported 64-bit Linux for a longer time and work has been performed to 

update to the same versions as CV32A6. Compilation is supported by GCC 9.3, and 

software simulation is supported by Spike. As CVA6 is aligned with RISC-V standard 

extensions, we can expect software support by other generic tools, such as Clang/LLVM, 

without further port. 

Since D3.4 release, the support of popular up-to-date components have been added: 

UBoot as an alternative to BBL (Berkely Boot Loader), as well as the OpenSBI firmware. 

The support of Yocto embedded Linux image builder, as an alternative to Buildroot, is the 

latest addition. (component WP3T36-01). 

To the best of our knowledge, this is the first time UBoot, OpenSBI and Yocto are supported 

on CVA6. 

On top of the Linux operating system, the Ariane/CVA6-based node will support the 

FRACTAL software components depicted in the figure below to deliver the services needed 

in UC4. On the AI side, only inference will be supported. 

https://www.gaisler.com/index.php/downloads/sw-noelv-downloads
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Figure 30 CVA6 as part of the FRACTAL big picture 

3.3.3 Yet additional platforms 

Some special (technical) cases may be implemented and/or demonstrated by yet other 

platforms (i.e. Raspberry PI). Those cases will be presented here. 

3.3.3.1 Asymmetric multiprocessing AMP 

Yet another interesting option is to utilize both Linux and Nuttx. Cost efficient way to do 

this is to use Asymmetric Multi Processing (AMP) in a multicore processor. One for the 

cores is running Nuttx, while others run Linux. Main benefits are real-time processing. As 

Nuttx is RTOS, it can process the real-time deadlines better than Linux. Another benefit is 

the low-energy operation. Linux can put to deep sleep, while Nuttx handles basic 

operations and when required wake up the Linux. This is not possible to demonstrate on 

a PULPissimo platform. 
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4 Interaction of UCs with FRACTAL nodes  

The FRACTAL cloud SW development has begun in top-down approach. The main AI-

applications are under development and aim to demonstrate with simulated nodes. 

The FRACTAL Pulp node SW development progresses in by bottom-up approach, where 

the basic features are ramped up. This includes the board OS-wake-up, simple LED-Blink 

demonstrations and setting up SW-repositories and tools. While development progresses 

the service layers AI, Connectivity, Security will be integrated. The final phase of 

integration is the application – use case integration, where node SW and cloud SW are 

integrated as complete solution. 

On FRACTAL Versal the use case development can begin after the FRACTAL adaptation 

interfaces are agreed. 

The detailed interaction between FRACTAL SW nodes and use cases will be described in 

subsequent versions of this deliverable (D3.4, D3.6). In document 

D3.1_Preliminary_HW_node (chap 5) presents the resource-based allocation of use 

cases on FRACTAL nodes. 
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5 Conclusions 

The two main hardware nodes (commercial and customizable) are being made available 

to all FRACTAL partners. Following discussions regarding the design requirements, it was 

seen that partners would benefit from additional nodes that fall in between the two default 

options. WP3 partners have discussed providing such solutions in agreement with other 

partners from technical WPs 4/5/6 as well as the UCs 
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6 Next steps 

The development and adaptation of HW nodes continues as part of WP5/6/7/8 activities 

that are involved with actual implementations of UCs. 

Before the start of the project, the following hardware platform related risks had already 

been identified:  

FPGA based PULP platform implementations will not have the necessary performance 

(speed/cost/power) profile needed for use cases (Medium likelihood/Low Impact).  

For some use cases, this has been indeed the case. However, the issue was not the FPGA 

implementation of the platform, but the desire to have systems that are more like 

traditional computing systems complete with running large software ecosystems running 

on full-fledged operating systems (i.e. Pytorch) which is beyond the practical capabilities 

of the system. In part this has been remedied by providing additional platforms (NOEL-V 

and Ariane). As the projects mature and partners become more experienced with different 

FRACTAL platforms, it is highly probable that more partners will make use of the 

experimental and customizable aspects of the provided systems.  

6.1 Risks and Mitigation plans 

As described in D3.5: 

“Diversity/maturity of tools/development environments for RISC-V systems is 

lower than expected (Low likelihood/Medium impact).  

As mentioned in the project proposal, the development rate of the RISC-V 

ecosystem is quite high, and so far this has not been a major issue.  

Unable to properly and timely integrate multiple services developed. Due to 

incompatibilites or services not provided by selected hardware platforms (Low 

likelihood/impact).  

The integration of services are still at an early stage, so it is too early to tell about 

the possible impact. However, the effort in WP2 has allowed partners to 

anticipate some of the issues, and there is good momentum in the project that 

leads us to believe these issues could be mastered.   

 

Difficulties to integrate hardware developments from different partners (Medium 

likelihood/impact).  

This is one of the main challenges that faces the developments around the HW 

platform at the moment. However, all partners are aware and are looking for 

solutions. In some cases, one solution will be to demonstrate technical solutions 

running in parts, and not in concert for a given platform, use case combination. 



 

Project FRACTAL: Cognitive Fractal and Secure Edge Based on Unique 
Open-Safe-Reliable-Low Power Hardware Platform Node 

 Title Software node and services architecture 

Del. Code D3.6 

 

V0.16  Copyright © FRACTAL Project Consortium 54 of 61 

 

I.e. a security service maybe demonstrated on a smaller scale, allowing the use 

case partner to be able to judge and evaluate its impact, but the overall use case 

could still use a more traditional approach.   

Part of the mitigation efforts also led partners to add two additional hardware 

nodes, as not to spend initial efforts on porting previous work from architectures 

they were familiar with to the two nodes presently available.   

In addition, the following issues have been detected, and efforts have been put 

in place to mitigate the effects:  

Delivery difficulties with the VERSAL board. There is a global shortage on 

electronic components, and unfortunately the delivery of the development 

boards have been hit with longer delays than anticipated. For some of the 

projects that do not rely on exclusive VERSAL properties, suggestions were made 

to use more previous generation Xilinx MPSoC boards until the VERSAL 

shipments can be organized.   

Node computation demands are too high. Some partners on technical 

workpackages are working on solutions that require significant resources from 

the hardware nodes. While the VERSAL board can satisfy these requirements, 

both its price and its power envelope is higher than what could be expected for 

IoT applications.  

The addition of a lower-end (mist) node will help address this issue. The FRACTAL 

system will have nodes with less capabilities that defer to more capable nodes 

for higher complexity operations. This will allow hardware nodes within mW 

power envelope to be part of the FRACTAL system.” 
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7 Deviations from workplan 

As described in D3.5: 

“Following the feedback from the first project review, it was decided to align the 

deliverables and reports to a consolidated big picture of the FRACTAL project. 

This big picture was discussed and agreed on as part of the 2nd Technical 

Workshop that took place in early February. As a result, D3.3 as well as this 

follow-up D3.5 were delayed slightly allowing the deliverables to be updated.   

It must be noted that lack of face-to-face meetings due to COVID restrictions 

have impacted such discussions, and while the FRACTAL consortium has put in a 

very good effort to maintain virtual meetings and discussions, the level of 

interaction of such meetings cannot replace hands on workshops and technical 

discussions to bring agreement between a large group of participants. We are 

happy to report that the last technical meeting was held face to face and has 

brought back much needed personal interaction. Unfortunately, the efforts of 

WP3 have been completed, but partners are actively working on supporting UCs 

in WP7/8 until the end of the project.” 



 

Project FRACTAL: Cognitive Fractal and Secure Edge Based on Unique 
Open-Safe-Reliable-Low Power Hardware Platform Node 

 Title Software node and services architecture 

Del. Code D3.6 

 

V0.16  Copyright © FRACTAL Project Consortium 56 of 61 

 

8 Bibliography 



 

Project FRACTAL: Cognitive Fractal and Secure Edge Based on Unique 
Open-Safe-Reliable-Low Power Hardware Platform Node 

 Title Software node and services architecture 

Del. Code D3.6 

 

V0.16  Copyright © FRACTAL Project Consortium 57 of 61 

 

9 References 

Amazon Web Service. (2019). AWS documentation. Retrieved from Message Broker for AWS IoT: 

https://docs.aws.amazon.com/iot/latest/developerguide/iot-message-broker.html 

Amazon Web Service. (2019). AWS Documentation. Retrieved from AWS IoT SDK: 

https://docs.aws.amazon.com/iot/latest/developerguide/iot-sdks.html 

Amazon Web Service. (2019). AWS Documentation. Retrieved from Security and Identity: 

https://docs.aws.amazon.com/iot/latest/developerguide/iot-security-identity.html 

Amazon Web Service. (2019). AWS IoT Core. Retrieved from Features: https://aws.amazon.com/iot-

core/features/ 

Bosch. (2019). Gateway software. Retrieved from https://www.bosch-si.com/iot-platform/iot-

platform/gateway/software.html?ref=ot-2-inst-de-2017h1-sales-contact-forms-iot-platform 

Comer. (2000). Datagram Size, Network MTU, and Fragmentation. In Sect. 7.7.4 (p. p. 104). 

Fielding, R. T. (2000). Architectural styles and the design of network-based software architectures. 

Irvine: University of California. 

Lampkin, V., Tat Leong, W., Olivera, L., Rawat, S., Subrahmanyam, N., Xiang, R., . . . Locke, D. (2012). 

Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry. IMB 

Redbooks. 

Saint-Andre, P., Smith, K., & Tronçon, R. (2009). XMPP: The Definitive Guide. Building Real-Time 

Applications with Jabber. O’Reilly Media, Inc. 

Shelby, Z. a. (2011). 6LoWPAN: The wireless embedded Internet (Vol. 43). John Wiley \& Sons. 

Siemens. (2018). https://www.plm.automation.siemens.com. Retrieved from 

https://www.plm.automation.siemens.com: 

https://www.plm.automation.siemens.com/media/global/en/Siemens-MindSphere-

Whitepaper-69993_tcm27-29087.pdf 

UbuntuPit. (2018). https://www.ubuntupit.com/. Retrieved from https://www.ubuntupit.com/: 

https://www.ubuntupit.com/choose-the-right-iot-platform-top-20-iot-cloud-platforms-

reviewed/ 

 



 

Project FRACTAL: Cognitive Fractal and Secure Edge Based on Unique 
Open-Safe-Reliable-Low Power Hardware Platform Node 

 Title Software node and services architecture 

Del. Code D3.6 

 

V0.16  Copyright © FRACTAL Project Consortium 58 of 61 

 

10 List of figures 

Figure 1 A schematic drawing of a possible FRACTAL system deployment using three 

different tiers of FRACTAL hardware nodes with different capabilities (drawing from WP5 

technical meetings). .............................................................................................. 5 

Figure 2 Average execution time of Crop, Resize and Clahe algorithms on Zynq with 4-

core running ....................................................................................................... 13 

Figure 3 Boxplot for Crop Algorithm with 4-core running .......................................... 13 

Figure 4 Boxplot for Resize Algorithm with 4-core running ........................................ 14 

Figure 5 Boxplot for CLAHE Algorithm with 4-core running ....................................... 14 

Figure 6 Average execution time of Crop, Resize and Clahe algorithms on Zynq with 1-

core running ....................................................................................................... 15 

Figure 7 Boxplot for Crop Algorithm with 1-core running .......................................... 15 

Figure 8 Boxplot for Resize algorithm with 1-core running ........................................ 15 

Figure 9 Boxplot for CLAHE algorithm with 1-core running ........................................ 16 

Figure 10 LEDEL development in FRACTAL .............................................................. 19 

Figure 11 Abstraction of the docker file presented ................................................... 21 

Figure 12 Example of training process using LEDEL in RISCV .................................... 22 

Figure 13 Code used to load the ONNX file using the LEDEL ...................................... 23 

Figure 14 Inference from ONNX file ....................................................................... 24 

Figure 15 PyTorch example execution .................................................................... 24 

Figure 16 Figure: A schematic of the software-only support for diverse redundancy. .... 25 

Figure 17 Source code of the pmu_counters_enable() function. ................................ 27 

Figure 18 Source code of the read_pmu_reg() and write_pmu_reg() functions. .......... 28 

Figure 19 Software architecture for memory interference study ................................ 29 

Figure 20 Algorithm for SIEFRACC hardware accelerator driver ................................. 31 

Figure 21 Sequence diagram for using LB service .................................................... 33 

Figure 22 The IR module process: from input to output ............................................ 34 

Figure 23 IR module working stages ...................................................................... 35 

Figure 24 IR module data flow diagram .................................................................. 35 

Figure 25 PULPissimo as part of the FRACTAL big picture ......................................... 39 

Figure 26 The VERSAL platform in the FRACTAL big picture ...................................... 43 

Figure 27 Top level schematic of Xilinx VERSAL ACAP .............................................. 44 

Figure 28 VERSAL Linux development stack ............................................................ 45 

Figure 29 NOEL-V as part of the FRACTAL big picture .............................................. 48 

Figure 30 CVA6 as part of the FRACTAL big picture .................................................. 50 

https://ikerlan.sharepoint.com/sites/FRACTAL_project/Documentos%20compartidos/WP3%20-%20Node%20Architecture%20and%20Building%20Blocks/Deliverables/D3.6/FRACTAL_SoftwareNodeAndServicesArchitecture.docx#_Toc116463457
https://ikerlan.sharepoint.com/sites/FRACTAL_project/Documentos%20compartidos/WP3%20-%20Node%20Architecture%20and%20Building%20Blocks/Deliverables/D3.6/FRACTAL_SoftwareNodeAndServicesArchitecture.docx#_Toc116463457
https://ikerlan.sharepoint.com/sites/FRACTAL_project/Documentos%20compartidos/WP3%20-%20Node%20Architecture%20and%20Building%20Blocks/Deliverables/D3.6/FRACTAL_SoftwareNodeAndServicesArchitecture.docx#_Toc116463457
https://ikerlan.sharepoint.com/sites/FRACTAL_project/Documentos%20compartidos/WP3%20-%20Node%20Architecture%20and%20Building%20Blocks/Deliverables/D3.6/FRACTAL_SoftwareNodeAndServicesArchitecture.docx#_Toc116463467


 

Project FRACTAL: Cognitive Fractal and Secure Edge Based on Unique 
Open-Safe-Reliable-Low Power Hardware Platform Node 

 Title Software node and services architecture 

Del. Code D3.6 

 

V0.16  Copyright © FRACTAL Project Consortium 59 of 61 

 

11 List of tables 

Table 1 The FRACTAL components (according to D2.3) related to WP3. Some components 

will be described in D3.5 (and one in D7.3), for others the section in this deliverable is 

given ................................................................................................................... 7 

Table 2 Statistical insights for algorithms running with 4-core. .................................. 14 

Table 3 Statistical insights for algorithms running on 1-core processor. ...................... 16 

Table 4 Minimum RAM memory required if 4-core running ........................................ 16 

Table 5 Minimum RAM memory required if 1-core running ........................................ 17 

 



 

Project FRACTAL: Cognitive Fractal and Secure Edge Based on Unique 
Open-Safe-Reliable-Low Power Hardware Platform Node 

 Title Software node and services architecture 

Del. Code D3.6 

 

V0.16  Copyright © FRACTAL Project Consortium 60 of 61 

 

12 List of Abbreviations 

ACAP Adaptive Compute Acceleration Platform (relates to VERSAL) 
AI Artificial intelligence  
APB Advanced Peripheral Bus 
API Application Programming Interface 
APU Application Processing Unit 
ASIC Application-specific integrated circuit 
AXI Advanced eXtensible Interface 
BBL Berkeley Boot Loader 
BSP Board Support Package 
CDT  C/C++ Development Toolkit 
CLang C Language 
CPU Central processing unit 
DMA Direct Memory Acces 
DoA Description of Action 
DRAM Dynamic/Distributed random-access memory 
EDDL European Distributed Deep Learning Library 
FPGA Field-Programmable Gate Array 
GCC GNU Compiler Collection 
GDB GNU Debugger 
GPL General Public License 
GNU GNU is Not Unix 
HLS High-Level Synthesis 
HW Hardware 
IDE Integrated Development Environment 
IoT Internet of Things 
IP Intellectual Property 
ISA Instruction Set Architecture 
JTAG Joint Test Action Group 
LB Load Balancer 
LED Light-Emitting Diode 
LEDEL Low Energy DEep Learning Library 
LLVM Former initialism of Low Level Virtual Machine. Concept currently expanded. 
MLOps Compound of “machine learning” and the continuous development practice 

MPSoC Multiprocessor System-on-Chip 
NoC Network-on-Chip 
ONNX Open Neural Network eXchange 
OpenCL Open Computing Language 
OS Operating System 
PL Programmable Logic 
PMC Platform Management Controller 
POSIX Portable Operating System Interface 



 

Project FRACTAL: Cognitive Fractal and Secure Edge Based on Unique 
Open-Safe-Reliable-Low Power Hardware Platform Node 

 Title Software node and services architecture 

Del. Code D3.6 

 

V0.16  Copyright © FRACTAL Project Consortium 61 of 61 

 

PS Programmable System 
PULP Parallel Ultra Low Power 
QEMU Quick EMUlator 
REST Representational state transfer 
RISC-V Reduced Instruction Set Computer 
RPU Real time Processing Unit 
RTEMS Real-Time Executive for Multiprocessor Systems 
RTOS Real Time Operating System 
SMP Symmetric Multi-Processing 
SoC System on a Chip 
SW Software 
TLB Lookaside Buffer 
UC Use Case 
WP Work Package 
XRT Xilinx Runtime 


